
Disjunctive Image Computation for Embedded Software Verification

Chao Wang
NEC Laboratories America

Princeton, NJ, U.S.A.

Zijiang Yang
Western Michigan University

Kalamazoo, MI, U.S.A.

Franjo Ivančić, Aarti Gupta
NEC Laboratories America

Princeton, NJ, U.S.A

Abstract

Finite state models generated from software programs
have unique characteristics that are not exploited by exist-
ing model checking algorithms. In this paper, we propose
a novel disjunctive image computation algorithm and other
simplifications based on these characteristics. Our algo-
rithm divides an image computation into a disjunctive set of
easier ones that can be performed in isolation. Hypergraph
partitioning is used to minimize the number of live variables
in each disjunctive component. We use the live variables
to simplify transition relations and reachable state subsets.
Our experiments on a set of real-world C programs show
that the new algorithm achieves orders-of-magnitude per-
formance improvement over the best known conjunctive im-
age computation algorithm.

1 Introduction

Symbolic model checking [1], a widely accepted tech-
nique in hardware verification, is also showing promises for
verifying embedded software programs and device derivers
[2]. In this paper, we consider verifying C programs that
include integer arithmetic, pointers, arrays, function calls,
and bounded memory allocation. Although program verifi-
cation in general is undecidable—it is equivalent to the halt-
ing problem of a Turing machine—the problem becomes
decidable under certain conditions. Here we consider the
case where the number of recursive function calls and the
data size are bounded. Note that in practice both recur-
sive functions and dynamic memory allocation are strongly
discouraged in embedded software programs that demand
a higher degree of reliability. With these assumptions, we
can build a finite state model from the software program and
apply model checking.

Software models have some characteristics that make
them significantly different from hardware models. For in-
stance, software models often have larger sequential depths
and many more state variables. Program variables also have
a higher degree of locality—many are effective only in parts
of the program. At any program location, only a very lim-

ited number of variables can change their values. In con-
trast, most state variables (or latches) in hardware are up-
dated at every clock cycle and can not be easily localized.
Due to these differences, existing symbolic model checking
algorithms [3, 4, 5], although fine-tuned for handling hard-
ware, do not work well on software models.

In this paper, we propose a symbolic image computation
algorithm that exploits the unique characteristics of soft-
ware models. It disjunctively decomposes the computation
into a set of steps that can be performed in isolation on sub-
modules. Breaking the expensive computation into a set of
cheaper ones can significantly reduce the peak memory size
during image computation. Our algorithm for creating the
submodules is geared towards exploitation of variable local-
ity. Using a hypergraph partitioning heuristic, we are able
to produce a small set of submodules and at the same time
minimize the number of live variables. We further improve
the performance by preventing irrelevant variables from ap-
pearing in the transition relations, and by existentially quan-
tifying dead variables from the reachable state subsets.

We have implemented and evaluated our new algorithm
using the public domain symbolic model checker VIS [6].
We demonstrate, on a set of typical embedded software pro-
grams, that our new algorithm outperforms the best known
conjunctive image computation algorithms in terms of both
CPU time and memory usage. The improvement is both
consistent and significant (up to orders-of-magnitude).

After establishing notation in Section 3, we present our
disjunctive image computation algorithm in Section 4. The
application of relevant and live variables to simplify the
computation is explained in Section 5. We illustrate in Sec-
tion 6 the use of hypergraph partitioning to minimize the
number of live variables. We give the experimental results
in Section 7, and then conclude in Section 8.

2 Related Work

Partitioned transition relations for symbolic image com-
putation were proposed in [7, 9] in both disjunctive and con-
junctive forms. In [8], multiple variable orders were used
together with partitioned ROBDDs [10] to reduce the peak

3-9810801-0-6/DATE06 © 2006 EDAA

memory usage in reachability analysis. However, these
works were not targeted to software models. Note that pre-
vious applications of disjunctively partitioned transition re-
lation were not successful for hardware models, since cre-
ating a good disjunctive partition itself is a non-trivial task.
Our work demonstrates that disjunctive partitioning is nat-
urally suited for software models. It is different from the
prior work in the criteria we use for decomposition and in
our software-specific simplifications.

