
Power/Performance Hardware Optimization for Synchronization Intensive
Applications in MPSoCs

Matteo Monchiero Gianluca Palermo Cristina Silvano Oreste Villa
Politecnico di Milano – Milano, Italy

{monchier, gpalermo, silvano, ovilla}@elet.polimi.it

Abstract

This paper explores optimization techniques of the syn-
chronization mechanisms for MPSoCs based on complex
interconnect (Network-on-Chip), targeted at future power-
efficient systems. The proposed solution is based on the idea
of locally performing synchronization operations which re-
quire the continuous polling of a shared variable, thus fea-
turing large contention (e.g. spin locks). We introduce a HW
module, the Synchronization-operation Buffer (SB), which
queues and manages the requests issued by the proces-
sors. Experimental validation has been carried out by us-
ing GRAPES, a cycle-accurate performance/power simula-
tion platform. For 8-processor target architecture, we show
that the proposed solution achieves up to 40% performance
improvement and 30% energy saving with respect to syn-
chronization based on directory-based coherence protocol.

1. Introduction

Many semiconductor firms are recently proposing sys-
tems, based on few cores, tightly interconnected and inte-
grated on a single chip [12, 10]. Among embedded devices,
MultiProcessor Systems on-Chip (MPSoCs) are emerging as
appealing solutions for complex applications targeting future
mobile systems [21, 3, 8].

Applications running on MPSoCs require high bandwidth
memory subsystem, as well as efficient thread synchroniza-
tion mechanisms. Careful design of the synchronization has
to be carried on, meeting strict design constraints in terms of
performance, as well as cost and power consumption. In par-
ticular energy efficiency of such systems, impacting on bat-
tery lifetime, has emerged as one of the main design issues
[14].

The focus of this paper is on the optimization of synchro-
nization mechanisms for shared memory MPSoCs, adopt-
ing the joint point of view of energy efficiency and per-
formance optimization. Busy-wait techniques, which are the
base of most common routines (e.g. mutual exclusion or bar-
rier synchronization), feature large amount of memory and
interconnect contention [13], generating useless activity in
the system. In this paper, we introduce a hardware archi-
tecture, specifically optimized to reduce the overhead of the
synchronization algorithms, which are based on the contin-
uous polling of a shared memory location (e.g. spin locks
and barriers). The idea is to locally manage the requests is-
sued by the processing elements composing the system, by

means of a dedicated hardware block: the Synchronization-
operation Buffer (SB). The SB effectively avoids traffic net-
work and memory accesses, otherwise needed by software
synchronization.

The optimization of busy-wait synchronization, so far
proposed, exploits the locality of cache memories, at the cost
of maintaining cache coherence on the data used for syn-
chronization. Our solution is theoretically effective, both in
systems with caches and without them, avoiding the addi-
tional cost of coherence protocols. Spin lock implementa-
tion, based on the SB, features O(1) memory references and
network transactions. It is scalable with the number of pro-
cessing cores, needing resource budget which is linear with
the number of processors of the system.

Analysis and exploration of the proposed architecture
have been performed by using GRAPES, a NoC-based MP-
SoC platform for cycle-based power/performance evalua-
tion. Experimental results show that significant performance
improvement and energy reduction can be achieved by SB-
based architecture. We prove the scalability of the proposed
mechanism by evaluating performance and energy consump-
tion of 4, 8 and 16 processors system.

The paper is organized as follows. Section 2 presents
some related works. The architecture of the SB is discussed
in Section 3. In Section 4, the target architecture is intro-
duced. The implementation of the SB is presented in Sec-
tion 5. Finally, in Section 6, details about simulation setup
and experimental results are presented.

2. Related Work

Many optimizations of the synchronization constructs
have been proposed in the literature. In [13] is presented a
survey of efficient software algorithms for spin locks and
barriers. One of the most efficient implementations of spin
locks is the queuing lock, which is based on a shared struc-
ture holding the queue of the threads waiting for the lock.
Several hardware implementations of queuing lock have
been proposed (e.g. in [5, 9]), and it has been shown that
they feature significant lower overhead than software mech-
anisms. In systems with caches, queue-based locks feature
O(1) traffic, since once the lock address has been obtained,
polling can be performed locally in the cache.

