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Abstract 
Quantum information processing technology is in its pioneering 
stage and no proficient method for synthesizing quantum circuits 
has been introduced so far. This paper introduces an effective 
analysis and synthesis framework for quantum logic circuits. The 
proposed synthesis algorithm and flow can generate a quantum 
circuit using the most basic quantum operators, i.e., the rotation 
and controlled-rotation primitives. The paper introduces the 
notion of quantum factored forms and presents a canonical and 
concise representation of quantum logic circuits in the form of 
quantum decision diagrams (QDD’s), which are amenable to 
efficient manipulation and optimization including recursive 
unitary functional bi-decomposition. This paper concludes by 
presenting the QDD-based algorithm for automatic synthesis of 
quantum circuits.  

1. Introduction 
We are beginning to reach the fundamental limits of the 
materials used in the planar CMOS process [1]. Quantum 
computers can evolve a superposition of quantum states until the 
final output is obtained. Such “quantum parallelism” could 
potentially outstrip power of classical computers [2][3]. Certain 
problems for which there is no polynomial solution in classical 
domain can be solved in polynomial time in quantum domain 
(e.g., the factoring problem). Similarly, the complexity of some 
other problems (e.g., unstructured search and Boolean 
satisfiability) can be reduced by transforming them into the 
quantum domain [4]. Indeed, quantum circuits have the ability to 
perform massively parallel computations in a single time step 
[5][6]. Hence quantum computing has become a very attractive 
research area, which is expected to play an increasingly critical 
role in building more efficient computers [7][8]. Computer aided 
design of quantum circuits is at primitive stages, which 
motivates rigorous research aimed at developing CAD 
techniques and tools for quantum circuits.  
In this paper we address the problem of synthesizing a general 
quantum operation. Exact definition of the problem is provided 
clearly at the end of section 2 In this paper a canonical decision 
diagram based representation of quantum circuits is presented 
and a CAD methodology and novel techniques for synthesis of 
quantum logic circuits based on these decision diagrams are 
described. The remainder of this paper is organized as follows. 
In section 2 fundamental aspects of quantum mechanics and in 
section 3 previous work on quantum circuit synthesis are 
reviewed. In section 4, quantum factored forms, quantum 
decision diagrams (QDD’s), and a QDD-based quantum circuit 
synthesis are introduced. Conclusions are provided in section 5. 
 
____________________________________________________ 
1 This research is funded in part by the NSF QnTM program under 
grant no. 0524602. 

2. Fundamentals of Quantum Computing 
In quantum computation quantum bits (qubits), derived from the 
states of micro-particles such as photons, electrons or ions are 
used instead of classical binary bits to represent information. For 
example, two possible spin rotations of an electron are 
represented as [ ]T01  and [ ]T10 , which are the basis states (basis 
vectors) of this computational quantum system [9][10]. 
Each particle in a quantum system is represented by a wave 
function inheriting the powerful concept of superposition of 
states. For example, the state of a particle p1 may be represented 
by a wave function [ ] [ ] [ ]T11
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coefficients α1 and β1 are in general complex and |α1|2+|β1|2=1. In 
general, the wave function of a quantum system with n qubits 
represents an arbitrary superposition of 2n states while in a 
classical system n bits represent only 2n distinct states. Therefore 
the space of quantum systems is exponentially larger than that of 
the classical binary systems. Analysis (and by extension, 
synthesis)  of quantum logic circuits is more difficult than that of 
the digital logic circuits because the former requires 
manipulation of matrices and bases in Hilbert space whereas the 
latter requires binary, or at most multi-valued,  logic operations. 
Quantum operators over a set of qubits are modeled as matrix 
operations. As an example, for a quantum system comprising of 
a single particle p1, a quantum operator (gate) is represented by a 
2×2 (in general complex) unitary matrix U which transforms 
state T

111 ][ βαΨ =  to state 
12 UΨΨ = . Recall that a matrix U is 

unitary exactly if UU+=I where U+ is the hermitian (complex 
conjugate transpose) of U. Since matrix U is unitary, the inverse 
of this gate is matrix U+, which is the inverse of U. An important 
class of quantum operators is the rotation operator. A θ rotation 
around the X axis in Bloch sphere representation [4] is: 
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The following relation shows that rotation operators around X 
are commutative with respect to matrix multiplication:  

)()()()()( 211221 θθθθθθ +== xxxxx RRRRR . 

