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Abstract 
 

In this paper, an approach that uses dynamic voltage 
scaling (DVS) to reduce the configuration energy of run-
time reconfigurable devices is proposed. The basic idea is 
to use configuration prefetching and parallelism to create 
excessive system idle time and apply DVS on the 
configuration process when such idle time can be utilized. 
A genetic algorithm is developed to solve the task 
scheduling and voltage assignment problem. With real 
applications, the results show that up to 19.3% of 
configuration energy can be reduced. When considering 
the reduction of the configuration energy, the results show 
that using more computation resources is more favorable 
when the configuration latency is relatively small, and 
using more configuration controllers is more favorable 
for relatively large latency. 

 

1. Introduction 
 
 Reconfigurable logic is becoming an important design 

alterative in System-on-Chip (SoC) design due to its 
capabilities of providing higher performance than SW 
implementation and more flexibility than fixed-HW 
implementation. High silicon reusability can also be 
achieved through run-time reconfiguration (RTR). Such 
devices are usually referred as dynamically reconfigurable 
hardware (DRHW). The RTR means the circuit or a part 
of it can be reconfigured while the rest of the system is 
running. However, the RTR results in the configuration 
overhead, e.g. latency and power consumption, which can 
largely degrade the system performance.  

There are extensive research works that focus on 
reducing the effect of the configuration latency, such as 
configuration prefetching [1] (configure tasks before they 
are needed) and configuration caching [2] (load tasks 
once and use them multiple times during iterative 
operation). Novel devices, such as partially reconfigurable 
devices [3] and multi-context devices [4] can also 
significantly reduce the configuration latency. However, 

none of these approaches takes reducing the configuration 
energy as the main objective.  

The DVS is the most common and effective approach 
in low-power embedded system design [5]. The basic idea 
is to apply low supply voltage on tasks to utilize the 
system idle time. In this work, we present an approach 
that reduces the configuration energy by applying the 
DVS on the reconfiguration process. The basic idea is to 
use configuration prefetching and parallelism [6] to create 
excessive system idle time and apply DVS on the 
configuration process when such idle time can be utilized. 
In addition, an optimization approach based on the genetic 
algorithm (GA) is developed to solve the voltage-
assignment and task-scheduling problem. 

The structure of the paper is as follows. The motivation 
of the work is presented in section 2. The device model is 
presented in section 3. Tasks models and the GA 
algorithm are presented in section 4. Case studies and 
experimental results are presented in section 5. Finally, 
conclusions are given in section 6. 

  

2. Motivation 
 
The dynamic power consumption of a circuit, Pdyn, 

satisfies the relation that Pdyn ∝ CV2f, where C is the 
capacitance of the circuit, V is the supply voltage and f is 
the operation frequency. Because the supply voltage has 
quadratic effect on the dynamic power consumption, 
reducing the supply voltage is the most effective approach 
to lower Pdyn, but low supply voltage will increase the 
configuration latency and degrade the performance. 

However, by using configuration prefetching and 
parallelism, we can create excessive system idle time and 
thus benefit from using the DVS. Simple examples are 
shown in Figure 1. Figure 1(a) shows the case where the 
idle time is created by prefetching. Such idle time can 
then be utilized to lower the supply voltage of the 
configuration process, as shown in Figure 1(c). Figure 
1(b) shows the case that Task 2 needs two configurations. 
If they can be performed in parallel, the idle time marked 
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Figure 1. Using prefetching and configuration 

parallelism to create excessive idle time 

in Figure 1(b) can then be utilized to apply DVS, as in 
Figure 1(d). 

 

3. The Device Model 
 
Our research is based on a parallel reconfiguration 

model [6], as shown in Figure 2.  The device consists of a 
number of continuously connected homogeneous tiles 
with FPGA-like structure and a number of independent 
configuration controllers. Each tile consists of the circuit 
and its own configuration SRAM (C-SRAM) that controls 
the circuit. A task that requires m tiles of resources can 
use any set of m continuously connected tiles. A crossbar 
is used to connect the C-SRAMs of the tiles to a number 
of parallel configuration controllers. The crossbar ensures 
that any C-SRAM can be accessed by any configuration 
controller but only one at a time. 