In [11], Edwards, Ma and Damiano applied a commer-
cial model checker to software by synthesizing C programs
into circuits. However, only very small programs can be
directly verified. Although they pointed out that model
checking algorithms must be re-engineered, they did not
provide any solution. Ball and Rajamani presented in [2]
a tool for verifying Boolean programs abstracted from C
code. Their underlying algorithm was a generalization of
an inter-procedural data flow analysis algorithm [12]. Our
work is different since it builds upon symbolic model check-
ing and therefore takes the full advantage of the decade-long
research in BDD based algorithms and matured implemen-
tations (e.g. SMV[1] and VIS[6]).

The algorithm by Barner and Rabinovitz [13] was also
based on symbolic model checking and used disjunctively
partitioned transition relations. However, their partitioning
method is completely different, since it requires a conjunc-
tive transition relation and expensive and-quantify opera-
tions in order to build disjunctive transition relations. In
contrast, we do not need the entire transition relation nor
quantification operation in order to build the disjunctive
transition relations. Furthermore, they did not exploit the
variable locality which we use both for decomposition and
for subsequent optimizations.

To summarize, the main contributions of our paper are to
propose a new method for deriving and using disjunctively
partitioned transition relations for software model checking,
and further optimizations using variable locality informa-
tion derived from the static analysis of the given program.

3 Software Model

We first explain how the verification model is con-
structed from a software program, and then review symbolic
model checking in this context.

In our software modeling approach [14, 15], C programs
are first preprocessed through source code rewriting to re-
move complex control structures and expressions. After
that, only bounded integer variables, assignment statements
and simple arithmetic expressions remain. Arithmetic ex-
pressions are modeled by instantiating pre-defined Boolean
logic components (e.g. adders and multipliers). Next, we
group statements into basic blocks, for each of which we
assign a program location. A set of binary variables called

Table 1. An example of the control flow table.
present state next state

p3 p2 p1 guard q3 q2 q1

0 0 0 (x ≡ 5) 0 0 1
0 0 0 (x 6≡ 5) 1 0 0
0 0 1 true 0 1 0
0 1 0 true 0 1 1
... ...

Program Counter (PC) variables are created to encode the
program locations. The set of all program variables and PC
variables, together with their next-state functions, define the
finite state verification model.

Let the model be represented in terms of (1) a set of
present-state program variables X = {x1, ..., xN} and PC
variables P = {p1, ..., pM}, and (2) a set of next-state pro-
gram variables Y = {y1, ..., yN} and PC variables Q =
{q1, ..., qM}. Let δyi

and δqi
denote the next-state functions

of yi and qi, respectively. We have

δyi
(X, P) =

∨

j

(P ≡ j) ∧ ei,j(X) ,

where j ∈ {1, 2, ..., K} is a PC location and ei,j(X) is the
right-hand side of an assignment to yi at location j. Note
that ei,j = xi if there is no assignment to yi at location j.
We build the next-state functions of PC variables similarly.
For example, for the program flow in Table 1 (guard is the
condition under which a transition is made), we have

δq3 = (P ≡ 0 ∧ x 6≡ 5) ∨ ... ,
δq2 = (P ≡ 1) ∨ (P ≡ 2) ∨ ... ,
δq1 = (P ≡ 0 ∧ x ≡ 5) ∨ (P ≡ 2) ∨

The model can be represented symbolically as 〈T, I〉,
where T (X, P, Y, Q) is the transition relation and I(X, P)
is the initial state predicate. Both are Boolean functions that
can be represented by BDDs.

T =
∏

1≤i≤N

Tyi
(X, P, yi) ∧

∏

1≤l≤M

Tql
(X, P, ql) ,

where Tyi
and Tql

are the bit-relations defined as follows,

Tyi
(X, P, yi) = yi ↔ δyi

(X, P) ,
Tql

(X, P, ql) = ql ↔ δql
(X, P) .

Image computation is the most fundamental step in sym-
bolic model checking. The image of a set of states D con-
sists of all the successors of D with respect to T . Denoted
by EYT D, the image of D is given as follows,

EYT D = ∃X, P . T (X, P, Q, Y) ∧ D(X, P) .