In the embedded system field, MPSoCs, typically com-
posed of few heterogeneous cores, have been programmed
with ad hoc techniques, while no parallel programming mod-
els have been used. Issues of structured programming mod-
els and synchronization in MPSoCs have been only recently

3-9810801-0-6/DATE06 © 2006 EDAA

606

faced in [3, 17, 11]. In [3], synchronization is provided by ad
hoc semaphore unit, and caching of semaphores is adopted
to reduce synchronization contention. Paulin et al. [17] face
problems related to parallel programming model design in
embedded multiprocessors. The authors propose a SMP pro-
gramming model based on a hardware unit, the Concurrency
Engine and a software layer, which exposes to the program-
mer synchronization hardware by means of a C++ API. In
[11] the authors present power/performance evaluation of
several cache coherence schemes. They explore three sce-
narios (snoop-based, software-based and OS-based), in the
context of a shared memory MPSoC based on bus intercon-
nect.

For what concerns high performance multiprocessors,
Rajwar and Goodman have recently proposed multiproces-
sor architecture and execution model based on transactional
memory [19]. This approach relies on advanced speculative
hardware to support the atomic execution of software trans-
actions. We consider this kind of solution not suitable for our
target systems, since it requires complex and power-hungry
hardware design.

This paper represents a further step in the study of MP-
SoCs, introducing ad hoc architecture to support low-
complexity, but efficient, synchronization.

3. Synchronization-operation Buffer

In this paper, we propose a hardware block, the
Synchronization-operation Buffer (SB), which enhances
the shared memory architecture with optimal manage-
ment of the synchronization operations requiring contin-
uous polling of a shared variable. These are primitives
which may be source of significant contention in the mem-
ory and in the interconnect. We consider the implementa-
tion of two primitives: spin locks and events, which can be
used as basic blocks of the most used software synchroniza-
tion routines.

The basic idea, that we propose, is to locally manage in
the memory controller spin locks and events, maintaining
a buffer which holds a queue of pending operations. In the
buffer it is also monitored when the value of the contended
shared variable changes. In this way, polling can be avoided
and the overhead due to contention is significantly reduced.
In the following, we describe separately how the SB works
for spin locks and events. The SB differs from previously
proposed lock queuing mechanisms, since it provides uni-
fied optimization of lock and barriers, and it decouples syn-
chronization optimization from cache coherence issues.

For what concerns spin locks, each entry of the SB corre-
sponds to a specific lock and consists of two fields contain-
ing information related to the issuing processor and lock ad-
dress. The SB is managed as a circular buffer, with a head
pointer indicating the most recent entry and a tail pointer in-
dicating the oldest one. The SB content is modified when-
ever a request of lock acquire and lock release is received
by the memory controller, according to the algorithm illus-
trated in Figure 1. When the processor P wants to acquire
the lock at address L, a Test-and-Set instruction tries to set
the lock in the memory, if it does not succeed, an entry is al-
located at SB tail, related to the pair {L, P}. On each request
for lock release, the SB is searched for matching entries and
if a processor (P) waiting for the lock (L) is found, P is no-

acquire lock(lock *L, int P){
if (Test-and-set(L))

send msg back(”lock acquired”,P);
}
else {

insert at SB tail(L,P);
}

}
release lock(lock *L){

int P=-1;
P = search SB for(L);
if (P>0) {

retire from SB(L,P);
send msg back(”lock acquired”,P);

}
else {

*L=0;
}

}

Figure 1. Algorithm to manage the SB, on
each lock acquire and lock release request

tified that it acquired the lock. If no processor is contending
L, the lock is released.

The SB can be extended to manage also other operations,
widely used in busy-wait synchronization constructs. Events
are primitives which generate a signal when an ‘event’ oc-
curs. We consider events on shared variables and we specify
an event with a pair {variable, event value}. An event oc-
curs when the content of variable is equal to event value.
Typical implementation of events is by means of polling of
the monitored variable. They can be used in barriers imple-
mentation to monitor if all the processors have reached it.

The algorithm we use to manage the SB for events is
shown in Figure 2. The SB entry must hold the monitored
variable address (variable), the value which triggers the sig-
nal (event value) and which processor requested the event
(P). The SB is accessed when an event service is requested
to the memory controller. If the monitored variable value is
different from the event value, the triple {variable address,
event value, requesting processor} is inserted at SB tail. On
each write to the shared memory, the SB is searched to test
if any event is satisfied. If it happens, the corresponding SB
entries are retired and the event is signaled to the processors
which requested the event.

