
 1

Analysis and Synthesis of Quantum Circuits by Using Quantum Decision Diagrams1

Afshin Abdollahi Massoud Pedram
Department of Electrical Engineering

University of Southern California
{afshin, pedram}@usc.edu

Abstract
Quantum information processing technology is in its pioneering
stage and no proficient method for synthesizing quantum circuits
has been introduced so far. This paper introduces an effective
analysis and synthesis framework for quantum logic circuits. The
proposed synthesis algorithm and flow can generate a quantum
circuit using the most basic quantum operators, i.e., the rotation
and controlled-rotation primitives. The paper introduces the
notion of quantum factored forms and presents a canonical and
concise representation of quantum logic circuits in the form of
quantum decision diagrams (QDD’s), which are amenable to
efficient manipulation and optimization including recursive
unitary functional bi-decomposition. This paper concludes by
presenting the QDD-based algorithm for automatic synthesis of
quantum circuits.

1. Introduction
We are beginning to reach the fundamental limits of the
materials used in the planar CMOS process [1]. Quantum
computers can evolve a superposition of quantum states until the
final output is obtained. Such “quantum parallelism” could
potentially outstrip power of classical computers [2][3]. Certain
problems for which there is no polynomial solution in classical
domain can be solved in polynomial time in quantum domain
(e.g., the factoring problem). Similarly, the complexity of some
other problems (e.g., unstructured search and Boolean
satisfiability) can be reduced by transforming them into the
quantum domain [4]. Indeed, quantum circuits have the ability to
perform massively parallel computations in a single time step
[5][6]. Hence quantum computing has become a very attractive
research area, which is expected to play an increasingly critical
role in building more efficient computers [7][8]. Computer aided
design of quantum circuits is at primitive stages, which
motivates rigorous research aimed at developing CAD
techniques and tools for quantum circuits.
In this paper we address the problem of synthesizing a general
quantum operation. Exact definition of the problem is provided
clearly at the end of section 2 In this paper a canonical decision
diagram based representation of quantum circuits is presented
and a CAD methodology and novel techniques for synthesis of
quantum logic circuits based on these decision diagrams are
described. The remainder of this paper is organized as follows.
In section 2 fundamental aspects of quantum mechanics and in
section 3 previous work on quantum circuit synthesis are
reviewed. In section 4, quantum factored forms, quantum
decision diagrams (QDD’s), and a QDD-based quantum circuit
synthesis are introduced. Conclusions are provided in section 5.

__
1 This research is funded in part by the NSF QnTM program under
grant no. 0524602.

2. Fundamentals of Quantum Computing
In quantum computation quantum bits (qubits), derived from the
states of micro-particles such as photons, electrons or ions are
used instead of classical binary bits to represent information. For
example, two possible spin rotations of an electron are
represented as []T01 and []T10 , which are the basis states (basis
vectors) of this computational quantum system [9][10].
Each particle in a quantum system is represented by a wave
function inheriting the powerful concept of superposition of
states. For example, the state of a particle p1 may be represented
by a wave function [] [] []T11

T
1

T
11 1001 βαβαΨ =+= where the

coefficients α1 and β1 are in general complex and |α1|2+|β1|2=1. In
general, the wave function of a quantum system with n qubits
represents an arbitrary superposition of 2n states while in a
classical system n bits represent only 2n distinct states. Therefore
the space of quantum systems is exponentially larger than that of
the classical binary systems. Analysis (and by extension,
synthesis) of quantum logic circuits is more difficult than that of
the digital logic circuits because the former requires
manipulation of matrices and bases in Hilbert space whereas the
latter requires binary, or at most multi-valued, logic operations.
Quantum operators over a set of qubits are modeled as matrix
operations. As an example, for a quantum system comprising of
a single particle p1, a quantum operator (gate) is represented by a
2×2 (in general complex) unitary matrix U which transforms
state T

111][βαΨ = to state
12 UΨΨ = . Recall that a matrix U is

unitary exactly if UU+=I where U+ is the hermitian (complex
conjugate transpose) of U. Since matrix U is unitary, the inverse
of this gate is matrix U+, which is the inverse of U. An important
class of quantum operators is the rotation operator. A θ rotation
around the X axis in Bloch sphere representation [4] is:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−
=

2
cos

2
sin

2
sin

2
cos

)(θθ

θθ

θ
i

i
Rx

.

The following relation shows that rotation operators around X
are commutative with respect to matrix multiplication:

)()()()()(211221 θθθθθθ +== xxxxx RRRRR .

