Avoiding False Negatives in Formal Verification for Protocol-Driven Blocks

Gorschwin Fey

Daniel Grof3e

Rolf Drechsler

Institute of Computer Science
University of Bremen, 28359 Bremen, Germany
{fey,grosse,drechsle } @informatik.uni-bremen.de

Abstract

During Bounded Model Checking (BMC) blocks of a
design are often considered separately due to complexity
issues. Because the environment of a block is not avail-
able for the proof, invalid input sequences frequently lead
to false negatives, i.e. counter-examples that can not occur
in the complete design. Finding and understanding such
false negatives is currently a time-consuming manual task.

Here, we propose a method to automatically avoid false
negatives which are caused by invalid input sequences for
blocks connected by standard communication protocols.

1. Introduction

Ensuring correctness of todays complex circuits and sys-
tems is a major issue in the design cycle and takes up to
80% of the total design costs. Simulation based verifica-
tion techniques reach their limits due to the huge input and
state spaces. Formal verification can ensure correctness un-
der any input sequence and in any state. BMC [1] is used
to guarantee that a design is compliant with its specifica-
tion. But the application to a complete design is often not
possible, due to complexity. For this, in an industrial envi-
ronment BMC is mainly applied at the block-level [3]. As
a result the environment of a block is not available for the
proof engine. This frequently leads to false negatives when
proving a property, i.e. counter-examples that cannot occur
in the complete design. In a manual process the falsity of
the counter-example has to be understood. Then, the envi-
ronment has to be modeled by adding assumptions to the
property that exclude such false negatives. This is a time-
consuming and error prone task.

In this work an approach for protocol-driven blocks is
presented to automatically avoid false counter-examples
that result from invalid input sequences. While the block
considered in the proof is one host participating in the com-
munication, the formal description of the protocol is used
to model the other hosts. By this, the input space is re-
stricted. As a precondition a synthesizable FSM as a for-
mal model for each host participating in the communication
must be available. For standard communication protocols
this is usually the case. This formal model is used to re-
strict the space of input sequences to those which are com-
pliant with the protocol specification. Therefore no manual
restrictions are necessary to obtain the valid portion of the
input space.

2. Methodology

Starting from the block that obeys the protocol and the
specification of the other participating hosts there are two
general approaches to limit the proof to valid input se-
quences.

(1) Calculate legal input sequences from the protocol
specification and restrict the proof accordingly.

(2) Include a model of the protocol specification in the
proof.

The first approach is similar to a reachability analysis,
but instead of the reachable state set the set of legal input
sequences has to be stored. Thus, problems similar to state
explosion known from CTL model checking may occur.

Therefore the second approach was chosen, i.e. the inclu-
sion of the protocol specification in the proof. A first advan-
tage is that no complex preprocessing and no explicit rep-
resentation of the valid input sequences is necessary. Ad-
ditionally, the search space during the proof of the property
is restricted. This can even lead to shorter run-times for the
proof engine. But as a direct result the block can only be
stimulated by valid input sequences.

The technique is described by the following steps:

(1) Let B be the considered block, Pp be the property to
prove on B and FE be the FSM specifying the protocol
part of the other hosts.

(2) A wrapper W is created that connects the correspond-
ing signals of B and E.

(3) The property Pg is transformed into a property Py
over W by adding hierarchy information to the signals.

(4) The proof engine is applied to prove Py on W.

3. Proof of Concept

The proposed methodology was applied in a case study,
i.e. properties for an input buffer were considered. While
false negatives occurred when the standard BMC approach
was used, the new technique was able to remove all false
negatives that were due to wrong input sequences. The de-
tails of the experiments are presented in the following.

The case study was done in an environment for the veri-
fication of SystemC descriptions [2]. The input buffer con-
sidered is similar to blocks that are used in systems for
signal correlation/decorrelation (e.g. data transmission for
mobile phones). A schematic of the input buffer is shown

bus_data[63:0] | write_data[63:0] read_data[191:0] | client_data[191:0]
bus_act write_ena| pyffer client_act
write_addr read_addr
reset dec
write_FSM read_FSM

clock ena_in| ena_out

counter_FSM

Figure 1. Schematic of the input buffer

counter

in Figure 1. Data is received in 64-bit blocks from a bus
(bus_data)whenbus_act is setto 1. Here, a data block
is expected every second clock cycle, i.e. 32 bit/cycle. This
data is stored in internal memory (buffer) that is or-
ganized as a ring-buffer. The address counter for writ-
ing is produced in a process write_FSM that is con-
trolled by the bus_act-signal from the environment. If
data is available the FSM read_FSM reads three 64-bit
blocks every fourth clock cycle and transfers it to the client
(client_data, client_act). As a result the max-
imum output is 48 bit/cycle. The FSM counter_FSM
keeps track of the number of available data blocks by up-
dating the internal signal counter.

