
Abstract

This paper presents an effective approach to formally
verify SystemC designs. The approach translates SystemC
models into a Petri-Net based representation. The Petri-net
model is then used for model checking of properties ex-
pressed in a timed temporal logic. The approach is particu-
larly suitable for, but not restricted to, models at a high
level of abstraction, such as transaction-level. The efficiency
of the approach is illustrated by experiments.

1. Introduction

Embedded electronic devices are often highly safety criti-
cal, such as in automotive and avionics applications or medical
equipment. It is both very error-prone and time-consuming to
design these complex systems. At the same time, there is a
strong economical incentive to decrease the time-to-market.

SystemC [1] has been developed to target these issues. Us-
ing SystemC, developers can easily create a working model
of the system at a functional level. More details can then be
added in order to refine the model. Each level of refinement
can inherently be simulated.

Designing such complex systems, as introduced previ-
ously, is a very error-prone process disregarding the method-
ology and design languages used. With SystemC, typically,
simulation is used to trap this kind of design errors. Despite
the efficient implementation of the simulator, it is mostly not
feasible to find all corner cases necessary to trap all errors.
Particularly in critical parts of the design, this is not accept-
able. Therefore, there is a need to resort to formal methods.

Very few attempts have been made to apply formal verifi-
cation methods on SystemC. Most verification methods
which do exist are based on simulation [2], [3]. However,
Drechsler and Große [4], [5] can prove, using bounded model
checking, that the SystemC model satisfies a given property.
There are, however, restrictions and limitations in their ap-
proach. The models have to be at RTL and cycle-accurate. As
a consequence, they can, in particular, not verify models us-
ing SystemC channels, necessary for transaction-level model-
ling (TLM). Nor can they handle continuous time, rather than
clock cycles.

Kroening and Sharygina [6] translate SystemC models into
labelled Kripke structures (LKS). However, their approach does
not take either timing or signal aspects into account. Their work
is furthermore more focused on an abstraction-refinement ap-
proach based on automatic hardware/software partitioning.

Our approach removes these constraints. Most impor-
tantly, we can handle models at levels from the initial func-
tional specification to cycle-accurate RTL, including TLM.
Time is treated continuously. Dynamic structures are handled
to the extent that an upper bound on the sizes of those structures
must be known. Loops may have variable upper bounds and Sys-
temC channels are allowed, and encouraged (core part of TLM).

The approach translates SystemC models, consisting of
processes and communication channels, into a Petri-Net
based model. This model is then formally verified, using
model checking, for properties expressed in a temporal logic.

The paper continues in section 2 with a review on the most
important structures of SystemC and the design representa-
tion used. Section 3 provides an overview of the approach,
while section 4 goes into more detail on how different Sys-
temC constructs are modelled in the design representation.
Experimental results are presented in section 5 and section 6
concludes the paper.

2. Preliminaries

2.1. SystemC

SystemC [1] models consist of a collection of processes.
Each process belongs to one of three types: METHOD,
THREAD or CTHREAD. However, METHOD and CTHREAD
processes can be modelled as THREADs without loss of gen-
erality. Therefore, only processes of type THREAD will be
considered throughout the rest of this paper.

A scheduler gives control to one process at a time. When
a process has received control, it retains control until it ex-
plicitly releases it by executing a wait statement. It is im-
portant to note that, according to SystemC semantics, only
one process may run at a time. The scheduler furthermore di-
vides the execution into delta cycles. A delta cycle is finished
when there are no more processes ready to run. Between two
delta cycles, new processes may become ready and execution
can progress. In addition, between delta cycles, time may or
may not advance. Time never advances within one delta cycle.

Processes communicate through channels. A channel is an
object which implements an arbitrarily complex communica-
tion protocol. Its methods may, in particular, contain wait
statements in order to implement blocking calls. Normally,
channels have at least one write method and one read
method. Signals are a special type of channel. When a new
value is written to it, that value is not visible to any reader un-
til the next delta cycle. At the same time, all processes regis-
tered to the signal are notified about the change.