Associative search in the SB is performed observing tem-
poral ordering, starting from the oldest entry (SB head) to
the most recent one (SB tail). However retirement can hap-
pen out-of-order, since locks and events, when referencing
to different locations, are independent. The algorithm makes
spin locks be served in FIFO order, making sure that starva-
tion situations are avoided.

Network transactions required to acquire a lock are a con-
stant number, independent of the number of processors. Re-
garding events, each time a signal is generated, the amount
of network transactions is linear with the number of contend-
ing processors. When we consider a request for an event, i.e.
a call to event(. . .), a constant number of network transac-
tions is required. Memory accesses number is constant for
spin locks and for events. For the events we leave out the
write operations, needed to update the value of the monitored
value in the memory. SB optimal size depends on the num-
ber of concurrent issues of spin locks and events. In a sys-
tem composed of P processors, it is linear with P , consider-

607

event(int *variable, int event value, int P){
if (*variable == event value)

send msg back(”event”,P);
}
else {

insert at SB tail(variable, event value, P);
}

}
write(int *variable, int value){

SB entry list entry list=empty;
*variable=value;
entry list = search SB for(variable);
for each entry in entry list {

if (SB[entry].event value == value) {
send msg back(”event”,entry);
retire from SB(variable,entry);

}
}

}

Figure 2. Algorithm to manage the SB for
event primitives

ing that each processor can issue only one spin lock/event at
time. Otherwise the number of SB entries depends on P×N ,
where N is the number of parallel issues which a single pro-
cessor can manage. For example, this is the case of proces-
sors running multiple threads.

In cache-coherent systems the SB provides sequential
consistency on synchronization variables without the re-
quirement of a coherence protocol.

4. Target Architecture

In this section, we present the architecture of our target
system and we introduce the HW/SW layer designed to sup-
port parallel programming.

Figure 3 shows the block diagram of the system architec-
ture. It is composed of several Processing Elements (PEs),
each of them comprising a Processor Core, Data and Instruc-
tion Cache. The Communication Interface provides the inter-
face with the channel, i.e. the NoC. Communication layer is
provided by the PIRATE NoC [15], a configurable and scal-
able high bandwidth interconnect. Network Interface (NI)
modules supply a translation layer between NoC protocol
and the IPs composing the system: processors, memories,
coprocessors. Memory modules can be placed across the
NoC, providing on-chip shared memory space for data. In-
terface with the main memory is provided by the Main Mem-
ory Controller. The SB is plugged into the system as a sep-
arate module communicating over the network. A dedicated
link between the SB and the Shared Memory Controller ex-
ists to permit SB to/from shared memory operations. Fur-
thermore custom coprocessors, supplying specialized func-
tions, can be easily plugged in the system. Asynchronous
events are managed by the Interrupt Controller.

The memory model is composed of separate private mem-
ory space and shared memory space. Private memory space
exists for each PE and can’t be seen by any other PE in the
system except for its owner. Shared portions of the address-
ing space are used for synchronization and data exchange.
While private memory maps to the off-chip Main Memory,
shared memory is implemented by means of on-chip RAM.

Temporary view of the memory space (both the private
and shared one) is provided by cache memories in each PE.

NI
NI

Cache
Data

Instruction
Cache

Processor Core

Communication
Interface

Cache
Data

Instruction
Cache

Processor Core

Communication
Interface

NI NI

NI
NI NI

Interrupt
Ctlr

NI

Main
Memory

Ctlr

PIRATE NoC

...

...

Memory
Shared

SB

Coprocessor

Main Memory

Ctlr
Sh. Mem.

Figure 3. Target system architecture

We assume a weak consistency model [4], which requires
sequential consistency on synchronization variables, while
memory operations on data, between two synchronization
points, can be reordered. Both private and shared data are
cached. The coherence of cached data is assured by flush-
ing shared cache lines at each synchronization point. Con-
sistency of the synchronization variables can be enforced by
using different mechanisms (e.g. the SB), which are intro-
duced in Section 6.

Low-level API is provided to support parallel program-
ming model based on shared memory and fork/join parallel
execution model. We built PARMACS macros [6] on the top
of the API to fully support parallel programming. The port-
ing has been carried out using as guideline the implementa-
tion of the PARMACS for SGI [1].