In general for an n-qubit system, a quantum operation is 
represented by a 2n×2n unitary matrix. An example of a 2-qubit 
gate is the controlled-U gate depicted in Figure 1. For a 2×2 
unitary matrix U, the controlled-U gate works as follows: when 
the control signal a is T]01[ , q=b and when it is T]10[ , then 
q=Ub. For both cases, p=a. 

 

a

b

p 

q U 
Figure 1. Schematic diagram of a controlled-U. 
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Similar to controlled-U operator, one can easily define a 
significant class of 2-qubit operators as the controlled-rotation 
operator.  Rotation operators are elementary and easily 
realizable in most implementations of quantum computation [4], 
e.g., nuclear magnetic resonance and ion trap realizations. These 
factors are precisely why this paper will focus on rotation and 
controlled-rotation operators as the elementary building blocks 
for synthesis of quantum circuits. A new concise and canonical 
data structure, called quantum decision diagrams or QDD’s, will 
be introduced and subsequently used for conducting quantum 
operations and synthesizing quantum logic circuits. More 
precisely, the QDD’s are designed to have the ability to express 
the functionality of every quantum circuit composed of 
controlled-rotation operators assuming that all rotations are 
about a single axis and a ‘binary control signal’ constraint is 
enforced.  

3. Previous Work on Quantum Logic Synthesis  
Several approaches for reversible logic circuit synthesis have 
been presented in [11]-[14]. These approaches resort to 
exhaustive search or methods such as matrix decomposition, 
local transformations, spectral approaches, and on adaptations of 
EXOR logic decomposition, Reed-Muller representations, and 
other classical combinational circuit design methods. Toffoli 
[15] provided an algorithm for implementing an arbitrary 
function with the “CNTS” library, comprising of controlled-
NOT, NOT, Toffoli gate, and SWAP gate (see section 4). 
Kerntopf [16] proposed a search method to perform synthesis of 
small-scale circuits. In [17] a synthesis method based on 
manipulating the truth tables is presented. Shende et al. [18] 
generate a library of small optimal circuits based on branch-and-
bound and exploiting the property that any sub-circuit of an 
optimal circuit is itself optimal. Agrawal and Jha [19] presented 
a RM-expansion based technique for optimizing a circuit that is 
mapped to reversible gates. In [20] an algorithm for synthesis of 
quantum circuits using reversible Davio expansion was 
proposed. In [21], Shende et al presented a top-down structure 
using the Cosine-Sine decomposition and introduced and used 
the quantum multiplexer for recursive implementation of 
quantum gates. Group theory has also been employed as a tool to 
analyze reversible gates [22] and investigate generators of the 
group of reversible gates [23]. In [24], Hung et al transform the 
synthesis problem into a satisfiability problem. They in fact use a 
SAT solver instead of employing an exhaustive search. This 
method is practical only for very small circuits since the reported 
run-time of the algorithm for optimal synthesis of a single-bit 
adder with 6 quantum gates is 7 hours on a 850MHz Pentium III 
processor running Linux. Other researchers have turned to 
evolutionary algorithms to reduce the CPU time [27]. It can be 
inferred that developing a practical synthesis algorithm for 
quantum circuits is extremely difficult because of the fast 
increase of data sizes. Indeed to-date there are no counterparts in 
quantum logic of such useful tools as algebraic decomposition, 
decision diagram based synthesis, or other standard logic 
synthesis techniques such as reduction to covering/coloring 
combinational approaches. In this paper we introduce an 
efficient data structure based on decision diagrams for 
representation, analysis and synthesis of quantum circuits and 
provide a synthesis approach based on the proposed decision 
diagrams. 

