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Abstract – This paper proposes an asynchronous 
serialized link for NoC that can achieve the same levels of 
performance in terms of flits per second as a synchronous 
link but with a reduced number of wires in the point to 
point switch links and reduced power consumption. This 
is achieved by employing serialization in the 
asynchronous domain as opposed to synchronous to 
facilitate the removal of global clocking on the serial 
links. Based on transistor level simulations using 0.12 µm 
foundry models it has been shown that it is possible to 
achieve the same level of performance  as synchronous 
but with 75% reduction in wires and 65% reduction in 
power for a 300 MFlit/s link with 8 buffers with a switch 
clock speed of 300 MHz. Furthermore the paper presents 
the design requirements arising from interfacing switches 
of synchronous NoC and asynchronous serial links.  

Keywords: Network-on-Chip, Serial, Asynchronous, 
Point-to-Point Links.∗ 

I. INTRODUCTION 
As multiprocessor system-on-chip solutions increase there 
are benefits to provide a scalable on chip communication 
architecture. One promising approach is Network-on-Chip 
(NoC). The growth of research into NoC has led to a 
number of viable architectures, examples [1-5]. Typically 
the NoC consists of network interfaces which allow a core 
to interface to the network, switches which are responsible 
for routing the packet and links which connect the 
switches together. Numerous NoC architectures adopt a 
synchronous approach and more recently there have been 
studies of asynchronous NoC [6, 7] which highlight some 
of the problems with synchronous NoC such as global 
clock power consumption, clock skew and electro-
magnetic interference. An asynchronous point-to-point 
link that can be used for communication has been 
investigated in [8]. This scheme uses clock pausing 
techniques to pass data from the synchronous to 
asynchronous domains. Power in synchronous design can 
be reduced by lowering the clock speed, but to maintain 
the throughput the data width would need to be increased 
by the same factor. Interconnect cost, in terms of the 
number of wires required between switches, could grow to 
be considerable in NoC if the data width is increased since 
each switch is effectively connected by a point-to-point 
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link to a neighboring switch and the high cost of parallel 
links has been shown in [9] which compares fully parallel 
and bit-serial buffered wires. It is expected with further 
scaling down of technology the number of point-to-point 
links between the switches of a NoC will grow as more 
and more cores are integrated into a system. 

This paper proposes the application of serialization as a 
means of reducing the number of wires between NoC 
switches. Byte-level serialization of the data is performed 
as opposed to a fully bit-serial single wire link. 
Furthermore, the serialization is employed in the 
asynchronous domain to remove the need for high 
frequency global clocking of the serial links which would 
be required in a synchronous design. The paper is 
organised as follows, section II provides the motivation, 
section III describes the asynchronous link and circuits, 
section IV discusses word-level acknowledgement for 
increasing the performance, section V is the experimental 
results and finally VI the concluding remarks. 

II. MOTIVATION 
Synchronous NoC allows for high a throughput of data 
due to the pipelining of the data path where the switches 
and the wire pipelining buffers are clocked together [2]. In 
a single link (Fig. 1a) the two switches are connected 
together with a wire segmented by a series of synchronous 
clocked buffers. A high speed global clock is attractive to 
allow a high throughput between the switches. However, 
high speed clocks may have problems such as skew, 
timing closure and power dissipation. A slower clock 
could be used to alleviate these problems [10] but the 
throughput would be decreased. One way to increase the 
bandwidth of a slow clocked system would be to make the 
data path wider but in NoC a wider data path would mean 
an increase in the number of wires in the point to point 
links, increasing the wiring area and routing complexity 
considerably. 
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Fig. 1 NoC with Synchronous Link  

In a slow clocked synchronous NoC with wide data 
paths the number of wires between the point to point links 



can be reduced through serialization as it is being 
proposed in this work. Consider a simple serialization 
scheme (Fig. 1b) the number of wires required would 
reduce from the original m to the reduced n. However, this 
would also mean that the 2nd clock (CLK B) driving the 
serializer, de-serializer and wire-buffers would need to be 
introduced. CLK B would need to be m/n times faster 
which could mean a 2nd clock tree spanning the chip area 
covering the NoC. Also, if no FIFO or clock pausing 
mechanisms are used to pass data between the two clock 
domains the two clocks would need to be tightly phased 
locked each other and CLK B would need to be an integer 
value times faster than CLK A in order that no timing 
violations occur when data or control signals pass between 
the two domains. 