In general for an n-qubit system, a quantum operation is
represented by a 2n×2n unitary matrix. An example of a 2-qubit
gate is the controlled-U gate depicted in Figure 1. For a 2×2
unitary matrix U, the controlled-U gate works as follows: when
the control signal a is T]01[, q=b and when it is T]10[, then
q=Ub. For both cases, p=a.

a

b

p

q U
Figure 1. Schematic diagram of a controlled-U.

 2

Similar to controlled-U operator, one can easily define a
significant class of 2-qubit operators as the controlled-rotation
operator. Rotation operators are elementary and easily
realizable in most implementations of quantum computation [4],
e.g., nuclear magnetic resonance and ion trap realizations. These
factors are precisely why this paper will focus on rotation and
controlled-rotation operators as the elementary building blocks
for synthesis of quantum circuits. A new concise and canonical
data structure, called quantum decision diagrams or QDD’s, will
be introduced and subsequently used for conducting quantum
operations and synthesizing quantum logic circuits. More
precisely, the QDD’s are designed to have the ability to express
the functionality of every quantum circuit composed of
controlled-rotation operators assuming that all rotations are
about a single axis and a ‘binary control signal’ constraint is
enforced.

3. Previous Work on Quantum Logic Synthesis
Several approaches for reversible logic circuit synthesis have
been presented in [11]-[14]. These approaches resort to
exhaustive search or methods such as matrix decomposition,
local transformations, spectral approaches, and on adaptations of
EXOR logic decomposition, Reed-Muller representations, and
other classical combinational circuit design methods. Toffoli
[15] provided an algorithm for implementing an arbitrary
function with the “CNTS” library, comprising of controlled-
NOT, NOT, Toffoli gate, and SWAP gate (see section 4).
Kerntopf [16] proposed a search method to perform synthesis of
small-scale circuits. In [17] a synthesis method based on
manipulating the truth tables is presented. Shende et al. [18]
generate a library of small optimal circuits based on branch-and-
bound and exploiting the property that any sub-circuit of an
optimal circuit is itself optimal. Agrawal and Jha [19] presented
a RM-expansion based technique for optimizing a circuit that is
mapped to reversible gates. In [20] an algorithm for synthesis of
quantum circuits using reversible Davio expansion was
proposed. In [21], Shende et al presented a top-down structure
using the Cosine-Sine decomposition and introduced and used
the quantum multiplexer for recursive implementation of
quantum gates. Group theory has also been employed as a tool to
analyze reversible gates [22] and investigate generators of the
group of reversible gates [23]. In [24], Hung et al transform the
synthesis problem into a satisfiability problem. They in fact use a
SAT solver instead of employing an exhaustive search. This
method is practical only for very small circuits since the reported
run-time of the algorithm for optimal synthesis of a single-bit
adder with 6 quantum gates is 7 hours on a 850MHz Pentium III
processor running Linux. Other researchers have turned to
evolutionary algorithms to reduce the CPU time [27]. It can be
inferred that developing a practical synthesis algorithm for
quantum circuits is extremely difficult because of the fast
increase of data sizes. Indeed to-date there are no counterparts in
quantum logic of such useful tools as algebraic decomposition,
decision diagram based synthesis, or other standard logic
synthesis techniques such as reduction to covering/coloring
combinational approaches. In this paper we introduce an
efficient data structure based on decision diagrams for
representation, analysis and synthesis of quantum circuits and
provide a synthesis approach based on the proposed decision
diagrams.

4. Quantum Logic Synthesis
In this section, we will address the problem of automatically
synthesizing a given Boolean function, f, by using)(θxR and

controlled-)(θxR operators as the elementary operations (gate
primitives.) In a synthesized quantum circuit, the quantum states
representing binary (basis states) values 0̂ and 1̂ will be:

[]0̂ 1 0 Τ= , []Τ−== iRx 00̂)(1̂ π .

With this definition of 0̂ and 1̂ , the basis states remain
orthogonal, and hence, they can be completely distinguished
with proper quantum measurements. We adopt this definition
because inversion from one basis state to the other is simply
obtained by a π rotation around the X axis. With these
assignments, the)(πxR operation acts as the quantum NOT gate
(since IRRR xxx ==)2()()(πππ .) Subsequently, the controlled-
NOT (CNOT) gate can be described by using the controlled-

)(πxR operator (cf. Figure 2(i).) In addition, the Toffoli gate,
also known as the 3×3 Feynman gate or the Controlled-
Controlled-NOT gate, may be described by using the controlled-

)(πxR operator (cf. Figure 2(ii).) Notice that the Boolean
functions for each output of the CNOT and Toffoli gates are also
shown in this figure, where ‘.’ and ‘⊕’ denote binary ‘AND’ and
‘XOR’ operators.