4. Quantum Logic Synthesis 
In this section, we will address the problem of automatically 
synthesizing a given Boolean function, f, by using )(θxR  and 

controlled- )(θxR  operators as the elementary operations (gate 
primitives.) In a synthesized quantum circuit, the quantum states 
representing binary (basis states) values 0̂  and 1̂  will be:  

[ ]0̂ 1 0 Τ= ,   [ ]Τ−== iRx 00̂)(1̂ π . 

With this definition of 0̂ and 1̂ , the basis states remain 
orthogonal, and hence, they can be completely distinguished 
with proper quantum measurements. We adopt this definition 
because inversion from one basis state to the other is simply 
obtained by a π rotation around the X axis. With these 
assignments, the )(πxR  operation acts as the quantum NOT gate 
(since IRRR xxx == )2()()( πππ .) Subsequently, the controlled-
NOT (CNOT) gate can be described by using the controlled-

)(πxR  operator (cf. Figure 2(i).)  In addition, the Toffoli gate, 
also known as the 3×3 Feynman gate or the Controlled-
Controlled-NOT gate, may be described by using the controlled-

)(πxR  operator (cf. Figure 2(ii).) Notice that the Boolean 
functions for each output of the CNOT and Toffoli gates are also 
shown in this figure, where ‘.’ and ‘⊕’ denote binary ‘AND’ and 
‘XOR’ operators.  

 
Toffoli gate can be implemented using controlled-rotation 
operators as demonstrated in Figure 3. In this figure only the 
angle of rotation is shown for controlled-rotation operators. 

 
In this paper, we focus on rotation-based quantum gates, which 
are directly realizable in quantum hardware [28][29]. It is critical 
to point out that, for all input basis (binary) vectors, control 
inputs of the controlled- )(θxR  operators in the circuit of Figure 

3 only take 0̂  or 1̂  values. This condition, which we shall refer 
to as the binary control signal constraint, is set as a design 
constraint in the synthesis process. From the viewpoint of 
representing quantum logic circuits, this constraint does not 
affect the expressive power of Rx(θ) and controlled- Rx(θ) 
operators. This constraint has also been adopted by other 
researchers in the field (cf. [24][27].) This constraint does not 
imply that a control signal cannot adopt a superposition value, 
i.e., it is possible that a control signal takes a superposition 
value, which happens exactly when the inputs to the circuit are 
non-binary. In the reminder of this paper, when we constrain a 
variable to assume a binary value, we only mean that if binary 
inputs are applied to the circuit, then constraint will be enforced. 
Finally, to the best of our knowledge, there is no evidence that 
relaxing this constraint, can improve the optimality of the 
synthesis result for quantum circuits.   

Figure 2. (i) CNOT gate (ii) Toffoli gate. 
(i) (ii) 
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Figure 3. Toffoli gate by controlled- )(θxR  operators.     
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4.1 Quantum Factored Forms  
In any quantum circuit synthesized with binary control signal 
constraint, the first output, p, of any controlled- )(θxR  operator 
is equal to the control input a. However, the second output 
depends on both inputs. We use the notation baRq x )(θ=  to 
describe the second output q. With this new notation )(θxR  can 
also be regarded as a two-operand operator with the following 
functionality: if 0̂=a , then bq =  else bRq x )(θ= . (The left 
operand, a, only assumes 0̂  or 1̂ .)  
Definition: Quantum Factored Form. 0̂  is a quantum factored 
form. Every variable is a quantum factored form. If h is a 
factored form, then hRf x )(θ=  is a quantum factored form. 
Moreover, if g and h are factored forms and g only takes 0̂  and 
1̂  values, then hgRf x )(θ=  is a quantum factored form. 

