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Abstract

The introduction of Transaction Level Modeling (TLM)
allows a system designer to model a complete application,
composed of hardware and software parts, at several lev-
els of abstraction. The simulation speed of TLM is orders
of magnitude faster than traditional RTL simulation; never-
theless, it can become a limiting factor when considering a
Multi-Processor System-On-Chip (MP-SoC), as the analy-
sis of these systems can be very complex. The main goal of
this paper is to introduce a novel way of exploiting TLM fea-
tures to increase simulation efficiency of complex systems by
switching TLM models at runtime. Results show that simu-
lation performance can be increased significantly without
sacrificing the accuracy of critical application kernels.

1. Introduction
Transaction Level Modeling (TLM) has been introduced

in the recent past as a modeling style to describe communi-
cation channels at a higher abstraction level with respect
to Register Transfer Level. Although Transaction Level
(TL) models offer high simulation speed, in some cases,
they do not capture enough details about on-chip behav-
ior. TLM simulation speed, in particular when considering
cycle accurate models, does not keep up with the increas-
ing complexity of Multi-Processor Systems-on-Chip (MP-
SoCs). Furthermore, the design and tuning of an MPSoC of-
ten requires many simulation runs of the application on the
platform, following each minor optimization or modifica-
tion of the application.

In this paper, we propose a methodology based on the
exploitation of TLM and the concept of introspection (from
software engineering) to support the dynamic switching of
multi-level models for the simulation of complex MPSoCs.

In particular, to support the optimization and debugging
phases of small kernels of the target application, we propose
a methodology to use a less accurate model for the uninter-
esting sections of the simulation and a refined model for the
kernels under analysis. To the best of our knowledge, cur-

rent TLM simulators do not provide an effective way of ab-
straction level switching at runtime, and there is no consis-
tent way of modeling multi-level systems.

In more detail, our approach distinguishes between chan-
nels and generic modules, to consider their different nature
and the need to keep the system in a consistent state. The
proposed approach can be used to perform fast simulations
on uninteresting parts of an application lifespan, trading off
accuracy. Once an interesting kernel is reached, the simula-
tion speed is lowered, restoring accuracy. A simple exam-
ple of such behavior is shown in Figure 1. Suppose that we
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Figure 1. An example of use of the multi-
level switching capabilities of the proposed
approach

have modified an application and we want to test the re-
sults of the modification, but that the application is affected
only during the interval δ1. During interval δ0 simulation
is running with low-accuracy modules and functional chan-
nels, going at full speed at the cost of accuracy. Accuracy
is then re-established during interval δ1, allowing the de-
signer to reach the interval under analysis in shorter time.

The proposed modeling approach has been validated by
using the stepNP simulation platform [10], while execut-
ing a set of multimedia applications. The reported exper-
imental results show a simulation speed-up of one order
of magnitude, with respect to Bus-Cycle-Accurate (BCA)
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simulation, for a selected set of benchmarks. Moreover,
the reported results compare a low-accuracy and a cycle-
accurate ARM processor module, showing an average sav-
ing of 59.4%.

The paper is organized as follows. Section 2 summarizes
the most recent exploration frameworks for the design of
MPSoC architectures, while Section 3 describes the pro-
posed modeling approach. Some experimental results have
been reported and discussed in Section 4, while some con-
cluding remarks and future developments of the research are
outlined in Section 5.

2. Previous Work
To deal with the increasing complexity of MPSoCs,

Transaction Level Modeling (TLM) has been introduced in
the past years as a modeling style to describe on-chip com-
munication channels at higher abstraction level with respect
to Register Transfer Level (RTL). At TLM level, IP mod-
ules can be modelled at a functional level and the system
bus behavior can be viewed as an abstract channel indepen-
dent of the target bus architecture or protocol implemen-
tation. Although TL models offer high simulation speed, in
some cases, they do not capture enough details about the on-
chip behavior. Recent works ( [11], [5], [8]) have been di-
rected towards the application of some concepts from TLM
level to BCA level to model on-chip communication archi-
tectures and to guarantee simulation speed-up.

A hierarchical modelling framework to support on-chip
communication architectures has been proposed in [11],
based on function calls instead of signal semantics to model
AMBA2 and CoreConnect bus architectures. The approach
in [5] models the AMBA2 bus at TL by using function
calls for read/write operations, but also using SystemC
clocked threads that can slow down simulation speed. The
approach proposed in [8] also models AMBA2 read/write
transactions but using low level handshaking semantics to
support cycle-level accuracy. More recently, the TLM ap-
proach has been extended in [9] to propose a new and faster
transaction-based modeling abstraction level (CCATB) to
explore the communication design space. The CCATB ab-
straction level tries to bridge the gap between the TLM and
BCA levels, thus yielding an average performance speed-up
over pure BCA models.