5. Synchronization-operation Buffer Imple-
mentation

The SB module has been implemented in the target sys-
tem as stand-alone IP (see Figure 3), communicating over
the interconnect with the cores, while a dedicated link pro-
vides the interface with the shared memory controller. We
partitioned the SB core logic into two separate components.
One is devoted to manage events, named Events Buffer (EB),
the other one is dedicated to spin locks, named Locks Buffer
(LB). In this way, the complexity of the associative search
logic is divided, resulting in more efficient implementation.
Furthermore, the structure of LB entries and EB entries are
different. Each LB entry stores the address referenced by a
spin lock operation (32 bits) and the PE that makes the re-
quest (8 bits), while the EB entry has three fields: the ad-
dress of the monitored variable (32 bits), the event value (32
bits) and the requesting PE number (8 bits). Since address
fields are used as tags for matching logic, they have been im-
plemented in CAM, while other fields are in RAM.

In Table 1, synthesis results obtained with Synopsys De-
sign Compiler, targeting 90 nm STMicroelectronics CMOS
technology, are presented. Data for area, delay and power are
normalized to area occupation, cycle time, and average ac-
cess power of a 512KB on chip SRAM memory. Area for the

608

entries 8 16 32 64
Cell area [%] 1.80 3.37 7.2 14.3
AS critical path [%] 23 27.4 22.2 23.2
AS power [%] 0.4 0.8 1.72 3.4

Table 1. Synthesis results for different size
SBs

entire SB is shown for 4 different sizes (8, 16, 32 and 64 en-
tries) to use in 4, 8, 16 and 32 PEs system (one LB and EB
for each PE). These configurations comprise both the LB and
the EB, which are equally sized. We report worst case power
and critical path latency of the associative search phase (AS,
Associative Search in Table 1). This is the most critical op-
eration, which defines the minimum achievable clock cycle
and features maximum power dissipation.

As expected, area and power grow linearly with SB size.
Delay is substantially constant with size. In fact, critical path
does not depend on the device size and long wire effects
are not evident for small sizes. Constraints on the clock fre-
quency (200MHz) have been imposed and are satisfied. Both
power and area of the SB represent a small overhead with re-
spect to the on chip memory for small scale systems.

When a lock is acquired by a processor, waiting in the
SB, two concurrent operations must be performed: retire-
ment from SB and sending back a message to the processor
(it will take 30-40 NoC cycles to reach the processor, as mea-
sured with 8-core system). So the cost of acquiring a lock is
mainly determined by the latency of a single network trans-
action.

6. Experimental Results

In this section, we discuss experimental results obtained
by using the GRAPES simulation framework, providing
evaluation of SB-based MPSoC architectures.

The GRAPES framework is based on the SystemC simu-
lation kernel and a cycle-accurate SystemC-OCCN descrip-
tion of the NoC. IP cores, i.e. PEs, memories and coproces-
sors, are described as independent modules connected to the
NoC. PEs are modeled by using the SimIt ARM simulator
[18], while cycle-accurate memory models have been devel-
oped from scratch.

System-level power model is provided in the GRAPES
framework. The model accounts for processors, memories
and NoC power consumption. Power model parameters, as
well as architectural parameters, have been estimated by
gate-level simulation [15] (with 90 nm STMicroelectronics
CMOS technology) or extracted by experimental data (from
[20] for the ARM cores and STMicroelectronics data for
memories [2]). Accuracy of our power-model is directly de-
rived from the accuracy of the models used for each compo-
nent [15, 20, 2].

Table 2 lists the simulated benchmarks with a short de-
scription of each one. We selected some kernels from the
Splash 2 benchmark suite [22]. A reduced working set has
been used to fit constraints imposed by our target architec-
ture, while providing significant complexity. Furthermore,
we simulated several applications from different domains
(biomedicine, numerical analysis, games, DSP).

Table 3 shows details of the architecture base configu-
rations used for simulation. PEs have been clocked at 200

Benchmark Description
FFT Complex 1D radix-

√
n 6-step FFT

LU-1 Lower/upper triangular matrix factorization,
LU-2 idem, but optimized for spatial locality

(contiguous blocks)
Radix Integer radix sort
Bio Multiagent negotiation algorithm

for a heart-pacing simulation and control
Chebyshev Chebyshev series parallel evaluation
15-puzzle Calculation of the 15-puzzle game solution,

based on tree movements exploration
QWST Quarter Wave Sine Transform
Norm Parallel vector normalization
Matrix Matrix multiplication