Because each tile has its own C-SRAM, this allows us 
to apply DVS on the C-SRAM and the corresponding 
configuration controller for each individual configuration 
process. However, applying low supply voltage on the C-
SRAM will degrade the circuit performance. Therefore, 
buffers are needed at the output of the C-SRAM to boost 
the output voltage level to the same level as used in the 
circuit. These buffers do not cause delays at runtime, 
because the C-SRAM supply DC signals to the circuit. In 
this phase of the work, our main objective is to reduce the 
configuration energy, therefore we do not consider to 
apply DVS on the circuit, as in [7]. 

 

4. A Genetic Algorithm for Task Scheduling 
and Voltage Assignment 

 
We use dependent task sets to evaluate the approach. 

The principle is to schedule the tasks on the device model 
with the goal to minimize the effect of the configuration 
latency while using DVS to reduce the total configuration 
energy. Therefore, the task allocation, scheduling, 
configuration prefetching, configuration parallelism and 
DVS state assignment need to be considered at the same 
time. To cope with this NP-hard problem, we developed a 
genetic algorithm that can minimize both the scheduling 

length and the configuration energy simultaneously while 
considering all the above factors. 
 
4.1. Task Model 

 

Dependent tasks are modeled as a directed acyclic 
graph (DAG) G(V,E), where V = {t1,t2,…, tn} U  
{C<1,1>,…C<m,n>} (ti represents a task i and C<j,i> 
represents the configuration of the jth section of the task i) 
and E is a set of edges that represent the dependence of 
the tasks and the links from configuration nodes to task 
nodes. A task is ready to run when all of its predecessors 
have finished. There are two attributes for a task i, the 
execution time, RTi, and the number of required tiles, Ri. 
The value Ri also shows that there are Ri number of 
configuration nodes directly precede the task node ti. An 
example DAG is presented in Figure 3. 

 

4.2. Introduction to Genetic Algorithm 
 

The GA is a guided random search technique inspired 
by evolutionary biology [8]. The basic idea is to 
iteratively improve the results (individuals) through 
randomly combining (crossover) and modifying 
(mutation) pervious results until some termination criteria 
are satisfied. In each generation, only the best individuals 
survive, thus each generation tends to be better than 
previous ones. It is usually implemented using a loop 
structure, as follows. 

step 1: Create initial population (a group of solutions). 
step 2: Evaluate the fitness of all individuals in the 

current population (The fitness is a measurement of the 
quality of an individual).  

step 3: Select individuals to reproduce, and breed new 
offspring through crossover with high probability and 
mutation with low probability. 

step 4: Stop if termination criteria are satisfied. 
Otherwise go back to step 2. 

The chromosome (strings that represent solutions) and 
the GA operators (crossover, mutation, evaluation and 
selection that operate the chromosome to evolve new 
offspring) are problem-specific. We use the 
implementation in a multiprocessor scheduler [9] to 
illustrate these basic ideas. In [9], a solution is represented 
by two-dimension strings {S1, S2, …, Sn}. Each string Si 
represents the tasks scheduled on the processor Pi and the 
order of appearance is the execution order of tasks. 
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Figure 4. Gene representation 
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Figure 3. The task model 

The crossover allows two parents, par1 and par2, to 
mate to generate two new individuals, child1 and child2. 
The crossover can be seen as a way to achieve the guided 
search, since new solutions are directly derived from the 
old ones. In [9], a random task is first selected, and then 
the crossover sites (a place to cut a string into half) for 
each string Si is generated based on the height value [9] of 
the selected task. The height values implicitly determine 
the task precedence. Then the string, Si of child1, is 
generated by appending the right string (the partial string 
after the crossover site) of the Si of par1 to the left string 
(the partial string before the crossover site) of the Si of 
par2. The offspring, child2, is built in the same way after 
swapping the parents. 

The mutation generates a new individual by randomly 
modifying the chromosome of another individual. It is a 
technique to increase the randomness of the search to 
avoid solutions being trapped into local optimal points, 
which are the ultimate results if only the crossover is 
used. In [9], the mutation is done by randomly changing 
the positions of two tasks with the same height.  

 

4.3. Coding of Solutions 
 

In our approach, we use a similar chromosome as in the 
multiprocessor scheduler [9], but we extend it to cope 
with: 1) task allocation, 2) configuration schedules and 3) 
configuration DVS states. The chromosome consists of a 
pair of two-dimension strings and a string of paired 
tokens. An example of the chromosome and the 
corresponding scheduling result for the task set in Figure 
3 are shown in Figure 4. 

The first two-dimension strings {Tile1, Tile2, …, Tilen} 
are the task strings (T-strings) represent the scheduling 
results of tasks on tiles. The task string Tilei represents the 
tasks scheduled on the ith tile. The order of the tasks on 
the string Tilei is then the execution order of these tasks 
on the ith tile. For a task that requires multiple tiles, its 
instance appears on all the tiles assigned to it, e.g. task 1. 