A way around this is to serialize in the asynchronous 
domain so that a single slow global clock is maintained for 
the switches and the serialized data path between the 
switches allows for same throughput with a reduced 
number of wires. The introduction of asynchronous 
elements to the link would allow a structure as shown in 
Fig. 2. The switch would interface directly to a 
synch/asynch interface and then go through an  
asynchronous serializer. The benefit of this approach is 
that the data is serialized and thus saves wire area but also 
does not require a second higher speed clock to be fed into 
the serialization circuits and to the wire-pipeline buffers. It 
should be noted that the employment of serialization in the 
context of NoC has been proposed to reduce energy 
consumption[11]. 
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Fig. 2 Proposed Serialized Asynchronous Link 

III. ASYNCHRONOUS LINK DESCRIPTION 
The asynchronous link consists of a synch/asynch 
interface, serializer, wire buffers, de-serializer and an 
asynch/synch interface. Additional buffers can be inserted 
to maintain performance if needed over long wire lengths. 
Circuits have been designed for the implementations of 
the synchronous to asynchronous interfaces and the 
serializer and de-serializer. The design of each of the 
modules will be described in the corresponding sub-
section. The asynchronous point-to-point link circuitry is 
implemented using standard logic cells and two common 
asynchronous cells, the C-Element[12] and the David-
Cell[13], Fig. 3. A 4 deep FIFO was used in the 
synchronous to asynchronous interface and asynchronous 
to synchronous interface to give a total of 8 possible 
spaces for data along the link, the same as the 
synchronous link. The presented work shows a proof-of-
concept implementation of an asynchronous link using a 
bundled-data link. 
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Fig. 3 David Cell and C-Element 

Synch/Asynch/Synch Interface 
The synch/asynch interface (Fig. 4) is basically a FIFO 
with a synchronous side that can write and an 
asynchronous side that can read. The FIFO is 32 bits wide 
and 4 registers deep. A FIFO is used to effectively break 
the dependency of the asynchronous side from the 
synchronous side. The synchronous side has four registers 
which are synchronously written to when the appropriate 
WR_EN(x) signal is active. For each register there is an 
associated flag, the flag consists of two clocked D-Type 
flip flops. The use of two flip-flops to build a synchronizer 
is known to ensure protection against metastability [14]. 
The flag can be asynchronously cleared by using 
CLEAR(x) which is gated with the asynchronous reset 
attached to the D-Type. The VALID and STALL signals 
are used to determine if there is space for the data on 
FLITIN to be written into one of the registers. The chain 
of David-Cells effectively form a 1-hot sequencer where 
one of them is always active. The C-Elements control the 
request and acknowledge handshaking and trigger the 
David-Cells in sequence. The asynch/synch interface ( 
Fig. 5) is similar to the synch/asynch interface and has an 
asynchronous latch writer and synchronous latch reader. 
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Fig. 4 Synchronous to Asynchronous Interface 

Asynch. Serializer, De-Serializer and Wire Buffer 
The asynchronous serializer (Fig. 6a) consists of several 
David-Cells which select each 8 bit slice of the 32 bit data 
in turn. At reset the output O2 of DC(0) is logic ‘1’ and 
output O2 of DC(1-3) are logic ‘0’. The REQIN signal 
gated with SEL(0) triggers the start of the REQOUT / 
ACKIN sequence which is performed 4 times, each time 



the next 8 bit slice of the 32 bit data word is selected and 
latched at the output. The circuit can easily be modified to 
serialize less and break the 32 bit word in larger slices by 
decreasing the number of David-Cells and making the data 
path DOUT wider. 