Formal Verification of SystemC Designs Using a Petri-Net Based Representation

Daniel Karlsson, Petru Eles, Zebo Peng
Department of Computer and Information Science, Linköpings universitet, Sweden

{danka, petel, zebpe}@ida.liu.se

Events are a mechanism for one process to notify one or
several other processes that something has happened which
other processes are interested in. When a process is notified,
the scheduler adds that process to its pool of ready processes.
The scheduler will then eventually give control to that proc-
ess. Signals actually use events to notify other processes
when their values have changed.
wait statements come in a few different variants. The

two most important ones include suspending a process during
a specified amount of time, and suspending a process until a
certain event occurs (with possible time-out). While the pro-
cess is suspended, other processes may run. However, when
the specified amount of time has elapsed or the specified
event has been notified, the process is declared ready to run
again. Using wait statements with timing is the only way to
specify time, or make time advance. Other statements are
considered to be instantaneous.

2.2. PRES+

The proposed approach uses a design representation called
Petri-net based Representation for Embedded Systems
(PRES+) [7]. PRES+ is a Petri-net based representation with
extensions, some of which are listed below. Figure 1 shows
an example of a PRES+ model.
1. Each token has a value and a timestamp associated to it.
2. Each transition has a function and a time delay interval as-

sociated to it (time intervals are denoted in square brack-
ets). When a transition fires, the value of the new token is
computed by the function, using the values of the tokens
which enabled the transition as arguments. The timestamp
is increased by an arbitrary value from the time delay in-
terval. In figure 1, the functions are marked on the outgo-
ing edges from the transitions.

3. The PRES+ net is forced to be safe, i.e. one place can at
most accommodate one token. A token in an output place
of a transition disables the transition.

4. The transitions may have guards (conditions in square
brackets on transitions t2 and t3 in figure 1). A transition
can only be enabled if the value of its guard is true.
Places with no incoming arcs are called in-ports, and

places without outgoing arcs are called out-ports.

3. Overview of the approach

The SystemC model to be verified is first translated into a
PRES+ model, while maintaining the semantics of the origi-
nal SystemC model.

The properties to be verified are expressed in computation
tree logic (CTL) [8], possibly augmented with time [9]. The
properties are originally expressed in terms of SystemC con-
structs and, consequently, are also translated so that they refer
to states in PRES+. The PRES+ model is then given to a

model checker together with the property to be verified. Di-
agnostic traces, obtained from the model checking, can
straightforwardly be translated back to SystemC from
PRES+. The designer consequently never has to bother about
PRES+, he/she only sees SystemC.

For verification of the actual models, we used the UPPAAL
model checker [10], according to the methodology developed by
us for verification of PRES+ models [7]. This paper concentrates
on the translation from SystemC to PRES+, in particular the rep-
resentation of some specific non-trivial SystemC features.

4. Translating SystemC to PRES+

4.1. Basic concepts

In PRES+, each SystemC statement is represented by one
place and one transition. The transition performs the actual
statement, whereas a token in the place enables the execution
of the statement. Variables are also represented by places.
There must be a token in the place during the whole life span
of that variable. Statements assigning a value to a variable
put tokens in the variable's place, and the token is removed
when the execution has reached a statement out of its scope.
Places for global variables always contain tokens, and fields
in objects contain tokens as long as the object exists.

Figure 2 provides an example of this procedure. All transi-
tions have time delay interval [0..0], but the delays are omit-
ted in the figure to avoid clutter.

Statements 1 and 2 introduce and initialise new variables.
Transitions t1 and t2 reflect this by adding tokens with the ini-
tial values in the places corresponding to the variable. At the
same time they put a token in the places corresponding to the
next statement to be executed, i.e. p2 and p3 respectively.
Statement 3 updates x, which is straightforwardly reflected in
transition t3. This straightforward translation works well if
only one variable is involved in the assignment statement.
Statement 4, however, involves two variables. Since PRES+
transitions only can produce one output value, one of the vari-
ables must be explicitly fetched and a copy must be tempo-
rarily stored in a dedicated place (p6). Without this procedure,
variable x would be erroneously updated to the same value as y.