Recently, commercial tools (such as [2], [4], [3]) have
started to support system modelling at TLM, in addition to
lower level RTL modelling tools. AHB Cycle-Level Inter-
face Specification [1] has been released by ARM to define
the requirements to model AHB at the cycle-accurate level
in SystemC.

The MPARM multiprocessor simulation platform has
been recently proposed in [7] for cycle-accurate power-
performance estimation. The MPARM platform has been
used in [6] for analyzing several on-chip communication

architectures (such as AMBA from ARM and STBus from
STMicroelectronics).

All the above mentioned approaches are not able to fully
exploit the trade-offs in terms of speed-up and accuracy
of TLM with respect to BCA. To support these features,
current TLM simulators do not offer a consistent way of
switching abstraction level-modelling at run-time.

To overcome the limitations of previous approaches, we
defined a flexible and efficient framework to support multi-
level modeling and simulation for MPSoCs, that provides
the capability of dynamically switching between a TLM de-
scription and a more accurate description of either a module
or a communication channel.

3. Proposed Model
In this section, we show how we can exploit SystemC 2.0

TLM features together with Remote Procedure Call (RPC)
and introspection to support multi-level models in order to
trade-off simulation speed with accuracy at runtime. Multi-
level models include both channels and generic modules.

Let us consider a channel: a TLM primitive channel pro-
vides one or more interfaces that can be accessed through
ports by any module. A primitive channel can be refined
into a hierarchical channel, i.e. a channel that can include
processes, ports and also other modules and subchannels,
in addition to interfaces. It is possible to wrap the model of
a channel inside another channel. Multiple channels, mod-
eled at different abstraction levels, can be merged into a sin-
gle entity, allowing multi-level simulation as shown in Fig-
ure 2. In the following, we will refer to channel as the con-
tainer of a set of subchannels that are models specified at
different abstraction levels. Switching between subchannels
introduces several issues:

• We need a mechanism to route requests to the correct
channel, depending on the desired abstraction level

• We need to keep the system in a consistent state, avoid-
ing any data loss during the switching of the abstrac-
tion level

• We need a mechanism to perform control-and-view of
the abstraction level of each component at runtime

The first issue is the routing of the requests coming from
the channel to the correct subchannel. As the channel in-
terface method is called, the request is immediately sent to
the currently active subchannel. To do so, each subchannel
must present the same interface as the wrapping channel, or
use an appropriate converter/adapter solution. Considering
a split-transaction bus model, this is done through the in-
troduction of Switchers and Mergers: the former are bound
to each master port of the channel and route transactions
through the active channel, the latter get responses from
both channels and route them to the correct destination, as
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Figure 2. The architecture of a multi-level
channel

shown in Figure 3. Switchers have a port directly bound to
an external port for a connection to a master and the chan-
nel interface routes the packets to the correct switcher ac-
cording to the transaction source. When the transaction re-
sponse arrives from the subchannel, it is routed through the
Switcher interface and forwarded to the external port, con-
nected to the master external module, as shown in Figure 4.
Mergers analogously receive requests from an interface, and
route requests through their external ports, connected to the
slave external modules.
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Figure 3. Internal architecture of a multi-level
TLM split-transaction channel

To keep the system in a consistent state, each subchan-
nel has to complete all the transactions that have been routed
through it. The wrapping channel enforces this behavior
by keeping track of all transaction requests: whenever the
abstraction level is changed, the channel will start routing
new requests to the appropriate subchannel, but all previ-
ous transactions will be still dealt by the previously se-
lected subchannel. This is done by keeping a status request
table (see Figure 3) and by associating each incoming re-
quest with a tag that specifies the subchannel that handled
it. Routing of responses is performed according to the tag.

As an example, let us consider a processor P that is
communicating with a memory M. Suppose that P is mul-
tithreaded and that communication is modeled as split-
transaction and using two channels as described above. Sup-

pose also that P’s first thread (T1) is reading data from mem-
ory and waiting for a result, while P’s second thread (T2) is
writing to another location in memory. Simulation is tak-
ing place at functional level. When T1 accesses the chan-
nel, the transaction is marked as belonging to the functional
channel. Before the response to T1’s read request is back
to P, the user decides to change the accuracy level of the
simulation to BCA. T2’s transaction is routed into a differ-
ent channel than T1’s, and marked accordingly. When the
memory is ready to return the read value to P, the infor-
mation will travel in the functional-level channel, as T1’s
transaction was marked functional, while T2’s write will be
propagated through the BCA channel.