The asynchronous de-serializer (Fig. 6b) takes 4 slices 
of 8 bits and re-constructs the original 32 bit data. At reset 
the output O2 of DC(0) is logic ‘1’. REQIN will go high 
signifying the first 8 bit slice is valid on DIN. The output 
of the C-Element LE(0) will then trigger and go high and 
latch the 8 bit slice into place. The REQIN/ACKOUT 
cycle is repeated 4 times until the 32 bit word is re-built 
and then the REQOUT is taken high to signify to the next 
stage the valid 32 bit data is ready. The circuit can be 
altered for larger or smaller slice widths by reducing or 
increasing the number of David-Cells in the chain and 
altering the data path width. 
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Fig. 5 Asynchronous to Synchronous Interface 
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Fig. 6 Asynchronous Serializer/Deserializer 

The asynchronous wire buffer is based on a simple four 
phase latch control circuit [15]. It essentially latches the 
data on the falling edge of REQIN. The C-Element 
regulates the request and acknowledge handshaking 
safely. One point to note about this circuit is that the 
REQIN/ACKOUT side is not fully de-coupled from 
REQOUT/ACKIN side. If several of the wire-buffers are 
chained together then at best only every other buffer in the 
chain will be in use at a time. This does not present a 
problem in our case as the wire-buffering is a mechanism 
for transporting data rather than storage. 

IV. ASYNCHRONOUS ACKNOWLEDGEMENTS 
One of the problems associated with a per-transfer 
acknowledgement is the need for the receiver or line 
buffers to acknowledge every transfer. As the parallel data 
gets more and more serialised the number of request-
acknowledge cycles per word increases. One possible way 
around this is to use a coarser grain acknowledgement that 
acknowledges at the word level. Word level 
acknowledgement does have some implications such as 
timing closure at the receiver which must be able to 
receive multiple transfers correctly and the need for some 
self regulated timing mechanism, such as a clock, at the 
transmitter to space the burst transfers out such that there 
are no timing violations incurred at the receive end. The 
proposed link can accommodate two types of 
acknowledgements, per-transfer and per-word. Fig. 7 
shows the proposed link with word level 
acknowledgement by modifying the serializer, de-
serializer and wire buffer. 
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Fig. 7 Serial Asynchronous word-level acknowledgement 

The buffers along the length of the wire can be replaced 
by simple buffers or an even number of invertors. The 
serializer (Fig. 8a) uses a multiplexer with each slice of a 
word being selected in turn. The VALID signal goes high 
when there is valid data on DOUT and signified to the 
receiver end that the data can be used. The VALID signal 
goes high 4 times, once for each slice of the word. The 
timing of the VALID signal is derived from the ring 
oscillator constructed by 5 back to back invertors. To 
adjust the frequency of the best the number of invertors 
can be altered or different sizes can be used depending 
upon requirements. To ensure that VALID only goes high 
when the DATA is valid the respective timing between 
DATA and VALID can also be tuned by selecting 
different taps off the ring oscillator if necessary. 
Furthermore, if tolerance becomes problematic the 
VALID signal generation can be combined with the 
SELect signals to increase robustness. 

The de-serializer (Fig. 8b) employs a  shift register. This 
was done to see the effects of a shift register based de-
serializer versus the original mux based de-serializer. The 



data is shifted in on DIN every time VALID goes high and 
the data slices are serially shifted onto DOUT. At the 
same time a single bit pulse is shifted down a single bit 
shift register of the same length to provide a REQOUT 
signal to the next asynchronous block to inform it the 
whole word has been built and is valid. ACKIN clears the 
single bit shift registers and removes REQOUT 
completing the handshake. 
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Fig. 8 Word Level Serializer/Deserializer 

V. EXPERIMENTAL RESULTS 
To validate the performance, power consumption and area 
overhead of the proposed serialized link, three links were 
synthesized using 0.12 µm and simulated using Cadence 
Spectre. The three links (Fig. 9) are: a fully synchronous 
link with no serialization (I1), proposed asynchronous link 
with per-transfer acknowledgement (I2) and per-word 
acknowledgement (I3). Note four buffers were used in 
each link and in the case of the serial links has 8 bit data. 
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Fig. 9 Simulated Implementations 

Fig. 10 shows the number of wires needed to achieve a 
certain bandwidth across a link. The synchronous link 
with 100, 200 and 300 MHz clock speeds are shown with 
the proposed link. As is seen the number of wires increase 
dramatically in the synchronous link as bandwidth 
increases. The number of wires for the proposed 
asynchronous serial link remains constant independent of 
the switch clock speed as the asynchronous link is not 
reliant on a synchronous clock to transfer data along the 

wire. Fig. 10 shows that it is possible to achieve the same 
performance as the synchronous link but with less wires. 
For example, the proposed link (I3) can support 300 
MFlits/s using a 300 MHz switch clock with 8 wires 
whereas the synchronous link (I1) would need 32 wires at 
300 MHz which is a 75% reduction. It is interesting to 
note that the number of wires in the synchronous link 
would need to increase if the switch clock speed was 
reduced from 300 MHz to 100 MHz and maintain the 
same throughput, this would require an increase to 96 
wires at 100 MHz. 