Figure 1. An example PRES+ model

p

in-port out-port

p
1

p
2

p
3

p
4

qt
1

t
2

t
3

t
4

t
5

[0..0]

[1..7]

[1..2] [1..4]
[1..1]

[x<20]

[x20]

x x

x

x

2x

x+1

x+1

x

y

x+y
x x

Figure 2. Translation of statements and variables

1. int x = 3;

Fetching x for
use in stmt 4.

x*y

y

x

x

x

x+5
x

2

3

p
6

t
5

t
4

t
3

t
2

t
1

p
5

y

x

p
4

p
3

p
2

p
1

4. y *= x;

2. int y = 2;

3. x += 5;

4.2. Method calls and interfaces

Calling a method (function) involves three steps: transfer
of parameter values, transfer of control and return of control.
Each of these steps must be performed explicitly in the
PRES+ model. Figure 3 presents the whole scheme. The code
in the figure can be divided into two parts. Lines 1 to 5 de-
clare the method addmult and lines 6 and 7 introduce code
that invokes addmult. Each part is translated to a PRES+
model surrounded by a box. The places between the boxes
constitute the interface of the method. These places are called
ports (see section 2.2). Only by looking at the method header
(line 1), it is possible to deduce these ports. Each parameter
par needs two ports, setpar and setparret. If par is declared
as a reference, two additional ports are needed, retpar and
retparret. Finally, the method addmult itself needs two ports,
addmult and addmultret.

The method call itself is realised by transitions t2 to t5,
where t2 and t3 transfer the actual parameters 2 and x to for-
mal parameters v and xv respectively. As can be seen in the
figure, the transfer uses the setpar ports (setv and setxv) to ac-
tually pass the value and the setparret ports (setvret and setx-
vret) are used to ensure that the transfer is completed before
continuing, thereby maintaining the sequential execution se-
mantics inside a process. After the parameter transfer, transi-
tion t4 makes the actual transfer of control to the method.
Control is returned back from the method through t5. The re-
turn port, addmultret, carries the return value of the method,
which is stored in variable y.

A closer look at the formal parameters of addmult re-
veals that xv is passed by reference, while v is not. This
means that whenever the value of xv is modified, so must the
corresponding actual parameter. For this reason, two addi-
tional ports (retxv and retxvret) are added to the interface.

The method call structure, in particular the part that each
port must be paired with a return port, occurs in many situa-
tions described in this paper. Without this structure, sequential-

ity of a process execution cannot be maintained and the model
will not reflect the SystemC semantics correctly.

4.3. Scheduler

4.3.1. SystemC execution mechanism. The main task of the
scheduler is to give control to processes ready for execution,
according to SystemC semantics. Processes can be declared
ready for execution in one of three modes: in the current delta
cycle (immediate), in the next delta cycle or at a specified
time moment.

Another important task of the scheduler is to update the
signals between two successive cycles so that values written
to signals during the previous cycle are available for reading
in the following one.

The scheduler repeatedly performs, a bit simplified, the
following steps:
1. Select a process ready for execution and give control to it.

New processes may be declared ready for execution during
the execution of the process (immediate notification). Repeat
for each ready process until no more ready processes exist.

2. Update all signals.
3. Let time advance to the ready time of the earliest pending

process. If the earliest pending ready time is identical with the
current one, a new delta cycle is introduced. Go to step 1.
In step 1, processes ready to run are selected for execution.

However, during the execution of one processe, other proc-
esses may become ready during the same delta cycle (imme-
diate notification). These processes must also be executed be-
fore steps 2 and 3 may be performed.

4.3.2. PRES+ model. The PRES+ scheduler model provides
the following services through the ports depicted in figure 4.
1. Give execution control to processes.
2. Receive notice of a process becoming ready.
3. Update signals.