Toffoli gate can be implemented using controlled-rotation
operators as demonstrated in Figure 3. In this figure only the
angle of rotation is shown for controlled-rotation operators.

In this paper, we focus on rotation-based quantum gates, which
are directly realizable in quantum hardware [28][29]. It is critical
to point out that, for all input basis (binary) vectors, control
inputs of the controlled-)(θxR operators in the circuit of Figure

3 only take 0̂ or 1̂ values. This condition, which we shall refer
to as the binary control signal constraint, is set as a design
constraint in the synthesis process. From the viewpoint of
representing quantum logic circuits, this constraint does not
affect the expressive power of Rx(θ) and controlled- Rx(θ)
operators. This constraint has also been adopted by other
researchers in the field (cf. [24][27].) This constraint does not
imply that a control signal cannot adopt a superposition value,
i.e., it is possible that a control signal takes a superposition
value, which happens exactly when the inputs to the circuit are
non-binary. In the reminder of this paper, when we constrain a
variable to assume a binary value, we only mean that if binary
inputs are applied to the circuit, then constraint will be enforced.
Finally, to the best of our knowledge, there is no evidence that
relaxing this constraint, can improve the optimality of the
synthesis result for quantum circuits.

Figure 2. (i) CNOT gate (ii) Toffoli gate.
(i) (ii)

a

b

 p = a

 r = (a.b) ⊕ c
Rx(π)

 q = b

c

Rx(π)

a

b

 p = a

q = a ⊕ b

 p1

 q1

 r1 π/2 π/2

π

-π/2

π

a

c

 p = a

 b q=b

r=(a.b) ⊕ c
Figure 3. Toffoli gate by controlled-)(θxR operators.

 3

4.1 Quantum Factored Forms
In any quantum circuit synthesized with binary control signal
constraint, the first output, p, of any controlled-)(θxR operator
is equal to the control input a. However, the second output
depends on both inputs. We use the notation baRq x)(θ= to
describe the second output q. With this new notation)(θxR can
also be regarded as a two-operand operator with the following
functionality: if 0̂=a , then bq = else bRq x)(θ= . (The left
operand, a, only assumes 0̂ or 1̂ .)
Definition: Quantum Factored Form. 0̂ is a quantum factored
form. Every variable is a quantum factored form. If h is a
factored form, then hRf x)(θ= is a quantum factored form.
Moreover, if g and h are factored forms and g only takes 0̂ and
1̂ values, then hgRf x)(θ= is a quantum factored form.

In a quantum circuit synthesized with)(θxR and controlled-
)(θxR operators (with binary control signal constraint), any

output (or internal signal) of the circuit can be described as a
quantum factored form. For example, the output function r in
Figure 3 can be described as:

[] [][]cbRaRRbaRr xxxx)2/()2/()2/()(ππππ −= .

The following two commutative and associative relations are
useful for manipulating quantum factored forms:

abRbaR xx)()(ππ = , [] []caRbRcbRaR xxxx)()()()(1221 θθθθ = .

Cascade form, which is a subclass of factored forms, is defined
as follows.
Definition: Quantum Cascade Form. 0̂ and every variable are
quantum cascade forms. If h is a cascade form and v is a variable
not present in h, then hvRf x)(θ= is a quantum cascade form.
(hRf x)(θ= is also considered a quantum cascade form.)

A general quantum cascade form is expressed as:

[][][] 0̂)(...)()()(22110 nxnxxx RvRvRvRf θθθθ=

Note that if πθ =n
 then nnxn vRv =0̂)(θ . It can be verified that

this cascade form expression can be rewritten as:

[][][] 0̂)(...)()()(
22110 npxnppxppxpx RvRvRvRf θθθθ=

where),...,,(21 nppp is a permutation of),...,2,1(n .

The problem of realizing a function using)(θxR and controlled-
)(θxR operators is equivalent to finding a quantum factored

form for the function. To do this, we first introduce a graph-
based data structure in the form of a decision diagram for
representing quantum logic functions.
4.2 Quantum Decision Diagrams (QDD)
The concept of Reduced Ordered BDD (ROBDD) was
introduced by Bryant [30], who also proved its canonicity
property and also provided a set of operators for manipulating
ROBDD’s. From now on, we shall simply write BDD to mean
ROBDD. Using complement edges can further reduce the size
of the BDD [31]. Lai et al. [32] proposed Edge-Valued BDD’s
(EVBDD), which can represent and manipulate integer functions
and can be used for functional decomposition. In this section, we
describe a new decision diagram for the representation of
quantum functions. In a previous work [25] decision diagrams