This means that channel models can be changed at any
time without losing the state of the system, leaving the de-
signer to decide which part of the simulation should be con-
sidered at an higher level of detail. Accuracy is lost at level-
transition boundaries, when switching to a higher level of
accuracy. The accuracy is affected by the channel models
and the considered application. Assuming that switching
points are sufficiently far to each other, we can suppose that
after switching, the newly selected subchannel starts pro-
cessing transactions in an empty state. To maintain accu-
racy, in the worst case, a number of transactions equal to
the maximum contention of the subchannel has to be pro-
cessed. In this way, it is possible to detect deadlocks or con-
tention problems in the application.

Another issue concerns model control-and-view. In or-
der to be able to change simulation speed and accuracy at
runtime, we exploit the concept of introspection (from soft-
ware engineering), using an interface definition language,
SIDL. SIDL is a CORBA-like interface definition language
that lets an external program perform remote method invo-
cation (like Java RMI). By defining a standard interface for
hot-switching, it is possible to determine or to change the
abstraction level for each channel in the system. All these
solutions have been implemented in a SystemC-based co-
simulator, namely stepNP [10].

In practice, each TLM entity (i.e. a channel or a mod-
ule) extends a SocObject class that provides methods and
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Figure 4. Architecture of a switcher

102



structures that export services to the processes executing
out of the simulation space. These services let an external
process read or modify the internal variables of the simu-
lation. At the beginning of the simulation, each entity reg-
isters itself in an Object Request Broker (ORB). The ORB

TLM
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Object
class Request
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Registration

External
Events

Request
Routing

SystemC
CoreSimulation

Control

start, stop, pause...

Figure 5. Extension to TLM to support intro-
spection

acts as a name solver: it receives requests from the user or
another program, and routes them to the correct TLM en-
tity, as shown in Figure 5. The novelty with respect to a
standard CORBA approach is that the ORB has to be syn-
chronized with SystemC to avoid race conditions and in-
consistent states in the simulator. When started, the ORB
takes control of the simulation starting SystemC in a sepa-
rate POSIX thread and uses conditions to pause the model
when needed, without affecting simulation performance. To
allow the access to variables and signals, we created a sub-
class of sc signal called probe, that extends the Object
class, and all sc signals have been redefined as probes.

The implementation of generic multi-level modules is
less straightforward: it is necessary to keep track of the
module state, as it can be significantly different for each
level of abstraction. As an example, a functionally mod-
eled processor state contains much less information with re-
spect to the same processor modeled at the internal bus sig-
nal level. It is not useful to keep two instances of the same
module running at different levels of abstraction to main-
tain state consistency, as the slower model would be the
bottleneck for simulation speed. Nevertheless, it is possible
to increase simulation speed by de-synchronizing the mod-
ule from the rest of the system. If we consider a standard
event-driven simulation, clock distribution plays a notice-
able role in the overall simulation complexity. Every time
the module modifies some signals, it generates events that
are put into a queue and scheduled by the simulation ker-
nel. The sysstem clock generates is responsible for generat-
ing most of these events. What we propose is the internal
de-synchronization of a component, disregarding the sys-

tem clock and leaving each module to run at its own pace,
in order to increase simulation speed. Synchronization is re-
gained only at module boundaries when accessing intercon-
nection channels.

This can lead to a substantial speed-up: in fact, running
SystemC code without any clock wait state is like running
native C++ code. By selectively removing wait() state-
ments from SystemC code, but keeping internal synchro-
nization, it is possible to trade-off simulation time with sim-
ulation accuracy. Models have to be properly designed to
keep internal synchronization when not using the clock.
This is done through the use of dynamic sensitivity lists and
synchronization events (i.e. the sc event structure). Dy-
namic sensitivity lists do not interfere with cycle-accurate
simulation, but can be deactivated at runtime through SIDL
to speed up cycle-accurate simulation. It is also possible to
enforce synchronization every n clock cycles, triggering the
wait() statement every n calls.

The activation of wait() statements is controlled by
SIDL. This is implemented through a redefinition of the
statements, using a value to determine the desired speed, i.e.
the number of calls to the wait() before execution is ac-
tually suspended:

void m u l t i L e v e l W a i t ( ) {
s t a t i c i n t speed = DEF SPEED ;
s t a t i c i n t c o u n t e r = 0 ;

i f ( speed > 0 && c o u n t e r < speed } {
c o u n t e r ++;
re turn ;

} e l s e {
c o u n t e r = 0 ;
w a i t ( ) ;

}
}

The model is synchronized only after a certain amount
(speed in the code) of calls to the wait statement. This can
be to eliminate synchronization completely. Whenever the
module tries to access an external channel, synchronization
with other modules is maintained by the TLM infrastruc-
ture: transactions (split transactions) are blocking for the
module (thread) that generated them.

