
Serialized Asynchronous Links for NoC

S. Ogg1, E. Valli2, B. Al-Hashimi1, A. Yakovlev3, C. D’Alessandro3, L. Benini2
University of Southampton1, University of Bologna2, Newcastle University3

so04r@ecs.soton.ac.uk, bmah@ecs.soton.ac.uk∗

Abstract – This paper proposes an asynchronous
serialized link for NoC that can achieve the same levels of
performance in terms of flits per second as a synchronous
link but with a reduced number of wires in the point to
point switch links and reduced power consumption. This
is achieved by employing serialization in the
asynchronous domain as opposed to synchronous to
facilitate the removal of global clocking on the serial
links. Based on transistor level simulations using 0.12 µm
foundry models it has been shown that it is possible to
achieve the same level of performance as synchronous
but with 75% reduction in wires and 65% reduction in
power for a 300 MFlit/s link with 8 buffers with a switch
clock speed of 300 MHz. Furthermore the paper presents
the design requirements arising from interfacing switches
of synchronous NoC and asynchronous serial links.

Keywords: Network-on-Chip, Serial, Asynchronous,
Point-to-Point Links.∗

I. INTRODUCTION
As multiprocessor system-on-chip solutions increase there
are benefits to provide a scalable on chip communication
architecture. One promising approach is Network-on-Chip
(NoC). The growth of research into NoC has led to a
number of viable architectures, examples [1-5]. Typically
the NoC consists of network interfaces which allow a core
to interface to the network, switches which are responsible
for routing the packet and links which connect the
switches together. Numerous NoC architectures adopt a
synchronous approach and more recently there have been
studies of asynchronous NoC [6, 7] which highlight some
of the problems with synchronous NoC such as global
clock power consumption, clock skew and electro-
magnetic interference. An asynchronous point-to-point
link that can be used for communication has been
investigated in [8]. This scheme uses clock pausing
techniques to pass data from the synchronous to
asynchronous domains. Power in synchronous design can
be reduced by lowering the clock speed, but to maintain
the throughput the data width would need to be increased
by the same factor. Interconnect cost, in terms of the
number of wires required between switches, could grow to
be considerable in NoC if the data width is increased since
each switch is effectively connected by a point-to-point

∗ The authors would like to acknowledge the Engineering and
Physical Sciences Research Council (EPSRC) for funding
under grant no. EP/C512804.

link to a neighboring switch and the high cost of parallel
links has been shown in [9] which compares fully parallel
and bit-serial buffered wires. It is expected with further
scaling down of technology the number of point-to-point
links between the switches of a NoC will grow as more
and more cores are integrated into a system.

This paper proposes the application of serialization as a
means of reducing the number of wires between NoC
switches. Byte-level serialization of the data is performed
as opposed to a fully bit-serial single wire link.
Furthermore, the serialization is employed in the
asynchronous domain to remove the need for high
frequency global clocking of the serial links which would
be required in a synchronous design. The paper is
organised as follows, section II provides the motivation,
section III describes the asynchronous link and circuits,
section IV discusses word-level acknowledgement for
increasing the performance, section V is the experimental
results and finally VI the concluding remarks.

II. MOTIVATION
Synchronous NoC allows for high a throughput of data
due to the pipelining of the data path where the switches
and the wire pipelining buffers are clocked together [2]. In
a single link (Fig. 1a) the two switches are connected
together with a wire segmented by a series of synchronous
clocked buffers. A high speed global clock is attractive to
allow a high throughput between the switches. However,
high speed clocks may have problems such as skew,
timing closure and power dissipation. A slower clock
could be used to alleviate these problems [10] but the
throughput would be decreased. One way to increase the
bandwidth of a slow clocked system would be to make the
data path wider but in NoC a wider data path would mean
an increase in the number of wires in the point to point
links, increasing the wiring area and routing complexity
considerably.

Switch

Bu
f

B
uf

 Switch

CLK A

DATA

S S S S

S S S S

Switch

Bu
f

Bu
f Switch

m

CLK A

Se
r

n m

D
e-

S
er

 n

CLK A CLK B

(a) (b)

S S S S

S S S S

Fig. 1 NoC with Synchronous Link

In a slow clocked synchronous NoC with wide data
paths the number of wires between the point to point links

can be reduced through serialization as it is being
proposed in this work. Consider a simple serialization
scheme (Fig. 1b) the number of wires required would
reduce from the original m to the reduced n. However, this
would also mean that the 2nd clock (CLK B) driving the
serializer, de-serializer and wire-buffers would need to be
introduced. CLK B would need to be m/n times faster
which could mean a 2nd clock tree spanning the chip area
covering the NoC. Also, if no FIFO or clock pausing
mechanisms are used to pass data between the two clock
domains the two clocks would need to be tightly phased
locked each other and CLK B would need to be an integer
value times faster than CLK A in order that no timing
violations occur when data or control signals pass between
the two domains.