Our discussion in this paper will be focused on checking
reachability properties, since the extension to other prop-
erties is straightforward. The reachability analysis can be
performed by starting from I and then repeatedly adding
the image of already reached states until a fix-point.

(a) with VIS’s MLP algorithm (b) with new disjunctive algorithm

Figure 1. PPP: BDD sizes in reachability analysis.

4 Disjunctive Image Computation

The best known symbolic algorithms [3, 4] do not work
well when they are applied directly to the software models.
Fig. 1-(a) shows the data on a C program from a Linux im-
plementation of Point-to-Point Protocol (PPP), whose veri-
fication model has 1435 binary state variables. We encoded
the model in BLIF-MV format and then ran reachability
analysis with VIS [6] (with dynamic reordering). The three
exponentially growing curves represent at each step the to-
tal BDD size, the size of reached states, and the peak size
of intermediate products. CPU time also grows in a similar
fashion. Due to the large number of program variables in
software models, such an exponential growth can quickly
deplete the memory resources.

4.1 Decomposition of Transition Relation

The transition relation T of a software model can be de-
composed naturally into a union of disjunctive components,
one for each program location. Since existential quantifica-
tion ∃ distributes over ∨, we can compute individual images
with smaller transition relation components. This can sig-
nificantly reduce the peak memory usage at each reachabil-
ity step.

Let (j/P) represent the substitution of P with the inte-
ger value j; similarly, let f(X/Y) represent the substitution
of Y variables with X variables inside Function f . By def-
inition, we have

δi(X, j/P) = ei,j(X) ,

where ei,j(X) is actually the cofactor of δi(X, P) with re-
spect to (P ≡ j). The cofactors of transition bit-relations
with respect to (P ≡ j) are given as follows,

(Tyi
)(P≡j) = (yi ↔ δyi

)(P≡j)

= (yi ∧ δyi
∨ ¬yi ∧ ¬δyi

)(P≡j)

= yi ∧ (δyi
)(P≡j) ∨ ¬yi ∧ ¬(δyi

)(P≡j)

= yi ∧ ei,j ∨ ¬yi ∧ ¬ei,j

= yi ↔ ei,j

and similarly (Tql
)(P≡j) = ql ↔ el,j .

for (i = 0; i < K; i + +) {
new = EYTi

(R[i]);
for (j = 0; j < K; j + +) {

R[j] = R[j] ∪ (new ∧ P ≡ j);
}

}

Figure 2. Distribution of image computation results.

By definition T =
∨

j(P ≡ j) ∧ (T)(P≡j), where

(T)(P≡j) =
∏

1≤i≤N

(yi ↔ ei,j) ∧
∏

1≤l≤M

(ql ↔ el,j) .

Since existential quantification distributes over ∨,

EYT D = ∃X, P . D ∧ T
= ∃X, P . D ∧

∨
j(P ≡ j) ∧ (T)(P≡j)

=
∨

j ∃X, P . D ∧ (P ≡ j) ∧ (T)(P≡j)

There can be one disjunctive component for every PC lo-
cation j. However, for efficiency purposes, we often merge
multiple locations and then build a disjunctive component
for each cluster. In Section 6 we will give a heuristic algo-
rithm for the merging, which simultaneously minimizes the
number of live variables in each cluster.

Note that the decomposition into (T)(P≡j) is based on
the PC locations, not on individual program variables as in
[13]. The method in [13] builds one transition relation dis-
junct for each variable, which often defeats the purpose of
exploiting variable locality. Another significant difference
is that, we create (T)(P≡j) directly from the software pro-
gram, while they rely on the existing conjunctive transition
relation and expensive existential quantification operations.
In practice, building the conjunctive transition relation itself
may be computationally expensive or even infeasible.

4.2 Decomposition of Reachable States

The reachable states are also represented as the union of
many subsets, one for each cluster,

R(X, P) =
∨

j

(P ≡ j) ∧ R(X, j/P) .

Since the image of R(X, i/P) may be in a different location
j, we need to redistribute images after every step (shown in
Fig. 2). Note that an optimization of the algorithm based on
control flow structure can make the complexity of redistrib-
ution O(E), where E is the number of edges in the control
flow graph.