To give insight into the wiring area for a given wire 
length consider Fig. 11. The benefit of reducing the 
number of wires can clearly be seen, especially for longer 
wire lengths. For example, assuming a wire length of 1000 
µm, I3 has a wiring area cost of approximately 7,500 µm2 
whereas the synchronous link (I1) is approximately 30,000 
µm2. As the wire length increases there is a large increase 
in the area cost for the synchronous link, unlike the 
proposed asynchronous link which has moderate increase. 
Note Fig. 11 was produce using the following equation: 

))1(( GWDataWires MetNMetNLAREA ×++××= , 
where N is the number of wires, L is the length of the 

wires, MetW is the minimum metal width and MetG is the 
minimum metal gap. For the global METAL6 layer in the 
ST 0.12 µm technology MetW = 0.44 µm and MetG = 0.46 
µm. 
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Fig. 10 Bandwidth vs. Wires 
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Fig. 11 Wire Area 

The power consumption of the synchronous and the 
proposed asynchronous link are shown in Fig. 12 with 
switch clock speed of 100 MHz for different numbers of 
buffers in the link. As expected when a small number of 
buffers are used, such as 2, the synchronous 



implementation uses less power compared to the 
asynchronous due to the extra overhead of the 
synch/asynch converters and serializers. However, when 
the number of buffers increase the power in the 
synchronous implementation increases unlike the 
asynchronous implementation which remains relatively 
the same. Comparing 2 buffers against 8 buffers for the 
wire link it can be seen the that power for the synchronous 
implementation (I1) increases 300% from 372 µW to 1498 
µW which is expected since there is four times the number 
of synchronous buffers. The asynchronous per-transfer 
scheme (I2) shows a small power increase of 20% of the 
589 µW to 712 µW, while the per-word acknowledgement 
scheme (I3) shows the least power increase of 2%, 623 
µW to 637 µW, due to invertors being used along the 
length of the wire instead of latched buffer elements. 
Similar power consumption results can be obtained when 
the switch clock speed is increased to 300 MHz (Fig. 13). 
As expected the synchronous link power increases with 
clock frequency and it can be seen that power increases 
from 1498 µW to 3229 µW for 8 buffers. The best power 
saving is obtained when the switch clock speed is 300 
MHz and the number of buffers is 8, power is reduced by 
65% from 3229 µW to 1110 µW when going from 
synchronous to asynchronous in this case. 
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Fig. 12 Number of Buffers vs. Power @ 100 MHz 
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Fig. 13 Buffers v Power @ 300 MHz 

To give insight as to where the power consumption is in 
the various components of the links, Fig. 14 shows a 
breakdown of the power for 50% usage. It can be seen that 
the dominant power in the asynchronous implementations 
(I2 and I3) are the asynch/synch and synch/asynch 
conversion circuits. This is expected since these circuits 
contain clocked synchronous parts. Comparing the 
proposed asynchronous links I2 and I3 which serialize 
down to 8 bits, it can be seen that that overall power used 

is similar. The I3 buffer power is considerably smaller 
than I2 at 9 µW versus 82 µW due to the fact that the 
buffers are simple invertors along the length of the wire 
and not latched elements as is the case for I1 and I2. The 
I2 de-serializer uses more power than the I3 de-serializer 
as a shift register based implementation is used instead of 
a de-multiplexer, so all four registers are being latched 
every time a slice of the flit arrives opposed to just one 
register being latched in the de-multiplexer version. 

The average power was obtained for the transfer of 4 
data items (0xA5A5A5A5, 0x5A5A5A5A, 
0xA5A5A5A5, 0x5A5A5A5A) which exercise the data 
wires as much as possible and give worst case data 
activity. The time the link is in use when transferring the 4 
data items is approximately 70 ns on the synchronous 
implementation running at 100 MHz, and the simulation 
runs set to 140 and 280 ns. This allows the average power 
for 50% usage to be obtained. The link can be considered 
‘in use’ when one or more of the buffers is occupied by a 
flit/data. The same simulation run time was used for the 
asynchronous implementations to provide a comparison 
between the implementations. The power for each block 
was obtained through Spectre simulations, the average of 
the supply voltage multiplied by the current over the 
simulation run time was taken. 
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Fig. 14 Average Power for 50% usage 

The area overhead of the synchronous and proposed 
asynchronous links are given in Table 1. To give an idea of 
which portions of the asynchronous link use most resource 
a breakdown of the circuit or cell area used for each 
module for the implementation I2 is shown in Table 2. The 
proposed architectures, I2 and I3, have an area increase of 
approximately 20% compared to the synchronous link 
(I1). 