have been used to describe a quantum circuit. The proposed
structure is basically a complete tree with as many leaf nodes as
the size of input space. This representation is not more efficient
than tabular or any other representation. Another type of
decision diagrams has been used (for a fundamentally different
purpose of unitary matrix multiplication) in which the decision
variables correspond to different rows and columns of
matrices[26].
The input and output spaces of an n qubit quantum function
include arbitrary superpositions of 2n states (with norm one.)
Therefore, an n-qubit function is represented by a 2n×2n unitary
matrix i.e., an arbitrary superposition of basis binary inputs may
be applied to a quantum circuit. However, based on the concept
of superposition and linearity of quantum functions, the behavior
of a quantum function (its functionality) can be completely
described by using the results of its operation on basis victors.

More precisely, given input ∑
−

=

=Ψ
12

0

n

k
k kα (where k ’s are the

basis vector) and function U , the output can be calculated as

∑∑∑
−

=

−

=

−

=

===Ψ
12

0

12

0

12

0

nnn

k
kk

k
k

k
k UkUkUU ααα where

kU is equal to

kU . Each basis vector k (k = 0, 1, …, 2n-1) represents a
point in the n-dimensional Boolean space. Hence knowing the
effect of a quantum function on all possible binary combinations
(n-vectors of 0̂ and 1̂) can completely specify the functionality
of the quantum circuit. Quantum Decision Diagrams are
thereby introduced next in order to represent the value of
quantum functions for binary basis vectors, which bear enough
information to compute the functions for arbitrary quantum input
states.
Definition: A QDD is a directed acyclic graph with three types
of nodes: a single terminal node with value 0̂ , a weighted root
node, and a set of non-terminal (internal) nodes. Each internal
node represents a quantum function. It is associated with a
binary decision variable and has two outgoing edges: a weighted
1̂ -edge (solid line) leading to another node (the 1̂ -child) and a
non-weighted 0̂ -edge (dashed line) leading to another node (the

0̂ -child.) The weights of the root node and 1̂ -edges are in the
form of)(θxR matrices. Since all the weights in a QDD are in
the form of)(θxR , the value θ is sufficient to specify the
weight. We assume that -π < θ < π. Furthermore, when the edge
or root node weight is the identity matrix (i.e., IRx =)0(), it
will not be shown in the diagram.
Figure 4(i) shows an internal node, f, in a QDD with decision
variable, a, the corresponding 0̂ and 1̂ edges, and child nodes,
f0 and f1. This relation between the QDD nodes in this figure is as
follows. If 1̂=a , then 1)(fRf x θ= else

0ff = . In addition, if
f is the weighted root node of a QDD (cf. Figure 4(ii)), then the
following relation holds. If 1̂=a , then

11)()()(fRfRRf rxxrx θθθθ +== else
0)(fRf rx θ= .

Similar to BDD’s, in QDD’s isomorphic sub-graphs (nodes with
the same quantum function) are merged. Additionally, if the 0̂ -
child and the 1̂ -child of a node are the same and the weight of
the 1̂ -edge is IRx =)0(, then that node is eliminated. Using
these two reduction rules and given a total ordering on input
variables, the QDD will be uniquely constructed for a quantum
function.

 4

Consider a quantum function with n variables f(v1, v2, ..., vn).
Each binary value assignment to the variables v1, v2, ..., vn
corresponds to a path from the root to the terminal node of the
QDD of f. Assuming the variable ordering v1<v2<...<vn, the
corresponding path can be identified by a top-down traversal of
the QDD starting from the root node. For each node that is
visited during the traversal, we select the edge corresponding to
the value of its decision variable vi. (i.e., if vi=1̂ select the 1̂ -
edge; otherwise, select the 0̂ -edge) and continue with the node
at the end of the selected edge until the terminal node is visited.
During such a traversal for every variable vi, only one node with
decision variable vi will be visited specifying a path from the
root to the terminal node with a total number of n-1 edges. Let’s
denote the weight of the root node by w0 and the weight of the
selected edges by w1, w2, ..., wn-1. The value of the function f for
assigned values to v1, v2, ..., vn
is: 0̂...),...,,(11021 −= nn wwwvvvf . Clearly, if, during this graph
traversal, a 0̂ -edge is selected for variable vi (i.e., if vi= 0̂), then
the corresponding edge weight will be wi=I. We have shown that
QDD’s provide a concise and canonical representation for a
quantum function. QDD’s can be regarded as an extension of
BDD’s i.e., each BDD can also be regarded as a QDD (A QDD
is a BDD exactly if all the weights of the QDD are either