Table 2. Program Benchmarks

Parameter Value
PE clock frequency 200 MHz
NoC clock frequency 400 MHz
Memory controller clock frequency 200 MHz
SB clock frequency 200 MHz
Shared memory size 512KB
Data cache 8KB 4-way 32B block, write-back
Instruction cache 16KB 4-way 32B block, write-back
#PE 4, 8, 16
NoC topology Mesh

Table 3. Architecture parameters

MHz as well as shared memory interfaces and the SB. PI-
RATE NoC can run up to 850 MHz, but we set network
clock at 400 MHz to minimize latency, while not dramati-
cally impacting on total power. NoC topology has been con-
figured as a Mesh. Three base configurations of the system
have been simulated (comprising 4, 8 or 16 PEs) and 512KB
shared memory.

In order to explore the efficacy of the SB, we simulated
the following schemes to enforce ordering on synchroniza-
tion data accesses:

1. MEM. Synchronization variables are not cached, thus
they reside in memory. This configuration implements
synchronization by means of software spin locks (test-
and-set based) and events, featuring fixed-delay polling
[13].

2. SB. As Configuration 1 but, the SB is used. As previ-
ously stated, the SB assure sequential consistency on
synchronization variables.

3. COH. Also synchronization data are cached and co-
herence protocol for synchronization data is used to
maintain ordering. We choose to implement a simple
write-invalidate directory-based protocol [16], suitable
for our target architecture based on a network intercon-
nect. This configuration features optimized lock prim-
itives (O(1) memory references and network transac-
tions), based on local polling in the caches.

Figure 4 shows the instantaneous aggregate bandwidth of
the NoC and the maximum packet latency, during the exe-
cution of the Bio benchmark, for 8 PEs system. Bio is based
on multiagent negotiation algorithm [7] featuring continu-
ous synchronization.

It can be observed that the traffic in the time interval rang-
ing from 4×106ns to 11×106ns is significantly reduced by
the SB: 0.3 GB/s without SB to 0.1 GB/s with SB. Also some
long latency spikes are nearly eliminated (e.g. at 5×106ns).

609

0 2 4 6 8 10 12 14

x 10
6

0

0.1

0.2

0.3

0.4

0.5

0.6

(a)

Time [ns]

B
an

d
w

id
th

 [
G

B
/s

]

0 2 4 6 8 10 12 14

x 10
6

0

50

100

150

200

Time [ns]

N
o
C

 M
ax

 L
at

en
cy

 [
n
s]

0 2 4 6 8 10 12 14

x 10
6

0

0.1

0.2

0.3

0.4

0.5

0.6

(b)

Time [ns]

B
an

d
w

id
th

 [
G

B
/s

]

0 2 4 6 8 10 12 14

x 10
6

0

50

100

150

200

Time [ns]

N
o
C

 M
ax

 L
at

en
cy

 [
n
s]

Figure 4. NoC aggregate bandwidth (top) and maximum packet latency (bottom) for systems without
the SB (a) and with SB (b), for the Bio benchmark

25

50

75

100

125

N
o
rm

al
iz

ed
 E

x
ec

u
ti

o
n
 T

im
e

[%
]

FFT

LU
−1

LU
−2

R
ad

ix B
io

C
he

by
sh

ev

15
−pu

zz
le

Q
W

ST

M
at

rix

N
or

m

(a)MEM

SB

COH

25

50

75

100

125

N
o

rm
al

iz
ed

 E
n

er
g

y
 [

%
]

FFT−M
EM

FFT−SB

FFT−C
O

H

LU
−1−

M
EM

LU
−1−

SB

LU
−1−

C
O

H

LU
−2−

M
EM

LU
−2−

SB

LU
−2−

C
O

H

R
ad

ix
−M

EM

R
ad

ix
−SB

R
ad

ix
−C

O
H

B
io

−M
EM

B
io

−SB

B
io

−C
O

H

C
he

by
sh

ev
−M

EM

C
he

by
sh

ev
−SB

C
he

by
sh

ev
−C

O
H

15
−pu

zz
le

−M
EM

15
−pu

zz
le

−SB

15
−pu

zz
le

−C
O

H

Q
W

ST−M
EM

Q
W

ST−SB

Q
W

ST−C
O

H

M
at

rix
−M

EM

M
at

rix
−SB

M
at

rix
−C

O
H

N
or

m
−M

EM

N
or

m
−SB

N
or

m
−C

O
H

(b)PE

Memories

NoC

Figure 5. Performance (a) and energy (b) eval-
uation of different caching and synchroniza-
tion schemes for 8 PEs systems

In Figure 5 the impact of the SB on the overall system
performance and energy consumption is evaluated. Experi-
mental values are normalized with respect to Configuration
1 (MEM).