Execution control (service 1) is given to processes through
the ports labelled trigger. There is one trigger port for each
process in the system, each dedicated to its specific process.
A token in trigger1 signifies that process 1 may execute.
When a process releases control, it puts a token in yield, a
port common to all processes.

Ports mkready, mkreadyret, mkimmready and mkimm-
readyret are used for notifying the scheduler about the fact
that a process became ready (service 2). There is only one in-
stance of each such port. A process can become ready in two
modes: in the current delta cycle (immediate) or in the next
delta cycle. A token with a unique process identifier (pid) as-
sociated to the process to become ready is placed in mkimm-
ready or mkready depending on the intended mode. The other
two ports are return ports (see section 4.2).

Figure 4. The interface of the scheduler

Scheduler

mkready mkreadyret
mkimmready mkimmreadyret

yield trigger1 triggern updateA
updateretA

updateX
updateretX

... ...

Figure 3. Translation of method calls

6. int x = 0;
7. int y = addmult(2, x);

x

0

setv

2

setv
ret

x
setxv

setxv
ret

add
mult

add
mult
ret

x r
r

retxv
ret

retxv v
xv

z

r

r
v

v

xv
v

xv*v
v

zz+v

y

1. int addmult(int v, int& xv) {
2. int z = xv;
3. xv *= v;
4. return z+v;
5. }

p
1 p

2 p
3

p
4 p

5
p

6

ap
1ap

2

ap
3

ap
4

t
1 t

2

t
3

t
4

t
5

t
6

at
1

at
2at

3

at
4

at
5 at

6

v

v

xv

xv
xv

xv

Signal updates (service 3) are performed through the ports
update and updateret. There is one pair of these ports for
each signal in the system. A token in update causes the asso-
ciated signal to be updated (see section 4.6).

Figure 5 shows a scheduler able to handle two processes
(1 and 2) and two signals (A and B). The model can be di-
vided into three parts, separated with dotted lines in the figure.

The upper part decides which process to execute next, se-
lecting one of the ready processes. Places ready and nready
(not ready) record the readiness of a process. These places are
updated either through port mkimmready or through places
willmkready (implicitly through port mkready) in the lower part.

When there is a token in place arbiter, the scheduler is
able to fire any of the ttrigger transitions associated to a
ready process. This will put a token in a trigger port and give
control to the selected process. When the process finishes, it
gives control back to the scheduler, by putting a token in the
yield port. As result, the arbiter place again holds a token and
a new process may be selected for execution. When there are
no more ready processes, the scheduler enters the middle part
by firing transition ttoupdate.

In case no process will ever become ready at the current
time, the scheduler will loop through the three parts of the
scheduler indefinitely. This is due to the fact that all places
nready will, in this scenario, always contain a token, and
when a token arrives in arbiter, the only enabled transition is
ttoupdate. The scheduler therefore has to fire that transition
and continue to the middle and lower parts before returning to
the upper part. This infinite loop takes zero time, thus disal-
lowing time to advance. Transition ttoupdate should there-
fore only fire if at least one process has executed in the cur-
rent delta cycle. In order to prevent the infinite loop, the place

prochasrun is introduced. It always contains a token with a
boolean value, initially false. The value in this token becomes
true (see transition ttrigger) only if a process has executed in
the current delta cycle. The guard on ttoupdate only allows
the transition to fire if at least one process has executed.
ttoupdate furthermore restores the value in prochasrun when
fired. Using this mechanism, the scheduler will remain in the
upper part if there does not exist any ready processes in the be-
ginning of a delta cycle. It can only continue when a process is
notified as immediately ready again.

The middle part of the scheduler notifies all signals that
the system now enters a new delta cycle. This is performed
by putting a token into the ports update. Section 4.6 provides
a more detailed example of signal updates.

The lower part makes those processes ready that are
marked to become ready in the next delta cycle. The truth
value of the token in willmkready indicates if the associated
process should be made ready or not. After that, a token is
again placed in place arbiter, and the cycle is closed.