In a quantum circuit synthesized with )(θxR and controlled-
)(θxR  operators (with binary control signal constraint), any 

output (or internal signal) of the circuit can be described as a 
quantum factored form. For example, the output function r in 
Figure 3 can be described as: 

[ ] [ ][ ]cbRaRRbaRr xxxx )2/()2/()2/()( ππππ −= . 

The following two commutative and associative relations are 
useful for manipulating quantum factored forms: 

abRbaR xx )()( ππ = , [ ] [ ]caRbRcbRaR xxxx )()()()( 1221 θθθθ = .  

Cascade form, which is a subclass of factored forms, is defined 
as follows. 
Definition: Quantum Cascade Form. 0̂  and every variable are 
quantum cascade forms. If h is a cascade form and v is a variable 
not present in h, then hvRf x )(θ=  is a quantum cascade form. 
( hRf x )(θ=  is also considered a quantum cascade form.) 

A general quantum cascade form is expressed as: 

[ ][ ][ ]  0̂)(  ... )()()( 22110 nxnxxx RvRvRvRf θθθθ=  

Note that if πθ =n
 then nnxn vRv =0̂)(θ . It can be verified that 

this cascade form expression can be rewritten as: 

[ ][ ][ ]  0̂)(  ... )()()(
22110 npxnppxppxpx RvRvRvRf θθθθ=  

where ),...,,( 21 nppp  is a permutation of ),...,2,1( n . 

The problem of realizing a function using )(θxR and controlled-
)(θxR  operators is equivalent to finding a quantum factored 

form for the function. To do this, we first introduce a graph-
based data structure in the form of a decision diagram for 
representing quantum logic functions. 
4.2 Quantum Decision Diagrams (QDD) 
The concept of Reduced Ordered BDD (ROBDD) was 
introduced by Bryant [30], who also proved its canonicity 
property and also provided a set of operators for manipulating 
ROBDD’s. From now on, we shall simply write BDD to mean 
ROBDD.  Using complement edges can further reduce the size 
of the BDD [31]. Lai et al. [32] proposed Edge-Valued BDD’s 
(EVBDD), which can represent and manipulate integer functions 
and can be used for functional decomposition. In this section, we 
describe a new decision diagram for the representation of 
quantum functions. In a previous work [25] decision diagrams 

have been used to describe a quantum circuit. The proposed 
structure is basically a complete tree with as many leaf nodes as 
the size of input space. This representation is not more efficient 
than tabular or any other representation. Another type of 
decision diagrams has been used (for a fundamentally different 
purpose of unitary matrix multiplication) in which the decision 
variables correspond to different rows and columns of 
matrices[26]. 
The input and output spaces of an n qubit quantum function 
include arbitrary superpositions of 2n states (with norm one.) 
Therefore, an n-qubit function is represented by a 2n×2n unitary 
matrix i.e., an arbitrary superposition of basis binary inputs may 
be applied to a quantum circuit. However, based on the concept 
of superposition and linearity of quantum functions, the behavior 
of a quantum function (its functionality) can be completely 
described by using the results of its operation on basis victors. 

More precisely, given input ∑
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kU .  Each basis vector k  (k = 0, 1, …, 2n-1) represents a 
point in the n-dimensional Boolean space. Hence knowing the 
effect of a quantum function on all possible binary combinations 
(n-vectors of 0̂ and 1̂ ) can completely specify the functionality 
of the quantum circuit. Quantum Decision Diagrams are 
thereby introduced next in order to represent the value of 
quantum functions for binary basis vectors, which bear enough 
information to compute the functions for arbitrary quantum input 
states. 
Definition: A QDD is a directed acyclic graph with three types 
of nodes: a single terminal node with value 0̂ , a weighted root 
node, and a set of non-terminal (internal) nodes. Each internal 
node represents a quantum function. It is associated with a 
binary decision variable and has two outgoing edges: a weighted 
1̂ -edge (solid line) leading to another node (the 1̂ -child) and a 
non-weighted 0̂ -edge (dashed line) leading to another node (the 