In our experiments, the model of a multi-threaded ARM
can double its speed when synchronizing every 100,000 cy-
cles. We implemented a cycle-accurate Instruction Set Sim-
ulator (ISS) inside a SystemC wrapper, synchronizing to the
clock only on request, and leaving it to run at full speed
when simulation accuracy is not needed, as shown in Fig-
ure 6. This approach is different from channel models in that
it does not have two different objects wrapped in a single
module. Rather, the module is appropriately disconnected
from the clock signal. Hence, there is no need to keep track
of the state of the module, nor any routing involved in inter-
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face calls, provided that the module can keep internal syn-
chronization.

4. Experimental Results
The proposed modeling approach has been validated

using the stepNP simulation platform [10] with several
benchmarks and a large multimedia application, namely a
MPEG4 encoder. The chosen benchmarks are: VMUL, a
parallel vector multiplication application that exploits both
multi-cycle ARM instructions and accesses to memory; PI,
a parallel π calculator that makes full use of the processors
computing ability; MemTest, a parallel mass memory read-
/write application; Sort, a sorting application that exploits
bandwidth and uses little computing power; and MPEG4, a
fully fledged MPEG4 encoder, used to prove the methodol-
ogy on a real industrial application. MemTest and Sort are
good benchmarks for the channel switching methodology
because they fully use the bandwidth offered, introducing
a certain amount of contention, and can show the accuracy
trend when switching between two channels. PI and VMUL
are appropriate to test the de-synchronization of the ARM
processor because they focus on computing more than com-
munication. Experiments considered the simulation of an
MPSoC. The target architecture is formed by 5 ARM pro-
cessors, two levels of caches, local memories for each pro-
cessor, an external bus and a scratchpad. All components
are connected by the STMicroelectronics interconnection
network, STBus. All components are modeled at the timed
functional level, except for the processors and STBus.

Concerning channel modeling, the BCA model of the
STBus interconnection network in crossbar mode (supplied
by STMicrolectronics) has been simulated in parallel with a
functional crossbar. Figure 7 shows the simulation speed of
the aforementioned benchmarks when switching to Timed
Functional (TF) and Untimed Functional (UTF) simula-
tion, relative to Bus-Cycle-Accurate simulation. The speed
approximately doubles for the selected benchmarks when
switching from BCA to TF and the speed-up almost reaches
an order of magnitude when UTF is used. The overhead in-
troduced by the switchers and mergers is negligible when
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Figure 7. Simulation time of functional chan-
nels compared to BCA ones, including the
overhead of switchers and mergers

compared to the actual simulation lengths, as shown in Fig-
ure 7. Is it worth noting that the greater the use of the com-
munication channel by the application, the greater the dif-
ference between the functional and BCA models.

Figure 8 shows the effect of the accuracy change; TF
simulation of channels is less accurate than Bus-Cycle
(BC), but error remains at a low average 27% that can
be traded off for increased speed. UTF is not consid-
ered since it disregards accuracy completely in favor of fast
simulation.
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Figure 8. Timed Functional simulation accu-
racy, as compared to Bus-Cycle accuracy

A second set of experiments was done by using a bound-
ary synchronized ARM processor module, i.e. synchroniza-
tion is done only when the ARM accesses the communi-
cation channel. Results are shown in Figure 9. There is no
noticeable overhead introduced when de-synchronizing the
ARM modules. Accuracy decreases, but the error is biased
negatively, and a correction factor can be introduced. This
is due to the fact that the processors are not synchronized
and most cycles are not considered.

Extensive experimentation has been done to determine
the accuracy lost at the abstraction level boundary. Accu-
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Figure 9. Comparison of simulation perfor-
mance for de-synchronized ARM processor
modules, as compared to BC accuracy

racy switching was performed on all the benchmarks, in dif-
ferent sections of the code. Results show that no accuracy
is lost, and sections executed in BCA mode maintain clock-
cycle accuracy. Finally, putting together both channel and
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Figure 10. Relative speed-up when applying
both methodologies

module methodologies, it is possible to save up to one or-
der of magnitude in simulation speed, as shown in Figure 10
with negligible overhead.

5. Conclusions
In this paper, a methodology based on the exploitation

of TLM and the concept of introspection has been pro-
posed to support multi-level system models for the sim-
ulation of complex MPSoCs. Multi-level models include
both channels and generic modules of the system. In par-
ticular, to speed up the simulation and debugging phases of
small kernels of the target application, we have proposed
a modeling and simulation methodology to use less accu-
rate system models for the uninteresting sections of the sim-
ulation and accurate system models for the kernels under
analysis. To increase simulation speed, while maintaining

multi-level simulation capabilities, we have proposed to de-
synchronize a single module from the rest of the system,
disregarding all synchronization events and leaving each
module to run at its own pace. In this way, a system model
can run at several levels of accuracy, depending on how of-
ten the module is synchronized with the system.

The modeling approach proposed in this paper has been
validated using the stepNP simulation platform while exe-
cuting a set of applications. Further research activities are
directed towards the support of the hardware/software co-
exploration phase.
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