4.3.3. Comments. According to the execution mechanism
described in section 4.3.1, processes can be made ready in
three different modes. The PRES+ model in section 4.3.2
only handles two: in the current delta cycle and in the next
delta cycle. It does not make processes ready at arbitrary time
moments. The advance of time is handled by the processes
themselves, as will be discussed in section 4.5.

4.4. Events

Events provide the service of making processes ready with
one method call, notify. Each process interested in listen-
ing to the event must subscribe to it. Figure 6 presents the
PRES+ interface of an event.

Event notifications can be carried out in one of two
modes: immediately in the current delta cycle or in the next
delta cycle. A notification is invoked by a process by putting
a token in either port immnotify or notify. When that happens,
the event object takes all processes subscribed to the event
and makes them ready. This is done by notifying the sched-
uler through the ports mkready or mkimmready, depending on
whether it is an immediate notification or not. The tokens placed
in those ports contain the pid of the process in question. Ports
subscr and unsubscr are used to dynamically subscribe and
unsubscribe a process to/from the event by placing a token
with the pid of that process in the respective place. The inter-
nal structure of an event is not shown due to space limitations.

4.5. wait statements

There are mainly two types of wait statements which can
be executed by a process: waiting for an event, or waiting for
a certain amount of time. Both types, however, follow the
same basic PRES+ structure. In the following, only the latter

Figure 6. The interface of an event

Event

notify notifyret immnotify immnotifyret

mkready
mkreadyret

mkimmready
mkimmreadyret

subscr
subscrret

unsubscr
unsubscrret

Figure 5. A scheduler

arbiternready1 nready2
ready1 ready2

mkimmreadyret mkimmreadyyield

x[x=pid1] x
x

x

[x=pid1]
[x=pid2][x=pid2]

prochasrun
false

tr
ig

ge
r1

true tr
ig

ge
r2true

x
false

[x=true]

updateA

up
da

te
re

tA

updateB

up
da

te
re

tB

mkready mkreadyret

willmk
ready1 false

willmk
ready2

false

true true

[x=pid1] [x=pid2]

false x

x

[x=true]

[x=false]

x

x[x=true]

[x=false]

x
x

ttoupdate

tyield

ttrigger1 ttrigger2

false
false

false

type will be explained (the former can be derived from this
and section 4.4). Figure 7 depicts the procedure.

Transition, t1, hands back the control to the scheduler by
putting a token in the port yield of the scheduler. While other
processes are allowed to execute, transition t2 measures the
specified amount of time, x. When the time has elapsed, t3 no-
tifies the scheduler by placing a token containing the process
identifier in the port mkimmready of the scheduler, thereby
notifying the scheduler that the process is again ready to exe-
cute. Note that at this point, time has advanced according to
step 3 in section 4.3.1. Transition t4 ensures that the scheduler
has received the notification and finally, the process has to
wait until it actually regains control from the scheduler (port
trigger) in transition t5.

4.6. Signals

Signals are a special type of communication channels,
which require additional synchronisation with the scheduler af-
ter each delta cycle. They have to maintain two variables, cur-
val and newval. When writing to a signal, newval is modified,
whereas reading is performed on curval. After each delta cy-
cle, curval must be updated to the same value as newval. At
the same time, processes subscribing to value changes on the
signal must be notified. This is done through an event, which is
located inside the signal. Figure 8 shows the interface of a signal.

Signals have four methods: read, write, event and up-
date. The read and write methods read and write from/to the
signal respectively. The method event is a boolean method,
which returns true if and only if the signal value was changed
during the previous delta cycle. Place isevent keeps track of
this status. Port update is used by the scheduler to announce a
new delta cycle. The ports mkready and mkreadyret belong
to the event located inside the signal. They are used for mak-
ing subscribing processes ready upon value changes.

Figure 9 shows the PRES+ model of a signal. The follow-
ing explanation will focus on the update mechanism. The
read, write and event operations are relatively straightfor-
wardly implemented as method calls. They update or retrieve
the values of curval, newval and isevent respectively.