As can be seen in Figure 5(a), when synchronization vari-
ables are cached and cache coherence protocol is enabled
(COH), no advantage can be observed with respect to MEM:
even if the polling is local in the caches, coherence protocol
overhead compensates. In particular the coherence overhead
is evident for Chebyshev and Norm, making performance de-
crease.

The SB-based configuration (SB) improves performance
for a subset of the benchmarks. For the LUs, the SB reduces
the execution time of the 25%, while on Radix it features
more than 40% reduction, with respect to MEM. The same
behavior is for Chebyshev, 15-puzzle and Norm.

SB-based synchronization does not suffer from coher-
ence protocol overhead, resulting in better performance than
COH: 25% improvement for LUs, 40% for Radix and 10-
30% for Chebyshev, 15-puzzle and Norm.

Load balance characteristics are important in determin-
ing how much the SB impacts on system behavior. If the
load is not balanced, busy-wait synchronization makes some
PEs wait. If spinning synchronization operations are soft-
ware implemented, during these time slots, PEs do a lot of
polling, while, using the SB, no polling is required, speed-
ing up the execution. As shown in [22], both LUs and Radix
spend long time in synchronization (35%, 10% of the execu-
tion time), featuring significant load imbalance, while FFT
is the most balanced benchmark (less than 1% of the execu-
tion time is synchronization). Due to this reason, for some
benchmarks (FFT and Matrix) the impact of the SB is neg-
ligible, while, especially for the LUs and Radix, which are
synchronization-intensive applications, the SB significantly
improves performance.

For what concerns Bio and QWST, the SB has little effect
on the performance, while it works in reducing NoC traffic,
as observed in Figure 4 for Bio. These benchmarks spend a
large fraction of the execution time for computation, so the
SB effects can’t be observed from system performance anal-
ysis.

Figure 5(b) shows energy breakdown for each bench-
mark and synchronization schemes. We consider three com-
ponents of the total energy: the PE energy component
(which includes the whole node energy consumption, in-
cluding caches); The memories component which refers to
shared memory; The NoC component, related to intercon-
nect energy consumption.

Caching synchronization variables (COH) is effective in

610

MEM SB COH
0

5

10

15
x 10

7

E
x
ec

u
ti

o
n
 T

im
e

[n
s]

4

8

16

Figure 6. Execution time scaling trends for the
LU-2 application

reducing the contention due to polling. In fact, it reduces sig-
nificantly memory energy, impacting on those benchmarks
with large synchronization overhead. LU-1, LU-2, Radix, Bio
and QWST feature energy reduction up to 30% with respect
to MEM configuration. On the other hand, caching synchro-
nization variables means that coherence protocol has to be
enforced to guarantee consistency. Norm, Chebyshev and 15-
puzzle are benchmarks where energy spent to maintain co-
herence is not compensated by memory energy reduction.

The SB behaves in a similar way, but avoids the overhead
of coherence protocol, resulting in 10–30% energy reduc-
tion with respect to COH configuration, for the LUs, Radix,
Chebyshev, 15-puzzle and Norm, by reducing the NoC and
the PE energy component. In fact, network transactions due
to coherence are avoided and performance increase of the
SB-based solution impacts on the PE energy.

In Figure 6, scaling trends for the LU-2 benchmark are
shown. The SB allows effective application scaling when the
system size grows (4, 8 and 16 cores). MEM does not scale
well since synchronization variables reside in the memory
and longer network transactions are needed as system size
increases. The COH configuration relies on coherence pro-
tocol to avoid the polling, but this features increasing traf-
fic as the system becomes larger. For the SB-based architec-
ture, for each processor which requests to poll a shared vari-
able a constant number of network transactions, independent
of the system size, is generated. Scaling results are similar
for all the synchronization-intensive benchmarks.

7. Concluding Remarks

In this paper, we suggest shared memory architecture,
optimized to manage synchronization operations, by means
of a dedicated hardware unit: the Synchronization-operation
Buffer (SB). This solutions is low-complexity, avoiding the
additional cost of coherence protocol, which is often used by
state-of-the-art synchronization solutions. The SB features
up to 40% performance improvement and 30% energy re-
duction with respect to a system based on coherence proto-
col. The SB is effective especially for those applications fea-
turing significant synchronization overhead. As the system
scales up this phenomenon becomes more and more evident.