0̂ -child.) The weights of the root node and 1̂ -edges are in the 
form of )(θxR  matrices. Since all the weights in a QDD are in 
the form of )(θxR , the value θ is sufficient to specify the 
weight. We assume that -π < θ < π. Furthermore, when the edge 
or root node weight is the identity matrix (i.e., IRx =)0( ), it 
will not be shown in the diagram. 
Figure 4(i) shows an internal node, f, in a QDD with decision 
variable, a, the corresponding 0̂  and 1̂  edges, and child nodes, 
f0 and f1. This relation between the QDD nodes in this figure is as 
follows. If 1̂=a , then 1)( fRf x θ=  else 

0ff = . In addition, if 
f is the weighted root node of a QDD (cf. Figure 4(ii)), then the 
following relation holds. If 1̂=a , then 

11 )()()( fRfRRf rxxrx θθθθ +==  else 
0)( fRf rx θ= .  

Similar to BDD’s, in QDD’s isomorphic sub-graphs (nodes with 
the same quantum function) are merged. Additionally, if the 0̂ -
child and the 1̂ -child of a node are the same and the weight of 
the 1̂ -edge is IRx =)0( , then that node is eliminated. Using 
these two reduction rules and given a total ordering on input 
variables, the QDD will be uniquely constructed for a quantum 
function. 
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Consider a quantum function with n variables f(v1, v2, ..., vn). 
Each binary value assignment to the variables v1, v2, ..., vn 
corresponds to a path from the root to the terminal node of the 
QDD of f. Assuming the variable ordering v1<v2<...<vn, the 
corresponding path can be identified by a top-down traversal of 
the QDD starting from the root node. For each node that is 
visited during the traversal, we select the edge corresponding to 
the value of its decision variable vi. (i.e., if vi=1̂  select the 1̂ -
edge; otherwise, select the 0̂ -edge) and continue with the node 
at the end of the selected edge until the terminal node is visited. 
During such a traversal for every variable vi, only one node with 
decision variable vi will be visited specifying a path from the 
root to the terminal node with a total number of n-1 edges. Let’s 
denote the weight of the root node by w0 and the weight of the 
selected edges by w1, w2, ..., wn-1. The value of the function f  for 
assigned values to v1, v2, ..., vn 
is: 0̂...),...,,( 11021 −= nn wwwvvvf . Clearly, if, during this graph 
traversal, a 0̂ -edge is selected for variable vi (i.e., if vi= 0̂ ), then 
the corresponding edge weight will be wi=I. We have shown that 
QDD’s provide a concise and canonical representation for a 
quantum function. QDD’s can be regarded as an extension of 
BDD’s i.e., each BDD can also be regarded as a QDD (A QDD 
is a BDD exactly if all the weights of the QDD are either 

IRx =)0(  or )(πxR .) As will be shown later, the synthesis 
process starts with the QDD of the given logic function and 
decomposes the given QDD to realizable QDD’s. The QDD 
structure has some useful properties. One important property, 
i.e., the linear topology property, is demonstrated in Figure 5. 
The idea is that when the 0̂ -child and the 1̂ -child of a node, f, 
are the same node, g, then that node can be directly realized by a 
controlled- )(θxR  operator in terms of its child i.e., 

gaRf x )(θ= . As an example, Figure 5 shows the QDD’s of 
functions q1 and r1 in Figure 3. The QDD’s in Figure 5 are 
associated with functions that have a quantum cascade form 
representation. For example function r1 can be represented as: 

])2/()[2/(1 cbRaRr xx ππ= which is a cascade form.  