The second two-dimension strings {Ctrl1, Ctrl2, …, 
Ctrln} are the controller strings (C-strings). They 
represent the configuration scheduling results. The C-

string Ctrli represents the configurations scheduled on the 
ith controller, and the order of appearance on Ctrli is the 
configuration order of using the ith controller.  

The string of paired tokens represents the DVS states of 
configurations, one pair for one configuration process. 
The first token of a pair denotes the configuration, and the 
second denotes the DVS state.  

Based on the strings of an individual, we derive a new 
graph. We refer this graph as the schedule graph (s-
graph). It is needed in our GA operators. The s-graph is 
constructed by inserting extra edges of the scheduling 
dependence into the graph G, as follows. 1) For each two 
adjacent task nodes on a T-string Tilei, an edge from the 
first task node to the configuration node, which 
configures the second task on the ith tile, is inserted into 
G. For example, an edge from task 2 to the configuration 
node C<4,2> is needed, because the configuration cannot 
start before task 2 is finished. 2) For two adjacent 
configuration nodes on each C-string Ctrli, an edge from 
the first node to the second node is inserted into G. For 
example, a link from C<1,3> to C<2,1> is needed, because 
they are not allowed to run in parallel and the 
configuration C<1,3> should precede C<2,1>. 

In our approach, each individual, plus all offspring 
after crossover and mutation, represents a feasible 
solution. This is done by ensuring that the gene order in 
strings does not violate the precedence constraints. 

 
4.4. Initial Population 

 

The initial population is a group of initial solutions, 
from which the GA starts to evolve. In our approach, the 
initial population is generated through a resource-
constraint list scheduling approach, but resources are 
randomly selected upon scheduling. The basic procedure 
to create an initial individual is as follows. 
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Figure 5. Crossover 

step 1:  Select a ready task node. A task node is ready 
if all of its predecessor task nodes are scheduled or it has 
no predecessor task node. 

step 2:  Randomly select controllers for its 
configuration nodes, and randomly select tiles for the task 
node. If it requires multiple tiles, randomly select 
continuously connected tiles. Append the task node and its 
configuration nodes to the end of the strings of the 
selected resources. Randomly assign DVS states for the 
configuration nodes. 

step 3:  If there are unscheduled task nodes, go to step 
1. Otherwise an initial individual is created, and exit. 

 

4.5. Crossover 
 

The crossover allows two parents, par1 and par2, to 
mate to generate two new individuals, child1 and child2, 
by swapping genes. In our work, we extend the crossover 
[9] for our task scheduling problem of DRHW. The 
crossover in [9] can guarantee to generate feasible 
offspring. This is done as follows. Task nodes in the 
strings must be ordered based on their height values in 
order to satisfy precedence constraints. During crossover, 
a s-graph (in multiprocessor scheduling, the s-graph does 
not contain the configuration nodes) is divided into two 
acyclic sub-graphs GL and GR in such a way that there 
exist edges only from GL to GR, but not vice verse. Then, 
the crossover sites (a place to cut a string into half) are 
selected in such a way that all the nodes in the left-strings 
belong to GL and all the nodes in the right-strings belong 
to GR. Therefore, no cycle will be generated after 
swapping the right-strings, and thus the offspring are 
feasible solutions. 

In our approach, we use the s-graph of par1 and par2, to 
generate the two sub-graphs, as follows. 

step 1: Start with a randomly selected task node. Move 
this node and its configuration nodes into GL. 

step 2: In the s-graph of par1, search for the task nodes 
that precede the selected task node, and move these task 
nodes and their configuration nodes into GL. 

step 3: In the s-graph of par2, search for the task nodes 
that precede the nodes already in GL, and move these task 
nodes and their configuration nodes into GL. Put the rest 
of the task nodes and their configuration nodes into GR. 

The basic idea of crossover is to generate new solutions 
by combining the parents’ solutions, which in our 
approach means that part of the strings from par1 and part 
of the strings from par2 are transformed into the new 
individuals, child1 and child2. The crossover is done as 
follows, and an example is shown in Figure 5. 

step 1: Randomly select a task, and generate the sub-
graphs GL and GR from the s-graphs of both the parents. 

step 2: Mark the crossover sites in the parents’ strings. 
In each string, all the nodes (task nodes in T-strings, and 
configuration nodes in C-strings) that before the crossover 
site must belong to GL.  

step 3: Copy the left-strings of par1 to child1. Use 
par2’s allocation results to perform the ASAP scheduling 
for the nodes in GR, and convert the results into the right-
strings of child1. From par1 (par2), copy the DVS states of 
the configuration nodes in the GL (GR) to child1. The 
similar is done for child2. 