IRx =)0(or)(πxR .) As will be shown later, the synthesis
process starts with the QDD of the given logic function and
decomposes the given QDD to realizable QDD’s. The QDD
structure has some useful properties. One important property,
i.e., the linear topology property, is demonstrated in Figure 5.
The idea is that when the 0̂ -child and the 1̂ -child of a node, f,
are the same node, g, then that node can be directly realized by a
controlled-)(θxR operator in terms of its child i.e.,

gaRf x)(θ= . As an example, Figure 5 shows the QDD’s of
functions q1 and r1 in Figure 3. The QDD’s in Figure 5 are
associated with functions that have a quantum cascade form
representation. For example function r1 can be represented as:

])2/()[2/(1 cbRaRr xx ππ= which is a cascade form.

Generally every QDD with a chain structure (such as QDD’s in
Figure 5) is associated with a cascade form and can directly be
realized with the rotation and controlled-rotation operators. This
property will extensively be used in the synthesis algorithm.
It is important to develop a method for applying rotation and
controlled-rotation operators to QDD’s. Suppose the QDD for a
function, f, is given. The QDD for fRh x)(γ= can simply be
obtained by multiplying the weight of the root node of f by

)(γxR . To obtain gfRh x)(γ= for given QDD’s f and g
(assuming f only takes 0̂ and 1̂ values,) we use the quantum
apply operation (q-apply), the details omitted here due to space
limitation.
Given other representations for a function, the QDD can be
obtained by first creating the complete binary decision tree for
the function and repeatedly applying the following steps:
a) Convert the weight of 0̂ -edge to I (by changing the weight

of corresponding 1̂ -edge and edges ending at the parent
node.)

b) Merge isomorphic sub-graphs.
4.3 QDD-based Functional Decomposition
As mentioned earlier, the problem of realizing a function, f,
using)(θxR and controlled-)(θxR operators is equivalent to
finding a quantum factored form for the function, which can in
turn be performed by recursive bi-decomposition of the given
function f.
Definition: Quantum (unitary) functional bi-decomposition of f
is defined as finding functions g and h and value γ such that

hgRf x)(γ= where function g only assumes values 0̂ and 1̂ .

Next we provide an algorithm for quantum unitary bi-
decomposition which can be used to bi-decompose a given
function f to hgRx)(γ . Subsequently, g and h are recursively bi-
decomposed, which will eventually result in a quantum factored
for f. The bi-decomposition algorithm is based on the notion of
quantum linear (q-linear) variables. In the reminder of this
paper, while expressing a function as),...,,(21 nvvvf , it is
implicitly assumed that f depends on all variables nvvv ,...,, 21
(i.e., f depends on all of these variables.)
Definition: For a given function),...,,,,...,,(1121 niii vvvvvvf +−

,
variable vi is ‘q-linear’ if there exists a rotation value,

iθ , such
that for every value assignment to

nii vvvvv ,...,,,...,, 1121 +−
:

ii vixv fRf)(θ= , where),...,,1̂,,...,,(1121 niiv vvvvvff
i +−= and

),...,,0̂,,...,,(1121 niiv vvvvvff
i +−= .

A variable is called q-nonlinear exactly if it is not q-linear.
Lemma 1: Consider function),...,,(21 nvvvf with variable
ordering

nvvv <<< ...21
. Variables nkk vvv ,...,, 21 ++ are all q-

linear if and only if for each of these variables, vi, there is exactly
one node, ni, with decision variable vi in the QDD of function f.
The weight of the 1̂ -edge of ni will be)(ixR θ . Also no edge
originating from nodes above nj (i.e., nodes with decision
variable vj, j<i) will end at a node below ni (a node with decision
variable vj, j>i.)
Let vk be the lowest indexed q-nonlinear variable after which

nkk vvv ,...,, 21 ++ are q-linear variables of f. From Lemma 1,

Rx(π/2)

Rx(π/2)

Rx(π)

a

Rx(π)

b
 b

0̂

a

b

Rx(π)

c

0̂

 c

r2

 q1 = a Rx(π) b
 r1 = a Rx(π/2) r2

Rx(θ)
 g

a
f =a Rx(θ) g

Figure 5. The linear topology property of a QDD.

Rx(θ) Rx(θ)
 f0 f1

a
 f

 f0 f1

a
 f

Rx(θr)

 (i) (ii)
Figure 4. Structure of a QDD.