 

Generally every QDD with a chain structure (such as QDD’s in 
Figure 5) is associated with a cascade form and can directly be 
realized with the rotation and controlled-rotation operators. This 
property will extensively be used in the synthesis algorithm. 
It is important to develop a method for applying rotation and 
controlled-rotation operators to QDD’s. Suppose the QDD for a 
function, f, is given. The QDD for fRh x )(γ=  can simply be 
obtained by multiplying the weight of the root node of  f  by 

)(γxR . To obtain gfRh x )(γ=  for given QDD’s f and g 
(assuming f only takes 0̂  and 1̂  values,) we use the quantum 
apply operation (q-apply), the details omitted here due to space 
limitation. 
Given other representations for a function, the QDD can be 
obtained by first creating the complete binary decision tree for 
the function and repeatedly applying the following steps:  
a) Convert the weight of 0̂ -edge to I (by changing the weight 

of corresponding 1̂ -edge and edges ending at the parent 
node.) 

b) Merge isomorphic sub-graphs. 
4.3 QDD-based Functional Decomposition 
As mentioned earlier, the problem of realizing a function, f, 
using )(θxR and controlled- )(θxR  operators is equivalent to 
finding a quantum factored form for the function, which can in 
turn be performed by recursive bi-decomposition of the given 
function f.   
Definition: Quantum (unitary) functional bi-decomposition of f 
is defined as finding functions g and h and value γ such that 

hgRf x )(γ=  where function g only assumes values 0̂  and 1̂ . 

Next we provide an algorithm for quantum unitary bi-
decomposition which can be used to bi-decompose a given 
function f to hgRx )(γ . Subsequently, g and h are recursively bi-
decomposed, which will eventually result in a quantum factored 
for f. The bi-decomposition algorithm is based on the notion of 
quantum linear (q-linear) variables. In the reminder of this 
paper, while expressing a function as ),...,,( 21 nvvvf , it is 
implicitly assumed that f depends on all variables nvvv ,...,, 21  
(i.e., f depends on all of these variables.) 
Definition: For a given function ),...,,,,...,,( 1121 niii vvvvvvf +−

, 
variable vi  is ‘q-linear’ if there exists a rotation value, 

iθ , such 
that for every value assignment to 

nii vvvvv ,...,,,...,, 1121 +−
: 

ii vixv fRf )(θ= , where ),...,,1̂,,...,,( 1121 niiv vvvvvff
i +−=  and 

),...,,0̂,,...,,( 1121 niiv vvvvvff
i +−= . 

A variable is called q-nonlinear exactly if it is not q-linear.  
Lemma 1: Consider function ),...,,( 21 nvvvf with variable 
ordering 

nvvv <<< ...21
. Variables nkk vvv ,...,, 21 ++  are all q-

linear if and only if for each of these variables, vi, there is exactly 
one node, ni, with decision variable vi in the QDD of function f. 
The weight of the 1̂ -edge of ni will be )( ixR θ . Also no edge 
originating from nodes above nj (i.e., nodes with decision 
variable vj, j<i) will end at a node below ni (a node with decision 
variable vj, j>i.)  
Let vk be the lowest indexed q-nonlinear variable after which 

nkk vvv ,...,, 21 ++  are q-linear variables of f. From Lemma 1, 

Rx(π/2) 

Rx(π/2) 

Rx(π) 

a 

Rx(π) 

b 
 b 

0̂  

a

b

Rx(π) 

c

0̂

 c 

r2

 q1 = a Rx(π) b 
 r1 = a Rx(π/2) r2 

Rx(θ) 
 g 

a 
f =a Rx(θ) g 

Figure 5.  The linear topology property of a QDD.  
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   f0    f1 
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Rx(θr) 
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Figure 4. Structure of a QDD.  
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jj vjxv fRf )(θ= , k+1<j<n where θj is fixed independent of the 

input combination of 
njj vvvvv ,...,,,...,, 1121 +−

. Every path from 
the root node of the QDD to its terminal node will either go thru 
an internal node with decision variable vk or it will skip any such 
node and directly go to the single QDD node with decision 
variable vk+1. For the latter case, 