A way around this is to serialize in the asynchronous
domain so that a single slow global clock is maintained for
the switches and the serialized data path between the
switches allows for same throughput with a reduced
number of wires. The introduction of asynchronous
elements to the link would allow a structure as shown in
Fig. 2. The switch would interface directly to a
synch/asynch interface and then go through an
asynchronous serializer. The benefit of this approach is
that the data is serialized and thus saves wire area but also
does not require a second higher speed clock to be fed into
the serialization circuits and to the wire-pipeline buffers. It
should be noted that the employment of serialization in the
context of NoC has been proposed to reduce energy
consumption[11].

NOC

SWITCH

m

CLK

S
Y

N
C

H
 /

A
S

Y
N

C
H

IN

TE
R

FA
C

E

valid
stall

req
ack

req
ack

A
S

Y
N

C
H

R
O

N
O

U
S

S

E
R

IA
LI

ZE
R

A
S

Y
N

C
H

R
O

N
O

U
S

W

IR
E

BU
FF

E
R

req
ack

m n n

A
S

Y
N

C
H

R
O

N
O

U
S

D
E

-S
E

R
IA

LI
ZE

R

NOC

SWITCH

req
ack

m m

valid
stall

A
S

Y
N

C
H

 /
S

Y
N

C
H

IN

TE
R

FA
C

E

CLK

1 2 3 4 5

ASYNCHRONOUS SYNCH. SYNCH.
Fig. 2 Proposed Serialized Asynchronous Link

III. ASYNCHRONOUS LINK DESCRIPTION
The asynchronous link consists of a synch/asynch
interface, serializer, wire buffers, de-serializer and an
asynch/synch interface. Additional buffers can be inserted
to maintain performance if needed over long wire lengths.
Circuits have been designed for the implementations of
the synchronous to asynchronous interfaces and the
serializer and de-serializer. The design of each of the
modules will be described in the corresponding sub-
section. The asynchronous point-to-point link circuitry is
implemented using standard logic cells and two common
asynchronous cells, the C-Element[12] and the David-
Cell[13], Fig. 3. A 4 deep FIFO was used in the
synchronous to asynchronous interface and asynchronous
to synchronous interface to give a total of 8 possible
spaces for data along the link, the same as the
synchronous link. The presented work shows a proof-of-
concept implementation of an asynchronous link using a
bundled-data link.

DC

DAVID CELL

O2
I1 O2
O1

O1

I1
I2

I2
x y

CZ
A
B

A

B

C ELEMENT

Z

Fig. 3 David Cell and C-Element

Synch/Asynch/Synch Interface
The synch/asynch interface (Fig. 4) is basically a FIFO
with a synchronous side that can write and an
asynchronous side that can read. The FIFO is 32 bits wide
and 4 registers deep. A FIFO is used to effectively break
the dependency of the asynchronous side from the
synchronous side. The synchronous side has four registers
which are synchronously written to when the appropriate
WR_EN(x) signal is active. For each register there is an
associated flag, the flag consists of two clocked D-Type
flip flops. The use of two flip-flops to build a synchronizer
is known to ensure protection against metastability [14].
The flag can be asynchronously cleared by using
CLEAR(x) which is gated with the asynchronous reset
attached to the D-Type. The VALID and STALL signals
are used to determine if there is space for the data on
FLITIN to be written into one of the registers. The chain
of David-Cells effectively form a 1-hot sequencer where
one of them is always active. The C-Elements control the
request and acknowledge handshaking and trigger the
David-Cells in sequence. The asynch/synch interface (
Fig. 5) is similar to the synch/asynch interface and has an
asynchronous latch writer and synchronous latch reader.

1 HOT
COUNTER
& WRITE
ENABLE

VALID

WR_EN(0)
CLEAR(0)
FLAG_A(0)

STALL

FLAG_S(0)

FLIT_OUT0(31:0)

FLAG_S(0)

FL
A

G

CLK

SEL(0:3)

WR_EN(0:3)

CLK

WR_EN(0)
CLK

FLITIN(31:0)

FLAG_S(1)

FLAG_S(2)

FLAG_S(3)
WR_EN(1)

CLEAR(1)
FLAG_A(1)

FLAG_S(1)
FL

A
G

CLK

WR_EN(2)
CLEAR(2)
FLAG_A(2)

FLAG_S(2)

FL
A

G

CLK

WR_EN(3)
CLEAR(3)

FLAG_A(3)
FLAG_S(3)