8. Acknowledgements

The authors would like to thank Valerio Catalano for the
many hours of work he spent on GRAPES, all the students of

PoliMi involved with the GRAPES project, and Marco Gal-
luzzi for the useful suggestions on this paper. Furthermore,
thanks to STMicroelectronics which supported this work by
providing technology libraries.

References
[1] http://www-flash.stanford.edu/apps/SPLASH/.
[2] STMicroelectronics industrial data.
[3] B. Ackland, A. Anesko, D. Brinthaupt, S. Daubert,

A. Kalavade, J. Knobloch, E. Micca, M. Moturi, C. Nicol,
J. O’Neill, J. Othmer, E. Sckinger, K. Singh, J. Sweet, and
C. Terman. A Single-Chip 1.6 Billion 16-b MAC/s Multipro-
cessor DSP. IEEE JSSC, March 2000.

[4] S. Adve and K. Gharachorloo. Shared memory consistency
models: A tutorial. Technical Report 95/7, WRL, 1995.

[5] T. Anderson. The performance of of spin lock alternatives for
shared memory multiprocessors. IEEE Trans. on Parallel and
Distributed Systems, January 1990.

[6] E. Artiaga, N. Navarro, X. Martorell, and Y. Becerra. Im-
plementing PARMACS macros for shared-memory multipro-
cessor environments. Technical Report UPC-DAC-1997-07,
UPC-DAC, 1997.

[7] A. Beda, N. Gatti, and F. Amigoni. Heart-rate pacing simu-
lation and control via multiagent systems. In Proc. of Agents
Applied in Health Care, 2004.

[8] S. Dutta, R. Jensen, and A. Rieckmann. Viper: A multipro-
cessor SOC for advanced set-top box and digital tv systems.
IEEE Design & Test of Computers, September/October 2001.

[9] A. Kagi, D. Burger, and J. R. Goodman. Efficient synchro-
nization: let them eat QOLB. In Proc. of ISCA, 1997.

[10] P. Kongetira, K. Aingaran, and K. Olukotun. Niagara: A 32-
way multithreaded Sparc processor. IEEE Micro, pages 21–
29, March/April 2005.

[11] M. Loghi and M. Poncino. Exploring energy/performance
tradeoffs in shared memory MPSoC: Snoop-based cache co-
herence vs. software solutions. In Proc. of DATE, 2005.

[12] C. McNairy and R. Bhatia. Montecito: A dual-core,
dual-thread Itanium processor. IEEE Micro, pages 10–20,
March/April 2005.

[13] J. M. Mellor-Crummey and M. L. Scott. Algorithms for
scalable synchronization on shared-memory multiprocessors.
ACM Trans. on Computer Systems, 9(1):21–65, 1991.

[14] T. Mudge. Power: A First Class Constraint for Future Archi-
tectures. In HPCA-6, 2000.

[15] G. Palermo and C. Silvano. PIRATE: A Framework for
Power/Performance Exploration of Network-On-Chip Archi-
tectures. In Proc. of PATMOS, 2004.

[16] D. A. Patterson and J. L. Hennessy. Computer Architecture:
A Quantitative Approach. Morgan Kaufmann, 2003.

[17] P. Paulin, C. Pilkington, M. Langevin, E. Bensoudane, and
G. Nicolescu. Parallel programming models for a multi-
processor SoC platform applied to high-speed traffic manage-
ment. In Proc. of CODES-ISSS, pages 48–53, 2004.

[18] W. Qin and S. Malik. Flexible and Formal Modeling of Mi-
croprocessors with Application to Retargetable Simulation. In
Proc. of DATE, 2003.

[19] R. Rajwar and J. Goodman. Transactional execution: To-
ward reliable, high-performance multithreading. IEEE MI-
CRO, November/December 2003.

[20] A. Sinha, N. Ickes, and A. Chandrakasan. Instruction level
and operating system profiling for energy exposed software.
IEEE Trans. on VLSI, 11(6), December 2003.

[21] W. Wolf. The future of multiprocessor systems-on-chips. In
Proc. of DAC, 2004.

[22] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta.
The SPLASH-2 programs: Characterization and methodolog-
ical considerations. In Proc. of ISCA, 1995.

611