Places p1 and p9 record whether there has been a write in
the current delta cycle. A token in p1 means that a write has
taken place, a token in p9 has the opposite meaning. Transi-
tions t2, t6 and t10 update these places to reflect this situation.
Depending on p1 and p9, either transition t4 or t13 is fired upon
an update request from the scheduler. Transition t13 is fired if
there was no write. It immediately returns from the update

operation and sets isevent to false. Transition t4, on the other
hand, is the start of a longer chain of transitions. Transitions
t4 and t5 serve the purpose of fetching the values of newval
and curval, placing copies in p2 and p4 respectively, in prepa-
ration for comparison by t6 and t7. According to the SystemC
semantics, processes subscribing to value changes on the signal
should not be notified unless newval ≠ curval. Hence, if these
two values are equal, then no update and notification should be
done (t6). However, if they are not equal (t7), curval is updated
to the same value as newval (t8) and all subscribing processes are
notified via an event (t9). Finally, the signal update returns (t10).

5. Experimental results

The presented verification approach has been tried on sev-
eral examples. The experiments were run on machines with In-
tel Xeon 2.2GHz processors and 2GB of primary memory run-
ning the Linux operating system.

5.1. Router

This example, modelling a router at transaction level, is
taken from the TLM reference implementation [11]. The router
forwards messages from one master to one of two slaves.

The model was verified for four different properties.
1. If a request is issued, then a response must come in the future.
2. If a message is sent to slave 1, it will arrive there.
3. If a message is sent to slave 2, it will arrive there.
4. If a message is sent to slave 2, it will not arrive at slave 1.

Table 1 presents the results. All properties were found sat-
isfied within a few seconds' time.

5.2. Packet switch

The packet switch example is a slight modification of the
pkt_switch example shipped with the SystemC reference im-
plementation [1]. One or more masters, modelled as in the
original example, send messages to one or more slaves. The
switch distributes the messages to their right destinations. In
order to cope with messages coming in bursts, the switch
model contains one FIFO queue for each master and each slave.

Four properties were verified:
1. No deadlock.

Figure 7. Translation of a wait statement

yield trigger

 [x..x]t
1

t
2

t
3

mkimm
ready

t
4

mkimm
readyret

pid

t
5

Figure 9. Translation of a signal

t
1 newval

x x
write

writeret

p
1

p
9

t
3

t
2

p
0

t
11 read

readret
curval

x
x

Event

notify

not.
ret

mkready mkreadyret

event

eventret

isevent

t
12

update updateret

x

xt
13

isevent
false

t
4

newval

p
3

p
2

x

x

t
5

p
4

p
5

xx

t
6

x y
[x=y]

t
7 p

6

x
y

[x≠y]

t
8

p
7

x

x
x

t
9

p
8 false

truet
10

Figure 8. The interface of a signal

Signal

read readret write writeret

event eventret update updateret mkready mkreadyret

2. All messages sent by a master will be received by a slave.
3. Slaves may receive messages.
4. The switch will forward every message it receives.

Property 2, initially surprisingly, turned out to be false.
The reason lies in the semantics of the signals connecting the
switch with masters and slaves. An event notification only
occurs in the case when, during an update, the new value is
not equal to the current one. If several subsequent messages
are identical, only the first message will actually pass the sig-
nal and reach the switch. Consequently, the subsequent (iden-
tical) messages will not reach their destinations. The model, as
given in [1], misses such consecutive messages that are identical.

The experiments were conducted using several different
combinations on the number of masters and slaves. Table 2
shows the verification times. Verifying 2 masters and 2
slaves for properties 1 and 4 took between 4 to 5 hours. Veri-
fication of the other properties only took a few seconds.

5.3. AMBA bus

An AMBA bus consists of three entities: arbiter, address
bus and data bus. Masters sending on the bus must first re-
quest access to it through the arbiter, and the arbiter will then
eventually grant access. Slaves have the possibility of delay-
ing or temporarily blocking (splitting) incoming messages.
However, they must eventually accept all messages. Mes-
sages are transmitted pipelined on the bus. First, the address
is sent on the address bus. The associated data is sent on the
data bus only in the next clock cycle. As data is sent, the ad-
dress of the next message is simultaneously transmitted on
the address bus, hence the pipeline.