FL
A

G

CLK

R
E

G

FLIT_OUT1(31:0)
WR_EN(1)

CLK

R
E

G

FLIT_OUT2(31:0)
WR_EN(2)

CLK

R
E

G

FLIT_OUT3(31:0)
WR_EN(3)

CLK

R
E

G

DC
(1)

DC
(0)

DC
(2)

C

FLAG_A(1)

REQOUT

SEL(0) SEL(1)

FLIT_OUT0(31:0)
FLIT_OUT1(31:0)
FLIT_OUT2(31:0)
FLIT_OUT3(31:0)

DOUT(31:0)

SEL(3:0)

C C C

FLAG_A(0)

DC
(3)

C

SEL(2)

C C C

ACKIN

SEL(3)

C
LE

A
R

(0
)

C
LE

A
R

(1
)

C
LE

A
R

(2
)

C
LE

A
R

(3
)

FLAG_A(2) FLAG_A(3)

O2 O2 O2 O2

Fig. 4 Synchronous to Asynchronous Interface

Asynch. Serializer, De-Serializer and Wire Buffer
The asynchronous serializer (Fig. 6a) consists of several
David-Cells which select each 8 bit slice of the 32 bit data
in turn. At reset the output O2 of DC(0) is logic ‘1’ and
output O2 of DC(1-3) are logic ‘0’. The REQIN signal
gated with SEL(0) triggers the start of the REQOUT /
ACKIN sequence which is performed 4 times, each time

the next 8 bit slice of the 32 bit data word is selected and
latched at the output. The circuit can easily be modified to
serialize less and break the 32 bit word in larger slices by
decreasing the number of David-Cells and making the data
path DOUT wider.

The asynchronous de-serializer (Fig. 6b) takes 4 slices
of 8 bits and re-constructs the original 32 bit data. At reset
the output O2 of DC(0) is logic ‘1’. REQIN will go high
signifying the first 8 bit slice is valid on DIN. The output
of the C-Element LE(0) will then trigger and go high and
latch the 8 bit slice into place. The REQIN/ACKOUT
cycle is repeated 4 times until the 32 bit word is re-built
and then the REQOUT is taken high to signify to the next
stage the valid 32 bit data is ready. The circuit can be
altered for larger or smaller slice widths by reducing or
increasing the number of David-Cells in the chain and
altering the data path width.

DC
(0)

ACKOUT

C

C C

FLAG_A(0)

LE(0)

DC
(1)

C

C C

FLAG_A(1)

LE(1)

DC
(2)

C

C C

FLAG_A(2)

LE(2)

DC
(3)

C

C C

FLAG_A(3)

LE(3)

LE(0)
CLEAR(0)
FLAG_S(0)

DATA0(31:0)

FLAG_A(0)

FL
AG

SEL(0:3)

CLEAR(0:3
) CLK

DIN0(31:0)

LE(0) LT
C

H

LE(1)
CLEAR(1)
FLAG_S(1)

DATA1(31:0)

FLAG_A(1)

FL
AG

CLK

DIN1(31:0)

LE(1) LT
C

H

LE(2)
CLEAR(2)
FLAG_S(2)

DATA2(31:0)

FLAG_A(2)

FL
A

G

CLK

DIN2(31:0)

LE(2)

LT
C

H

LE(3)
CLEAR(3)
FLAG_S(3)

DATA3(31:0)

FLAG_A(3)

FL
AG

CLK

DIN3(31:0)

LE(3)

LT
C

H

FLIT_OUT(31:0)

SEL(0:3)
VALID

FLAG_S(0:3)
STALL
CLK

REQIN

C

DOUT3(31:0)

C C C

DOUT0(31:0)
DOUT1(31:0)
DOUT2(31:0)

DIN(31:0)

1 HOT
COUNTER
& OUTPUT
CONTROL

O2 O2 O2 O2

Fig. 5 Asynchronous to Synchronous Interface

DC
(1)

& C

DC
(0)

DC
(2)

DC
(3)

C C

C

REQIN

REQOUT

ACKIN

REQIN

ACKOUT SEL(0) SEL(1)

SEL(3)

DIN(7:0)
DIN(15:8)
DIN(23:16)

DIN(31:24)

D Q

G

SEL(3:0)

DOUT(7:0)

DC
(1)

C

DC
(0)

DC
(4)

REQIN

REQOUT

ACKOUT

DIN(7:0)
D Q
G

DOUT(7:0)
LE(0)

D Q
G

DOUT(15:8)
LE(1)

D Q
G

DOUT(31:24)
LE(3)

LE(0)

C

LE(1)

C

LE(3)

ACKIN

(a)

(b)

Fig. 6 Asynchronous Serializer/Deserializer

The asynchronous wire buffer is based on a simple four
phase latch control circuit [15]. It essentially latches the
data on the falling edge of REQIN. The C-Element
regulates the request and acknowledge handshaking
safely. One point to note about this circuit is that the
REQIN/ACKOUT side is not fully de-coupled from
REQOUT/ACKIN side. If several of the wire-buffers are
chained together then at best only every other buffer in the
chain will be in use at a time. This does not present a
problem in our case as the wire-buffering is a mechanism
for transporting data rather than storage.