 

4.6. Mutation 
 

We create four different mutations schemes due to the 
complexity of our chromosome, and they are used 
together in the mutation phase. The first one is to mutate 
only the T-strings. This allows a task node to be randomly 
selected and moved to a new location. Let’s use the 
height(Vi) to represent the height value of the node Vi. 
Then the place in the new T-string to insert the task node 
must satisfy the condition that height(the node before Vi) 
< height(Vi) <= height(the node after Vi). The height of a 
task node is calculated based on the s-graph as follows. 

 1, if Vi is a root
1 + max(height( predecessor)), else (1)height(Vi)=

 
The second one is to mutate only the C-strings. We 

randomly select a configuration node and inserted it to a 
new controller’s equivalent C-string. The insertion place 
is selected in a similar way to the previous task mutation 
technique, but the height value of a configuration node is 
calculated differently. It is equal to the height value of the 
task node that it configures. 

The third mutation is to modify the DVS state string. 
This is done by randomly selecting a new DVS state of a 
randomly selected configuration node. The last mutation 
is to rotate the controller assignment for the configuration 
nodes of a task. This is done as follows. A task node Ti is 
randomly selected. If it has N configuration nodes (N tiles 
are needed for the task), then in the C-strings the node 
C<i,1> is replaced by C<i,2>, C<i,2> is replaced by C<i,3>, and 
finally C<i,N> is replaced by C<i,1>. This mutation is 
applied only for the task that requires multiple tiles. After 



Table 1. Power-delay profile of the configuration 
 

 delay power 
1.2V 374 us 192 mw 
1.3V 346 us 225 mw 
1.4V 323 us 261 mw 
1.5V 304 us 300 mw 
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Figure 6. Comparison of the energy reduction of 
using DVS and without using DVS 

the mutation phase, C-strings must be sorted based on 
their new height values to avoid generating cycles. 

 

4.7. Selection 
 

The selection picks up some individuals to reproduce 
offspring. The natural rule is that better ancestors tend to 
generate better offspring, because the “good” genes are 
passed. The GA selection is implemented using the 
roulette wheel style. The basic procedure is to assign each 
individual a slot size in the roulette wheel that is 
proportional to its fitness value. Then a random number is 
generated as an index to the roulette wheel, and the 
individual that covers the index is selected to reproduce. 
Because an individual with a larger fitness value covers a 
larger slot, it then has higher chance to be selected to 
reproduce. The fitness of an individual i is calculated as:  

fitness = 
max_length

current_lengthi
+ *

max_energy
current_energyi

(2)a
 

The max_length is the longest scheduling length in the 
current generation, and the current_lengthi is the 
scheduling length of the individual i. In our case, because 
an s-graph deterministically defines the scheduling order 
and allocation results, the scheduling length then is equal 
to the length of the critical path of the s-graph. The 
max_energy is the maximal consumed configuration 
energy in the current generation, and the current_energyi 
is the consumed configuration energy of the individual i. 
The α is a design parameter that can be used to adjust the 
importance of the length factor and the energy factor.  
 

5. Experimental Results 
 

5.1. Evaluation with Pseudo Tasks 
 

The GA-based scheduler is implemented in C++ and 
added as an extension to our design space exploration 
toolset for DRHW [6]. The computer environment is a 
Celsius R640 workstation. We used 10 randomly 
generated task graphs with each graph containing 10 
tasks. These graphs had different levels of depth and 
different tree structures, so they could be seen as 
representations of widely different applications. The 
number of required tiles of an individual task was 
randomly generated with uniform distribution in the range 
of [1, 3]. Different device models were used by setting the 
number of tiles, NT, to iterate from 4 to 7 and the number 
of controllers, NC, to iterate from 1 to 3. In the following 

context, we use (NT, NC) to refer to the device with NT 
tiles and NC controllers. The ratio of the average 
configuration time to the average computation time, g, 
was set to be 0.2, 0.5, and 1.0 separately. Four supply 
voltages were used. The power-delay profile of the 
configuration process is shown in Table 1. The 1.5V 
profile was estimated based on the XC2V80 FPGA 
datasheet [3], and others were derived from the power-
voltage relation (Pdyn ∝ CV2f). The following GA 
parameters were used. 