The AMBA bus example has been modelled in two ver-
sions, at different levels of detail, transaction-level and sig-
nal-level. At the transaction level, communication is imple-
mented in a channel and transmissions are method calls with
the outside behaviour of a real AMBA bus. The signal imple-
mentation, on the other hand, explicitly implements all signal
exchanges between the bus, arbiter, and masters and slaves.
The signal implementation is consequently more detailed
than the transaction-level model.

The properties verified on both models are:
1. No deadlock.
2. If a master requests the bus, the request will eventually be

granted.

3. A master may request access to the bus.
4. Messages sent by a master will always eventually be read

and acknowledged by a slave.
Tables 3 and 4 present the results of the transaction-level

and signal-level AMBA bus examples respectively.

6. Conclusions

The popularity of SystemC is growing, for several good
reasons. In order to more efficiently trap corner case design
errors, formal verification has to be employed. We have pre-
sented an approach to formally verify (model check) Sys-
temC designs, in particular at high levels of abstraction. The
approach uses a Petri-net based internal representation. We
have focused on the translation of some SystemC mecha-
nisms into this representation.

7. References
[1] M. Baird, "SystemC 2.0.1 Language Reference Manual", Open
SystemC Initiative, 2003
[2] J. Ruf, D.W. Hoffmann, T. Kropf et al., "Simulation-guided
Property Checking based on Multi-valued ar-automata", Proc.
DATE, 2001, pp. 742-748
[3] F. Ferrandi, M. Rendine, D. Scuito, "Functional Verification
for SystemC Descriptions using Constraint Solving", Proc. DATE,
2002, pp. 744-751
[4] D. Große, R. Drechsler, "Formal Verification of LTL Formulas
for SystemC Designs", Proc. ISCAS, 2003, pp. 245-248
[5] D. Große, R. Drechsler, "CheckSyC: An Efficient Property Checker
for RTL SystemC Designs", Proc. ISCAS, 2005, pp. 4167-4170
[6] D. Kroening, N. Sharygina, "Formal Verification of SystemC
by Automatic Hardware/Software Partitioning", Proc.
MEMOCODE, 2005, pp. 101-110
[7] L.A. Cortés, P. Eles, Z. Peng, "Verification of Embedded
Systems using a Petri Net based Representation", Proc. ISSS, 2000,
pp. 149-155
[8] E.M. Clarke, O. Grumberg, D.A. Peled, Model Checking, MIT
Press, 1999
[9] R. Alur, C. Courcoubetis, et al., "Model-checking for Real-time
Systems", Proc. Logic in Computer Science, 1990, pp. 414-425
[10] UPPAAL hompage, http://www.uppaal.com/
[11] A. Rose, S. Swan, J. Pierce et al., "Transaction Level
Modeling in SystemC", Open SystemC Initiative, 2005

Table 4. Results from the SL AMBA example
Verification time(s)

Property 1m 1s 1m 2s 2m 1s 2m 2s

1 34.54 506.09 129.73 4339.27

2 21.57 328.79 81.52 3328.71

3 10.20 64.73 35.95 219.41

4 35.83 449.45 139.47 4212.40

Table 3. Results from the TL AMBA example
Verification time(s)

Property 1m 1s 1m 2s 2m 1s 2m 2s

1 8.95 86.88 81.65 7358.26

2 19.17 182.16 219.94 3281.34

3 1.00 2.58 2.88 8.34

4 13.16 90.95 115.46 3408.00

Table 1. Results from the Router example
Property Verification time(s)

1 3.6

2 1.2

3 1.2

4 1.5

Table 2. Results from the Packet Switch example
Verification time(s)

Property 1m 1s 1m 2s 2m 1s 2m 2s

1 1.1 58.54 39.55 18080.6

2 0.53 1.64 3.13 9.46

3 0.44 0.9 1.48 3.71

4 0.72 28.74 19.11 15375.0