The procedure in Fig. 2 computes reachable states Frame
By Frame (FBF). Alternatively, we can compute reachable
states Machine by Machine (MBM); that is, the analysis is

performed on one individual cluster until it converges, after
which the result is propagated to other clusters. MBM mini-
mizes the traffic (data transfer) among different clusters and
therefore is appealing when a distributed implementation is
used. This is analogous to the approximate FSM traver-
sal algorithm of [16], with the difference that we build the
transition relations without approximation and our reach-
able states are alway exact.

There are two different ways of implementing the dis-
junctive algorithm using BDDs. In the first approach, all
transition relations and reachable subsets are represented in
a single BDD manager (following the same variable order).
Alternatively, we can allocate BDD managers for different
clusters so that the variable orders are tailored towards in-
dividual clusters. We have implemented both approaches,
and found no significant performance improvement of the
multi-manager approach. This is due to the large overhead
of transfering BDDs from one variable order into another.

5 Simplification Using Variable Locality

5.1 Relevant Variables

Definition 1 The set of relevant variables with respect to
location j, denoted by XR

j , are those appearing in either
the assignments or conditional expressions of block j. The
set XI

j = X \ XR
j consists of irrelevant variables.

The contribution of an irrelevant variable to the transition
relation is of the form (yi ↔ xi); hence (T)(P≡j) is

∏

xi∈XI
j

(yi ↔ xj) ∧
∏

xi∈XR
j

(Tyi
)(P≡j) ∧

∏
(Tql

)(P≡j) .

Although (yi ↔ xi) can be represented by a BDD with 3
nodes, conjoining many of them together is known to pro-
duce BDDs with exponential number of nodes in the worst
case. On the other hand, a good BDD order for these con-
straints may be bad for other Boolean formulae encountered
in reachability analysis.

Inside image computation, the equality constraints facil-
itate the substitution of xi with yi for all irrelevant vari-
ables. Unfortunately, existing quantification scheduling al-
gorithms [3, 4] often fail to identify these variables. Since
quantification of XI

j has the same effect as substitution, we
choose not to include these constraints in (T)(P≡j) in the
first place, to avoid the potential BDD blow-up during quan-
tification. Note that EY(T)(P≡j)

D(X, P) =

∃XR
j , P . D(XI

j /Y I
j)∧

∏

xi∈XR
j

(Tyi
)(P≡j)∧

∏
(Tql

)(P≡j) .

Let R(Y, Q) be the result of the above EY operator, we still
need to substitute all the Y and Q with the corresponding

{ L1: x = y = 0;
x = a;
z = x + b; L2: x = 7;

} L3: s = x;
... L4: y = 8;
{ L5: s = y;

x = c;
z = x + d; L6: goto L2;

} L7: ERROR

(a) global variable x; (b) early convergence.

Figure 3. Two examples on the variable live scope.

present-state variables to get R(X, P). Therefore, for ir-
relevant variables the substitutions need to be done twice.
In our actual implementation, we remove the equality con-
straints from the transition relation and avoid substitutions
in both directions. Our experimental studies show that this
significantly reduces the peak BDD sizes of the intermedi-
ate products in image computation.

5.2 Live Variables

Even a reachable state subset may have all the program
variables in its support, making it hard to find a compact
BDD with dynamic reordering (a major reason for the blow
up in Fig. 1). However, many variables are local to certain
program locations and their values are meaningless at other
locations. Locally defined variables, for instance, should
be considered as state-holding only inside the blocks where
they are defined, since elsewhere their values do not affect
the control flow nor the data path. However, by default
their values are carried on as Boolean functions in the reach-
able state subsets, which makes the BDD representation of
reachable states unnecessarily large.

Local variables can be easily identified and removed
from state subsets. However, even globally defined vari-
ables may not be live at all program locations — they may
be used only in certain segments of the program. A variable
is live at a certain program location if its value affects the
program’s control flow and/or data path. In Fig. 3-(a), for
instance, if x appears only in these two blocks, it is consid-
ered as dead elsewhere. More formally,

Definition 2 Program location j is within the live scope of
variable xi if and only if there is an execution path from j
to a location where the value of xi is used.