kkk vvxv ffRf == )0(  and for the 
former case, 

kk vixv fRf )(α=  where there will be as many 
different rotation angles (e.g., α1, α2) for variable vk as there are 
internal nodes with decision variable vk in the QDD.  
Definition: The degree of q-nonlinearity of variable vk is m-1 
where m denotes the number of different rotation angles αi 
(including 0 if any) that 

kk vixv fRf )(α=  for some 

nkk vvvvv ,...,,,...,, 1121 +− . For q-linear variables the degree of 
q-nonlinearity is zero. 
Theorem 1: Consider function ),...,,( 21 nvvvf with variable 
ordering nvvv <<< ...21 .  Assume that nkk vvv ,...,, 21 ++

 are q-

linear variables of f and kv  is a q-nonlinear variable of f with 
degree of q-nonlinearity m-1 (i.e., for each value assignment to 

nkk vvvvv ,...,,,...,, 1121 +−
.) Exactly one of the following m relations 

holds: 
kk vxv fRf )( 1α= ,…, 

kk vmxv fRf )(α= .)  Let function g be 
defined as follows. If 

kk vxv fRf )( 1α= , then 1̂=g  else 

0̂=g . Function f can be bi-decomposed as: hRgf x )(1 γ=  
where: gRvg xk )(1 π= , 2/)( 12 ααγ −= , fRgh x )(1 γ−=  and g1 
will be a function of kvvv ,...,, 21  (i.e., g1 will be invariant of 

nkk vvv ,...,, 21 ++ ) and kv  will be q-linear in function g1. In 

addition, h will be a function of nvvv ,...,, 21 ; nkk vvv ,...,, 21 ++  
will be q-linear in function h;  and the degree of q-nonlinearity 
of vk in h will be less than or equal to m-2. 
Using the proposed bi-decomposition approach f can be bi-
decomposed into hRgf x )(1 γ=  where g1 and h are recursively 
bi-decomposed until a quantum factored form is obtained. Since 
g1 is independent of nkk vvv ,...,, 21 ++  and vk in g is q-linear and 
degree of q-non linearity of vk in h is at most m-2, the recursion 
will finally stop at terminal cases where g1 and/or h have directly 
realizable QDD’s, i.e., all the variables will be q-linear in the 
functions and hence they will have cascade forms corresponding 
to QDD’s with a chain structure similar to QDD’s in Figure 5. 
As a result of Lemma 1, in a function with chain structured 
QDD, all variables are q-linear. The algorithm, q-factor(f),  uses 
recursive bi-decomposition in Theorem 1 to generate a quantum 
factored form for a function f. 
Algorithm: q-factor ( f ) 

0- If all variables are q-linear then return the 
corresponding cascade form for f ; 

1- Find the lowest indexed q-nonlinear variable, kv , 
after which nkk vvv ,...,, 21 ++  are q-linear; 

2- Bi-decompose f as hRgf x )(1 γ=  where 1g , h  
and γ  are given in Theorem 1; 

3- Return   [q-factor( 1g )] Rx(γ) [q-factor( h )]; 
It is important to notice that all of the above steps can be directly 
performed on QDD’s. For example if the QDD of a function, f, is 
a chain structure, there exists a cascade form for f (step 0). For 

step 1, according to Lemma 1, identifying  kv  is equivalent to 
identifying the lower chain-structure part of the QDD. As for 
step 2, according to Lemma 2, values mααα ,...,, 21  can be 
obtained from the weights of the 1̂ -edges of nodes with decision 
variable kv . Hence, 2/)( 12 ααγ −=  can also be obtained. Let ni 

denote the node with decision variable kv  and 1̂ -edges weight 
)( ixR α . The QDD of g1 can be constructed from QDD of f with 

the following method.  
Starting from the QDD of f, change all weights to IRx =)0( ; 
create a QDD node, vk, representing vk. as depicted in Figure 6; 
redirect all edges toward n1 to node vk and make the weight of all 
such edges )(πxR ; redirect all edges toward n2, n3, …, nm to node 
vk and make the weight of all such edges )0(xR ; discard nodes 
n1, n2, …, nm; and finally merge isomorphic sub-graphs, 
eliminate nodes with same 0̂ -child and the 1̂ -child if the weight 
of the 1̂ -edge is IRx =)0( ,  and update weights of the QDD to 
make the QDD of g1 canonical.  
Having the QDD’s for g1 and f, the QDD of fRgh x )(1 γ−=  can 
be obtained using the q-apply operation. 