Table 1 Area overhead of the synchronous and proposed link 

Table 2 Breakdown of Implementation I2 

Module Area (µm2) Qty. 
Synch to Asynch interface 9408 1 
Asynch 32 to 8 serializer 869 1 
Asynch 8 wire buffer 294 4 
Asynch 8 to 32 de-serializer 1030 1 
Asynch to Synch interface 6710 1 

Total 19193  

Implementation Area (µm2) 
Synchronous (I1) 15864  

Asynchronous per-transfer ack. (I2) 19193  
Asynchronous per-word ack. (I3) 18396 



To evaluate the accuracy of the per-transfer and per-
word performance we developed two equations which can 
be used to calculate the cycle delay of a word transfer and 
find the upper bound of the throughput. For the per-
transfer acknowledge scheme (Fig. 15) the cycle delay can 
be calculated: 

TnextflitTackoutTackackTreqackTreqreqTpD +++++××= )4(4  
where Tp is the propagation time along the wires (of 

which there are 4), Treqreq is the time of the request to 
write data into the buffer to the request to write the data 
out to the next buffer, Treqack is the time to request to 
write data into the buffer to the acknowledgment of the 
data, Tackack is the acknowledgement into the buffer to 
the acknowledgement out to the previous buffer and 
Tackout is the acknowledgement into the buffer to the 
output of a new slice of data. This is multiplied by 4 since 
the 32 bit flit is sent 8 bits at time and will take 4 transfers 
to complete a whole flit. Tnextflit is the time taken to get 
the next flit to be ready on the outputs of the transmitter. 

  

B
U

F 

B
U

F 

B
U

F 

Tp Tp 

Tp Tp 

Treqreq 
Treqack 

Tackack Tackout 

TR
A

N
S.

 

Tnextflit  
Fig. 15 Cycle Delay for the Per-transfer 

For the per-word acknowledge scheme (Fig. 16) the 
cycle delay can be calculated using: 

TburstTackoutackTvalidwordTinvTpD +++×+×= 810  
where Tp is the wire propagation delay (in this case 

there are 10), Tinv is the inverter gate delay (of which 
there are 8), Tvalidwordack is the delay from receiving a 
valid word to acknowledge output, Tackout is the 
acknowledge in to new flit output and Tburst is the burst 
period of the 4 slices of flit. 
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Fig. 16 Delay for per-transfer and per-word 

The per-word equation can be checked using an 
example. Consider, Tp=0 since the simulation was gate 
level, Tinv=0.011 ns from the ST 0.12 CORE9GPLL 
datasheet, Tburst ~ 1.1 ns from simulation, Tvalidwordack 
~ 0.7 ns and Tackout ~ 1.4 ns also from simulation. Using 
these values the per-word delay is 3.21 ns from which we 
obtain an upper bound throughput of around 311 MFlits/s 
which matches with the supported bandwidths shown in 
Fig. 10. Further improvements to the upper bound 
throughput could be achieved by earlier acknowledging or 
nacking which the authors are investigating for future 
work. 

VI. CONCLUDING REMARKS 
This paper has proposed and demonstrated the 
effectiveness of serialization in reducing the number of 
wires without compromising the performance. The 
potential problems with synchronous design such as 
global clock distribution and clock skew have also been 
reduced. The proposed asynchronous link also reduces 
power by up to 65% compared to the synchronous link 
when 8 buffers are used. Furthermore, we have compared 
the area overheads of synchronous and the proposed 
asynchronous link and shown that although the proposed 
link has a 20% circuit overhead the number of wires has 
been reduced by up to 75%. 

The validations and comparison were carried out using 
synthesized gate level designs and realistic simulation 
environment. It is hoped the proposed link makes a 
valuable contribution to the area of efficient NoC 
architecture for multi-processor SoC. 
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