The live scope of a variable xi is computed as follows us-
ing standard static analysis: First, find all program locations
where xi is used (i.e. in an assignment or a conditional ex-
pression); then trace back from these locations until reach-
ing locations where the value of xi is changed. All locations
visited during the process are in the live scope of xi. Let K
be the number of program locations, E be the number of

Table 2. New states after every reachability step.
Line# With all program variables With live variables only

1 P ≡ 2 ∧ x ≡ 0 ∧ y ≡ 0 P ≡ 2
2 P ≡ 3 ∧ x ≡ 7 ∧ y ≡ 0 P ≡ 3 ∧ x ≡ 7
3 P ≡ 4 ∧ x ≡ 7 ∧ y ≡ 0 ∧ s ≡ 7 P ≡ 4 ∧ s ≡ 7
4 P ≡ 5 ∧ x ≡ 7 ∧ y ≡ 8 ∧ s ≡ 7 P ≡ 5 ∧ s ≡ 7 ∧ y ≡ 8
5 P ≡ 6 ∧ x ≡ 7 ∧ y ≡ 8 ∧ s ≡ 8 P ≡ 6 ∧ s ≡ 8
6 P ≡ 2 ∧ x ≡ 7 ∧ y ≡ 8 ∧ s ≡ 8 ∅
2’ P ≡ 3 ∧ x ≡ 7 ∧ y ≡ 8 ∧ s ≡ 8 ∅
3’ P ≡ 4 ∧ x ≡ 7 ∧ y ≡ 8 ∧ s ≡ 7 ∅
4’ ∅ ∅

transitions in the control flow, and N be the number of state
variables, the complexity of this process is O((K+E)×N).
Compared to model checking, the overhead is negligible.

We use the live variable analysis for the following opti-
mization. During the redistribution of image results (Fig. 2),
all variables that are not live (called dead variables) in that
destination location can be existentially quantified out.

Removing dead variables from reachable subsets not
only reduces the BDD sizes, but also leads to a potentially
faster convergence of reachability analysis. Take Fig. 3-(b)
as an example, where we assume that each statement is a
basic block and all variables are global. Variable x is live
in L2-3 and y is live in 4-5. By removing x and y from
the reachable state subsets wherever they are dead, one can
declare the termination of reachability analysis after going
from L1 through L6 only once (shown in Table 2). Oth-
erwise, reachability analysis needs two more steps to con-
verge, since after L6, the new state (P ≡ 2 ∧ x ≡ 7 ∧ y ≡
8 ∧ s ≡ 8) is not covered by the already reached state
(P ≡ 2 ∧ x ≡ 0 ∧ y ≡ 0).

6 Creating the Disjunctive Partition

We now explain how to merge basic blocks into disjunc-
tive clusters. Although considering each block as a separate
cluster maximizes the number of dead variables and irrel-
evant variables, the often large number of basic blocks en-
countered in practice (which can easily be in the thousands)
may negate any benefits. Therefore, we want to make fewer
clusters but still retain the benefit of variable locality. We
formulate it as a recursive bi-partitioning problem.

We start with all basic blocks in a single cluster and
then perform recursive bi-partitioning. A cost function and
a predetermined threshold are needed to specify when bi-
partitioning should be stopped. The actual BDD size of the
transition relation disjunct is an ideal cost function since we
want to keep individual transition relations small. However,
it would be too expensive to build the actual BDD in order
to get its size. Instead, we use the number of relevant vari-
ables as cost, since the number of support BDD variables is
often a good indicator of the BDD size.

Next, we define what to minimize during bi-partitioning.

The candidate optimization criteria are: (1) the number of
variables live in both clusters (liveVar); (2) the number of
variables changing their values in both clusters (asgnVar);
and (3) the number of control flow transitions between the
two clusters (cfgEdge). Note that less shared live vari-
ables indicates a higher degree of variable locality, since
more dead variables can be removed from the reachable
state subsets. Less shared assigned variables means that less
bit-relations are grouped together. Less shared CFG edges
means less traffic among different clusters during the redis-
tribution of image results.