 5

jj vjxv fRf)(θ= , k+1<j<n where θj is fixed independent of the

input combination of
njj vvvvv ,...,,,...,, 1121 +−

. Every path from
the root node of the QDD to its terminal node will either go thru
an internal node with decision variable vk or it will skip any such
node and directly go to the single QDD node with decision
variable vk+1. For the latter case,

kkk vvxv ffRf ==)0(and for the
former case,

kk vixv fRf)(α= where there will be as many
different rotation angles (e.g., α1, α2) for variable vk as there are
internal nodes with decision variable vk in the QDD.
Definition: The degree of q-nonlinearity of variable vk is m-1
where m denotes the number of different rotation angles αi
(including 0 if any) that

kk vixv fRf)(α= for some

nkk vvvvv ,...,,,...,, 1121 +− . For q-linear variables the degree of
q-nonlinearity is zero.
Theorem 1: Consider function),...,,(21 nvvvf with variable
ordering nvvv <<< ...21 . Assume that nkk vvv ,...,, 21 ++

 are q-

linear variables of f and kv is a q-nonlinear variable of f with
degree of q-nonlinearity m-1 (i.e., for each value assignment to

nkk vvvvv ,...,,,...,, 1121 +−
.) Exactly one of the following m relations

holds:
kk vxv fRf)(1α= ,…,

kk vmxv fRf)(α= .) Let function g be
defined as follows. If

kk vxv fRf)(1α= , then 1̂=g else

0̂=g . Function f can be bi-decomposed as: hRgf x)(1 γ=
where: gRvg xk)(1 π= , 2/)(12 ααγ −= , fRgh x)(1 γ−= and g1
will be a function of kvvv ,...,, 21 (i.e., g1 will be invariant of

nkk vvv ,...,, 21 ++) and kv will be q-linear in function g1. In

addition, h will be a function of nvvv ,...,, 21 ; nkk vvv ,...,, 21 ++
will be q-linear in function h; and the degree of q-nonlinearity
of vk in h will be less than or equal to m-2.
Using the proposed bi-decomposition approach f can be bi-
decomposed into hRgf x)(1 γ= where g1 and h are recursively
bi-decomposed until a quantum factored form is obtained. Since
g1 is independent of nkk vvv ,...,, 21 ++ and vk in g is q-linear and
degree of q-non linearity of vk in h is at most m-2, the recursion
will finally stop at terminal cases where g1 and/or h have directly
realizable QDD’s, i.e., all the variables will be q-linear in the
functions and hence they will have cascade forms corresponding
to QDD’s with a chain structure similar to QDD’s in Figure 5.
As a result of Lemma 1, in a function with chain structured
QDD, all variables are q-linear. The algorithm, q-factor(f), uses
recursive bi-decomposition in Theorem 1 to generate a quantum
factored form for a function f.
Algorithm: q-factor (f)

0- If all variables are q-linear then return the
corresponding cascade form for f ;

1- Find the lowest indexed q-nonlinear variable, kv ,
after which nkk vvv ,...,, 21 ++ are q-linear;

2- Bi-decompose f as hRgf x)(1 γ= where 1g , h
and γ are given in Theorem 1;

3- Return [q-factor(1g)] Rx(γ) [q-factor(h)];
It is important to notice that all of the above steps can be directly
performed on QDD’s. For example if the QDD of a function, f, is
a chain structure, there exists a cascade form for f (step 0). For

step 1, according to Lemma 1, identifying kv is equivalent to
identifying the lower chain-structure part of the QDD. As for
step 2, according to Lemma 2, values mααα ,...,, 21 can be
obtained from the weights of the 1̂ -edges of nodes with decision
variable kv . Hence, 2/)(12 ααγ −= can also be obtained. Let ni

denote the node with decision variable kv and 1̂ -edges weight
)(ixR α . The QDD of g1 can be constructed from QDD of f with

the following method.
Starting from the QDD of f, change all weights to IRx =)0(;
create a QDD node, vk, representing vk. as depicted in Figure 6;
redirect all edges toward n1 to node vk and make the weight of all
such edges)(πxR ; redirect all edges toward n2, n3, …, nm to node
vk and make the weight of all such edges)0(xR ; discard nodes
n1, n2, …, nm; and finally merge isomorphic sub-graphs,
eliminate nodes with same 0̂ -child and the 1̂ -child if the weight
of the 1̂ -edge is IRx =)0(, and update weights of the QDD to
make the QDD of g1 canonical.
Having the QDD’s for g1 and f, the QDD of fRgh x)(1 γ−= can
be obtained using the q-apply operation.