 
The final factored form resulting from q-apply will be: 

[ ][ ][ ]  0̂)(  ... )()()( 332211 kxkxxx RgRgRgRgf γγγγ=  which may also 
be written as: 

[ ][ ][ ]  0̂)(  ... )()()(
332211 kpxkppxppxppxp RgRgRgRgf γγγγ=  

where ),...,,( 21 kppp  is a permutation of ),...,2,1( k . Note that gi 
functions should be decomposed as well using q-apply. In the 
following example, it is shown that different permutations on 

),...,2,1( k  may result in different number of gates while 
synthesizing the circuit.  
The examples in this paper demonstrate the power of the 
proposed synthesis approach. The q-factor algorithm is not 
guaranteed to be optimal; however the examples show that the 
results of the q-factor match the previously-generated optimal 
circuits (obtained by semi-exhaustive search) by previous 
researchers, which is one evidence for the effectiveness of the 
propose automated synthesis approach.  
Example 1: In this part a four-input Toffoli gate, depicted in 
Figure 7 (i), will be synthesized by using the q-factor algorithm. 
Figure 7 (ii) shows the QDD of the output s of the Toffoli gate. 
Throughout the synthesis process we maintain the variable 
ordering a<b<c<d.  
The resulting quantum circuit realization is depicted in Figure 8. 
The first part of the circuit (left of the dashed line) generates 
output s whereas the second part generates outputs a, b and c. 
This realization of the 4-input Toffoli gate can be generalized for 
n-input Toffoli gates. In [33] a method for synthesizing an n-
input Toffoli gate (including the 4-input gate) is provided which 
produces a synthesis result similar to ours. However the 
approach in [33] is specialized for gates similar to the n-input 

Rx(π) 

vk 

0̂  
Figure 6. QDD for the node vk. 
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Toffoli gates while our approach automatically and without 
assuming any prior knowledge of the function, synthesizes the 
circuit. The use of q-factor for synthesizing the n-input Toffoli 
gate automatically generates the circuit structures which were 
first reported in [33]. In our view, this fact alone demonstrates 
the efficacy of the proposed approach. The details can be 
verified by the reader. 

 

 
Example 2. Consider a full adder with inputs x1, x2 and x3 and 
outputs s (sum) and c (carry out): 321 xxxs ⊕⊕= and 

).().().( 323121 xxxxxxc ++=  where ‘+’ is binary ‘OR’ 
operation. The resulting quantum circuit realization is depicted 
in Figure 9. 
 

 
The authors of [24] reported the run-time of the algorithm for 
optimal synthesis of a single-bit adder with 6 quantum gates as 7 
hours on a 850MHz Pentium III processor running Linux. As we 
can observe, our method results in a circuit with the same 
number of quantum gates in virtually no time.  

5. Conclusions  
An efficient analysis and synthesis framework for quantum logic 
circuits was presented. We introduced the quantum factored 
forms, and developed a canonical and concise representation of 
quantum logic circuits. The focus of our approach was on the 
most basic quantum operators, i.e., the rotation and controlled-
rotation primitives. Finally, an effective QDD-based algorithm, 
i.e., q–factor for automatic synthesis of quantum circuits was 
introduced. The results of applying q-factor to n-input Toffoli 

gate and full adders demonstrate the efficiency of the proposed 
approach.  
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Figure 7.  Four-input Toffoli gate and QDD for output, s. 
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Figure 8. Four-input Toffoli gate by the q-factor algorithm. 
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Figure 9. Quantum full adder. 
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