• mutation probability: 0.15 
• crossover probability: 0.95 
• replacement percentage in one generation: 80% 
• number of individuals in one generation: 60 
In order to use DVS to minimize the configuration 

energy but without increasing the scheduling length when 
compare to no-DVS scheduling, we set that the GA 
termination criteria should satisfy the following two 
conditions. 1) The average scheduling length in the 
current generation is equal to the no-DVS scheduling 
length, which can be derived by using only the highest 
supply voltage state in the scheduling process. 2) The 
difference between the average configuration energy and 
the lowest configuration energy in the current generation 
is within 0.1% for 5 continuous generations. We stopped 
the no-DVS scheduling after 1000 generations. The 
average runtime was 6.5 seconds. For the scheduling 
including DVS, the average runtime was 25 seconds 
under the above termination criteria. The best result out of 
10 runs is used in the following analysis. 

The reduced configuration energy is extracted and 
averaged over the 10 DAGs. The results are presented in 
Figure 6. When considering individual cases, the maximal 
reduction of the configuration energy is 20.2%. When we 
average the results for each setting of g, the average 
reduction of the configuration energy are 15.7%, 12.5%, 
and 6.9% separately for g=0.2, 0.5, and 1.0. It can be seen 
that for smaller configuration latency (g=0.2) using single 
configuration controller, (NT,1), can already significantly 
reduce the configuration energy. This is because for 
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smaller g using only prefetching has already created 
enough idle time that can be utilized to apply DVS on the 
configuration process, as shown in Figure 1(a, c). For 
larger configuration latency, it can be seen that excessive 
idle time is created only when multiple controllers are 
applied, as shown in Figure 1(b, d). The results of g=0.5 
on (5,NC) show that using 3 controllers tends to be less 
effective than using 2 controllers. This is because the 
additional controller is busy at configuring tasks (reducing 
the total scheduling length is also one of our objectives). 
Therefore, less excessive idle time is available. 

In Figure 7, we depict the voltage distribution on 
(7,NC) to present more details of the results. For small 
configuration latency, it can be seen that majority of the 
configuration processes are assigned to the lowest supply 
voltage for single controller case. In addition, using 
configuration parallelism barely changes the voltage 
distribution. In contrast, for large configuration latency, 
using additional controllers allows more of high voltage 
states to be replaced with low voltage states. 

 

5.2. Evaluation with Real Applications 
 

We also tested the approach with 7 real applications, 
sobel (image sharpening using sobel masking), unsharp 
(image sharpening with blur), laplacian (image sharpening 
using laplacian filter), sobel & noise (image sharpening 
with noise reduction), JPEG decoder, MPEG decoder and 
WCDMA detector (4 core functions for channel 
equalization).  Each application was divided into a 
number of tasks, and each task was manually coded in 
VHDL. The resources and the execution time were 
derived from synthesis results and simulation results. We 
evaluated on devices that contained from 4 tiles to 7 tiles 
with one configuration controller. We assumed that each 
tile consisted of the same amount of resources and had the 
same configuration overhead as in the XC2V80 FPGA. 
This gave us that the ratio g was in the range of [0.18, 
0.27] for these applications. The same GA settings as in 
the previous case were used. In average, each GA run 
took 8.7s. The results showed that without increasing the 
scheduling length the configuration energy could be 
reduced by 15.4% in average. In the best case, sobel & 
noise on device (7,1), 19.3% was theoretically achievable. 

6. Conclusions 
 

To efficiently benefit from the RTR, the configuration 
energy should be minimized for DRHW. In this work, we 
present an approach that uses DVS to reduce the 
configuration energy. The idea is to use configuration 
prefetching and parallelism to create idle time and then 
apply DVS on tasks when such idle time can be utilized. 
A genetic algorithm is developed to optimize the multi-
objective problem, e.g. task allocation, scheduling, 
configuration prefetching, and DVS state assignment. A 
set of randomly generated tasks is used in evaluation. 
Considering the reduction of configuration energy, the 
results show that using more tiles is more beneficial when 
the configuration latency is relatively small and using 
more controllers is more beneficial when the latency is 
relatively large. Evaluation with real applications shows 
that up to 19.3% reduction of configuration energy is 
achievable. In the future, static power consumption will 
be included and system-level power reduction techniques 
with applying DVS on the circuit itself will be studied. 
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