The final factored form resulting from q-apply will be:

[][][] 0̂)(...)()()(332211 kxkxxx RgRgRgRgf γγγγ= which may also
be written as:

[][][] 0̂)(...)()()(
332211 kpxkppxppxppxp RgRgRgRgf γγγγ=

where),...,,(21 kppp is a permutation of),...,2,1(k . Note that gi
functions should be decomposed as well using q-apply. In the
following example, it is shown that different permutations on

),...,2,1(k may result in different number of gates while
synthesizing the circuit.
The examples in this paper demonstrate the power of the
proposed synthesis approach. The q-factor algorithm is not
guaranteed to be optimal; however the examples show that the
results of the q-factor match the previously-generated optimal
circuits (obtained by semi-exhaustive search) by previous
researchers, which is one evidence for the effectiveness of the
propose automated synthesis approach.
Example 1: In this part a four-input Toffoli gate, depicted in
Figure 7 (i), will be synthesized by using the q-factor algorithm.
Figure 7 (ii) shows the QDD of the output s of the Toffoli gate.
Throughout the synthesis process we maintain the variable
ordering a<b<c<d.
The resulting quantum circuit realization is depicted in Figure 8.
The first part of the circuit (left of the dashed line) generates
output s whereas the second part generates outputs a, b and c.
This realization of the 4-input Toffoli gate can be generalized for
n-input Toffoli gates. In [33] a method for synthesizing an n-
input Toffoli gate (including the 4-input gate) is provided which
produces a synthesis result similar to ours. However the
approach in [33] is specialized for gates similar to the n-input

Rx(π)

vk

0̂
Figure 6. QDD for the node vk.

 6

Toffoli gates while our approach automatically and without
assuming any prior knowledge of the function, synthesizes the
circuit. The use of q-factor for synthesizing the n-input Toffoli
gate automatically generates the circuit structures which were
first reported in [33]. In our view, this fact alone demonstrates
the efficacy of the proposed approach. The details can be
verified by the reader.

Example 2. Consider a full adder with inputs x1, x2 and x3 and
outputs s (sum) and c (carry out): 321 xxxs ⊕⊕= and

).().().(323121 xxxxxxc ++= where ‘+’ is binary ‘OR’
operation. The resulting quantum circuit realization is depicted
in Figure 9.

The authors of [24] reported the run-time of the algorithm for
optimal synthesis of a single-bit adder with 6 quantum gates as 7
hours on a 850MHz Pentium III processor running Linux. As we
can observe, our method results in a circuit with the same
number of quantum gates in virtually no time.

5. Conclusions
An efficient analysis and synthesis framework for quantum logic
circuits was presented. We introduced the quantum factored
forms, and developed a canonical and concise representation of
quantum logic circuits. The focus of our approach was on the
most basic quantum operators, i.e., the rotation and controlled-
rotation primitives. Finally, an effective QDD-based algorithm,
i.e., q–factor for automatic synthesis of quantum circuits was
introduced. The results of applying q-factor to n-input Toffoli

gate and full adders demonstrate the efficiency of the proposed
approach.
References
[1] http://www.itrs.net/Common/2004Update/2004Update.htm
[2] R. P. Feynman, “Simulating Physics with Computers,” Int’l Journal of

Theoretical Physics, 21, 1982, pp. 467-488.
[3] D. Deutsch, “Quantum Theory, the Church-Turing Principle and the

Universal Quantum Computer,” Royal Society, A, 400, 1985, pp. 97-117.
[4] M. A. Nielsen, I. L. Chuang, Quantum Computation and Quantum

Information, Cambridge University Press, 2000.
[5] C. P. Williams, S. H. Clearwater, Explorations in Quantum Computing,

Springer-Verlag, 1998.
[6] M. Hirvensalo, Quantum Computing, Springer Verlag, 2001.
[7] R. Landauer, “Irreversibility and Heat Generation in the Computational

Process,”IBM Journal of Research and Development, 5, 1961, pp.183-191.
[8] R. Keyes, R. Landauer, “Minimal Energy Dissipation in Logic,” IBM Journal

of Research and Development, 14, 1970, pp. 152-157.
[9] P. A. M. Dirac, The Principles of Quantum Mechanics, Oxford University

Press, 1st Edition, 1930.
[10] J. von Neumann, Mathematical Foundations of Quantum Mechanics,

Princeton Univ. Press, 1950.
[11] K. Iwama, Y. Kambayashi, S. Yamashita, “Transformation Rules for

Designing CNOT-Based Quantum Circuits,” DAC, 2002, pp.419-424.
[12] A. Khlopotine, M. Perkowski, P. Kerntopf, “Reversible Logic Synthesis by

Iterative Compositions,” IWLS, 2002, pp. 261-266.
[13] D.M. Miller,“Spectral and Two-Place Decomposition Techniques in