For this block a safety property guarantees, that the num-
ber of available data blocks never exceeds the memory size
of 8 data blocks. This is shown with an inductive proof. A
first PSL-property proves that the memory is not exceeded
within 5 steps after reset:

always (reset
-> next_a[l..5] (counter<8))

A second property is used for the inductive step:

always(next_a[0..4] (counter<8)
-> next [5] (counter<8))

This inductive step fails, if no environment constraints are
considered. In this case 64 bit/cycle may be written into
the memory, i.e. one data word per clock cycle, but only
48 bit/cycle are read. The property holds when the envi-
ronment is modeled properly, i.e. "bus_act=1 in every
second cycle, 0 otherwise”. Such constraints can be auto-
matically applied when a formal model of the protocol is
given.

Table 1 shows experimental data. For each property the
proof has been carried out with and without environment.
Given are the run-time of the SAT-engine in CPU-seconds
and the size of the problem instance in number of literals
and number of clauses. Modeling the environment removed
all false negatives caused by invalid input sequences while
the size of the problem instance is only slightly increased.
At the same time proving the validity of the inductive step
with environment was even faster than generating a counter-
example that contained an invalid input sequence when the
environment was not modeled.

Remark 1 The reduction in run-time for the succeeding
proof of the induction step can be seen as a result of the
following observations. As a side effect of the presented ap-
proach the search space is reduced. For an unrestricted
design with n input signals observed over t clock cycles
S = (2™)! input sequences are considered. If p(< n) of
the input signals are control signals subject to the protocol

Table 1. Experimental data

P env. || valid | time | #literals | #clauses
reset | no yes | 0.05s | 262391 112507
reset | yes yes | 0.05s | 262399 | 112511
step | no no | 0.28s | 262388 | 112506
step | yes yes | 0.19s | 262396 | 112510

specification the input space of the remaining n — p input
signals is reduced to (2"~P)" sequences. Assume, that the
number of valid sequences on the p control signals is E.
A total number of S' = (2"7P)t . E input sequences re-
mains when the environment is considered. The fraction
’
of remaining input sequences is % = ﬁ - E. In the
above example p was 1 and E was 2 (the two alternating
sequences of 0 and 1 starting with an arbitrary value). Up
to 6 time frames were considered, resulting in a fraction of

S =_1l..9= é In general 2 may be exponential in

5 T @)
t and p, but still the search space is reduced. As a result a
reduction in run-time has been observed in the experiments.

4. Discussion

Usually a protocol is used not only in one block but in
several blocks and for several designs. The automatic ex-
traction of the constraints resulting from the environment is
subject to future work. But in most cases a formal descrip-
tion for standard protocols is available. Such a description
does usually not constrain the data-path, but focuses on the
control signals. In the same way properties are mostly ap-
plied for verifying the control logic. As a result constrain-
ing the input sequences of the control signals removes most
false negatives.

As discussed in Remark 1 the search space can also be
reduced. This reduction is orthogonal to other methods like
data-path abstraction. Therefore both techniques can be ap-
plied to reduce the complexity of the proof.

More complex examples of protocols will be studied.
Here, the focus will be on synchronizing the model of the
protocol and the design, when arbitrary states are consid-
ered.

So far a first case study shows the applicability and ef-
fectivity of the method. Instead of manually removing false
negatives the approach works automatically resulting in re-
duced design time and costs.

References

[1] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model
checking without BDDs. In Tools and Algorithms for the
Construction and Analysis of Systems, volume 1579 of LNCS,
pages 193-207. Springer Verlag, 1999.

[2] D. GroBle and R. Drechsler. CheckSyC: An efficient prop-
erty checker for RTL SystemC designs. In IEEE International
Symposium on Circuits and Systems, pages 4167—4170, 2005.

[3] K. Winkelmann, H.-J. Trylus, D. Stoffel, and G. Fey. Cost-
efficient block verification for a UMTS up-link chip-rate co-
processor. In Design, Automation and Test in Europe, vol-
ume 1, pages 162-167, 2004.