All three optimization criteria can be cast into hyper-
graph partitioning problems, which differ only in the way
hyperedges are defined. We represent individual basic
blocks as hypernodes, and use hyperedges to represent
shared live variables, assignment variables, or control flow
transitions. For liveVar and asgnVar, we add a hyperedge
for each variable to connect all blocks where it is live or as-
signed; for cfgEdge, we add for each transition an edge to
connect the head and tail blocks. We then compute a parti-
tion of this hypergraph such that the number of hyperedges
across different groups is minimized.

Although our live variable based partitioning method is
similar to the MLP algorithm of [4], they are designed
for different applications. MLP computes a quantification
schedule for a set of conjunctively partitioned transition re-
lations; while our algorithm groups disjunctive transition
relations into larger clusters. Nevertheless, just like the
impact of quantification schedule on image computation, a
good disjunctive partition is also important for the perfor-
mance of disjunctive image computation.

7 Experiments

We have implemented our new algorithm using the sym-
bolic model checker VIS [6] and the hMeTis hypergraph
partitioning package [17]. We encode our verification mod-
els in VIS’s BLIF-MV format. The performance evaluation
was conducted by comparing to the best known image com-
putation method [4] in VIS 2.0. All the experiments were
run on a workstation with 2.8 GHz Xeon processors and
4GB of RAM running Red Hat Linux 7.2. BDD variable
reordering was enabled with method sift. For the purpose of
controlled experiments, all image computation related para-
meters in VIS were kept unchanged.

Our benchmarks are C programs from public domain as
well as industry, including Linux device drivers, file sys-
tems, and software in portable devices. For all test cases we
check reachability properties. We also apply range analy-
sis to reduce the number of bits needed to encode the pro-
gram variables. To test the sheer capacity of our algorithm,
verification models are generated without predicate abstrac-
tion, which means our models are significantly more com-

Table 3. Comparison in reachability analysis.

Test Cases Completed CPU Time (s) Peak BDD (k)
name vars dep. old disj old disj old disj
ssdf 37 11 Y Y 0.01 0.02 0.8 0.8
sfi 105 47 Y Y 0.5 0.6 4 4
sirpp 169 52 Y Y 8 6 10 10
srb 343 43 Y Y 2766 146 925 106
core1 416 211 Y Y 1115 89 155 51
core2 445 192 70 Y >2h 80 490 70
srr 856 316 Y Y 5426 151 990 57
smhb 888 104 25 Y >2h 341 1219 120
siic 967 162 Y Y 4020 260 1188 79
spr 1001 617 85 Y >2h 1617 428 430
sdir 1050 209 136 Y >2h 394 3135 120
srdo 1211 215 128 Y >2h 496 2482 145
core3 1213 189 41 Y >2h 205 139 101
ppp 1435 ? 208 277 >2h >2h 3194 540
core4 4759 ? 6 47 >2h >2h 2949 1021
daisy 8392 ? 0 83 >2h >2h - 480

plex than the Boolean programs in [2].
First, we give the performance comparison on PPP in

Fig. 1-(b), which shows the peak memory usage at each
step. Within the 4 hour time limit, the conventional method
completed 238 steps and New completed 328 steps. The
result shows that our new disjunctive image computation
method reduces the peak memory usage significantly, and
the reduction in BDD size also translates into reduction in
CPU time. Table 3 gives our comparison on a larger set
of benchmarks (with 2 hour time limit). Columns 1-3 give
for each model the name, the number of state variables, and
the sequential depth. Columns 4-5 indicate whether reach-
ability analysis was completed (if not, the maximal depth is
given). Columns 6-9 compare the CPU time and the peak
number of live BDD nodes. Note that for daisy, the old
method timed out while building the transition relation. The
results show that the performance improvement of our new
algorithm is both significant and consistent.

We also evaluated the impact of three partitioning heuris-
tics on the performance of disjunctive image computation.
The partition threshold was set to 175 relevant variables;
the runtime of hMetis was found to be negligible. The re-
sult table is omitted due to the space limit. Our results show
that partitioning heuristics have a significant impact on the
performance. We found that the liveVar based heuristic per-
forms better than the others on most of the harder cases and
it tends to give a smaller number of disjuncts.