Reversible Logic,” Midwest Symp. on Circuits and Systems, CD-ROM, 2002.
[14] M. Perkowski, et. al., “Regularity and Symmetry as a Base for Efficient

Realization of Reversible Logic Circuits,” IWLS, 2001, pp. 90-95.
[15] T. Toffoli, Reversible Computing, Lab. for Computer Science, MIT,

Cambridge, MA, Technical Memo. MIT/LCS/TM-151, 1980.
[16] P. Kerntopf, “A Comparison of Logical Efficiency of Reversible and

Conventional Gates,” Intl. Workshop Logic Synthesis, 2000, pp. 261-269.
[17] D. M. Miller, D. Maslov, G. W. Dueck, “A Transformation Based Algorithm

for Reversible Logic Synthesis,”Design Automation Conf. 2003, pp. 318-323.
[18] V. V. Shende , A. K. Prasad, I. L. Markov, J. P. Hayes, “Synthesis of

Reversible Logic Circuits,” IEEE Trans. on Computer Aided Design of
Integrated Circuits and Systems, vol. 22(6), 2003, pp. 710-722.

[19] A. Agrawal, N. K. Jha, “Synthesis of Reversible Logic,” Design Automation
and Test in Europe, 2004, pp. 21384-21385.

[20] A. Al-Rabadi, “Quantum Circuit Synthesis Using Classes of GF(3)
Reversible Fast Spectral Transforms,” Int’l Symp. on Multi Valued Logic,
2004, pp. 87-93.

[21] V. V. Shende, S. S. Bullock, I. L. Markov, “Synthesis of Quantum Logic
Circuits,” A SP Design Automation Conf., 2005, pp. 272-275.

[22] L. Storme et al., “Group Theoretical Aspects of Reversible Logic Gates,”
Journal of Universal Computer Science 5, 1999, pp 307-321.

[23] A. De Vos et al., “Generating the Group of Reversible Logic Gates,” Journal
of Physics A: Mathematical and General,35, 2002, pp. 7063-7078.

[24] W. Hung, X. Song, G. Yang, J.Yang, M. Perkowski, “Quantum Logic
Synthesis by Symbolic Reachability Analysis,” Design Automation
Conference, 2004, pp.838-841.

[25] A. Al-Rabadi, L. Casperson and M. Perkowski, Multiple-valued quantum
logic, Quantum Computers and Computing, Vol. 3, Number 1.

[26] G.F.Viamontes, I.L.Markov and J.P. Hayes, “Improving Gate-Level
Simulation of Quantum Circuits1,” Quantum Information Processing, Vol. 2,
No. 5, 2003

[27] M. Lukac et al, “Evolutionary Approach to Quantum and Reversible Circuits
Synthesis,” Artificial Intelligence in Logic Design, Kluwer Academic
Publisher, 2004, pp. 361-417.

[28] J. I. Cirac, P. Zoller, “Quantum Computation with Cold Trapped Ions,”
Physical Review, 74, Issue 20, 1995, pp. 4091-4094.

[29] C. Monroe, et. al., “Simplified Quantum Logic with Trapped Ions,” Physical
Review A, 55, Issue 4, 1997, pp. 2489-2491.

[30] R. Bryant, “Graph-Based Algorithms for Boolean Function Manipulation,”
IEEE Trans. on Computers, vol. 35, 1986, pp. 677-691.

[31] K. Brace, R. Rudell, and R. Bryant, “Efficient Implementation of a BDD
Package,” Design Automation Conf., 1990, pp. 40-45.

[32] Y.-T. Lai, M. Pedram, and S. Vrudhula, “EVBDD-Based Algorithms for
Integer Linear Programming, Spectral Transformation, and Function
Decomposition,” IEEE Trans. on Computer-Aided Design, 8, 1994,pp. 959-
975.

[33] A. Barenco et al., “Elementary Gates for Quantum Computation,” Physical
Review A, 52, 1995, pp. 3457-3467.

Figure 7. Four-input Toffoli gate and QDD for output, s.

 s = (a.b.c) ⊕ dh1 π/2 π/4 π/4 -π/2

π/2 π/2

π

-π/2

-π/4

π/2

π

-π/2 -π/2

b

c

d

a

g1

g2 b

c

a

Figure 8. Four-input Toffoli gate by the q-factor algorithm.

h

x1

π/2 π/2 π/2 -π/2

π π

x2

x3

0̂ c

s

Figure 9. Quantum full adder.

(i)

b

c

 q = b

 s = (a.b.c)⊕d Rx(π)

 r = c

d

a p = a

Rx(π)

b

c

d

0̂

 s

Rx(π)

a

(ii)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