8 Conclusions

We have presented a disjunctive image computation al-
gorithm for software model checking to exploit the unique
characteristics of sequential software models. By dividing
an expensive computation into a set of easier ones and ap-
plying program variable locality to simplify the BDD rep-

resentation, our new method significantly reduces the CPU
time and the peak memory usage required. Although previ-
ous experience with hardware verification shows that sym-
bolic model checking often loses robustness when the num-
ber of state variables exceeds 200, our work demonstrates
that by exploiting the domain-specific characteristics, BDD
based algorithms can directly handle software models with
thousands of variables.

References

[1] K. L. McMillan. Symbolic Model Checking. Kluwer Academic
Publishers, Boston, MA, 1994.

[2] T. Ball and S. K. Rajamani. Bebop: A symboloc model checker
for Boolean programs. In Proc. of the SPIN Workshop (SPIN’00),
pages 113–130. LNCS 1885.

[3] R. K. Ranjan, A. Aziz, R. K. Brayton, B. F. Plessier, and C. Pix-
ley. Efficient BDD algorithms for FSM synthesis and verification.
Presented at IWLS95, May 1995.

[4] I.-H. Moon, G. D. Hachtel, and F. Somenzi. Border-block triangular
form and conjunction schedule in image computation. In Formal
Methods in Computer Aided Design, pages 73–90. LNCS 1954.

[5] C. Wang, G. D. Hachtel, and F. Somenzi. The compositional far
side of image computation. In Proc. of Int. Conf. CAD (ICCAD’03),
pages 334-340.

[6] R. K. Brayton et al. VIS: A system for verification and synthesis.
In Computer Aided Verification (CAV’96), pages 428–432. LNCS
1102.

[7] J. R. Burch, E. M. Clarke, and D. E. Long. Representing circuits
more efficiently in symbolic model checking. In Proc. of Design
Automation Conference (DAC’91), pages 403–407.

[8] A. Narayan, A. J. Isles, J. Jain, R. K. Brayton, and A. L.
Sangiovanni-Vincentelli. Reachability analysis using partitioned
ROBDDs. In Proc. of Int. Conf. CAD (ICCAD’97), pages 388–393.

[9] G. Cabodi, P. Camurati, L. Lavagno, and S. Quer. Disjunctive par-
titioning and partial iterative squaring: an effective approach for
symbolic traversal of large circuits. In Proc. of Design Automation
Conference (DAC’97), pages 728–733.

[10] R. E. Bryant. Graph-based algorithms for Boolean function manip-
ulation. IEEE Trans. on Computers, C-35(8):677–691, 1986.

[11] S. Edwards, T. Ma, and R. Damiano. Using a hardware model
checker to verify software. Presented at Int. Conf. on ASIC, 2001.

[12] T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural dataflow
analysis with applications to constant propagation. Theoretical
Computer Science, 167:131–170, 1996.

[13] S. Barner and I. Rabinovitz. Efficient symbolic model checking
of software using partial disjunctive partitioning. In Correct Hard-
ware Design and Verification Methods (CHARME’03), pages 35–
50. LNCS 2860.

[14] F. Ivančić, Z. Yang, I. Shlyakhter, M. Ganai, A. Gupta, and P. Ashar.
F-SOFT: Software verification platform. In Computer-Aided Verifi-
cation, pages 301–306, 2005. LNCS 3576.

[15] F. Ivančić, I. Shlyakhter, A. Gupta, M. Ganai, V. Kahlon, C. Wang,
and Z. Yang. Model checking C program using F-Soft. In Proc. of
Int. Conf. on Computer Design, pages 297–308, 2005.

[16] H. Cho, G. D. Hachtel, E. Macii, M. Poncino, and F. Somenzi. Au-
tomatic state space decomposition for approximate FSM traversal
based on circuit analysis. IEEE Trans. on CAD, 15(12):1451–1464,
1996.

[17] G. Karypis and V. Kumar. Multilevel algorithms for multi-constraint
graph partitioning. Technical Report 98-019, University of Min-
nesota, 1998.

	Main
	DATE06
	Front Matter
	Table of Contents
	Author Index

	Designer's Forum 06