IV. ASYNCHRONOUS ACKNOWLEDGEMENTS
One of the problems associated with a per-transfer
acknowledgement is the need for the receiver or line
buffers to acknowledge every transfer. As the parallel data
gets more and more serialised the number of request-
acknowledge cycles per word increases. One possible way
around this is to use a coarser grain acknowledgement that
acknowledges at the word level. Word level
acknowledgement does have some implications such as
timing closure at the receiver which must be able to
receive multiple transfers correctly and the need for some
self regulated timing mechanism, such as a clock, at the
transmitter to space the burst transfers out such that there
are no timing violations incurred at the receive end. The
proposed link can accommodate two types of
acknowledgements, per-transfer and per-word. Fig. 7
shows the proposed link with word level
acknowledgement by modifying the serializer, de-
serializer and wire buffer.

NOC

SWITCH

m

CLK

SY
N

C
H

 /
AS

YN
C

H

IN
TE

R
FA

C
E

valid
stall

req
ack

valid

AS
YN

C
H

R
O

N
O

U
S

SE
R

IA
LI

ZE
R

BU
FF

E
R

S

valid

m n n

AS
YN

C
H

R
O

N
O

U
S

D

E-
S

ER
IA

LI
ZE

R

NOC

SWITCH

ack

req
ack

m m

valid
stall

AS
YN

C
H

 /
S

YN
C

H

IN
TE

R
FA

C
E

CLK

1 2 3 4 5

Fig. 7 Serial Asynchronous word-level acknowledgement

The buffers along the length of the wire can be replaced
by simple buffers or an even number of invertors. The
serializer (Fig. 8a) uses a multiplexer with each slice of a
word being selected in turn. The VALID signal goes high
when there is valid data on DOUT and signified to the
receiver end that the data can be used. The VALID signal
goes high 4 times, once for each slice of the word. The
timing of the VALID signal is derived from the ring
oscillator constructed by 5 back to back invertors. To
adjust the frequency of the best the number of invertors
can be altered or different sizes can be used depending
upon requirements. To ensure that VALID only goes high
when the DATA is valid the respective timing between
DATA and VALID can also be tuned by selecting
different taps off the ring oscillator if necessary.
Furthermore, if tolerance becomes problematic the
VALID signal generation can be combined with the
SELect signals to increase robustness.

The de-serializer (Fig. 8b) employs a shift register. This
was done to see the effects of a shift register based de-
serializer versus the original mux based de-serializer. The

data is shifted in on DIN every time VALID goes high and
the data slices are serially shifted onto DOUT. At the
same time a single bit pulse is shifted down a single bit
shift register of the same length to provide a REQOUT
signal to the next asynchronous block to inform it the
whole word has been built and is valid. ACKIN clears the
single bit shift registers and removes REQOUT
completing the handshake.

&
resetsys

NRESET

C

C

endpulses

REQIN

endpulses

C

REQIN

ACKOUT

ACKIN

sel(0)

R
EG

(0

)

R
EG

(0

)

R
EG

(0

)

R
EG

(1

)

R
EG

(0

)

sel(1) sel(2) sel(3)

resetsys

DIN(7:0)
DIN(15:8)
DIN(23:16
)DIN(31:28)

DOUT(7:0)

sel(3:0)

VALID

&

C ‘1’ REQOUT

RESETN

ACKIN

DOUT(31:24)

R
EG

R
E

G

R
E

G

R
EG

clear

R
E

G

R
E

G

R
EG

R
E

G

DOUT(23:16) DOUT(15:8) DOUT(7:0)

DIN(7:0)

VALID(7:0)

ACKOUT

clear

(a)

(b)

Fig. 8 Word Level Serializer/Deserializer

V. EXPERIMENTAL RESULTS
To validate the performance, power consumption and area
overhead of the proposed serialized link, three links were
synthesized using 0.12 µm and simulated using Cadence
Spectre. The three links (Fig. 9) are: a fully synchronous
link with no serialization (I1), proposed asynchronous link
with per-transfer acknowledgement (I2) and per-word
acknowledgement (I3). Note four buffers were used in
each link and in the case of the serial links has 8 bit data.

SWITC
H

B
U

F

B
U

F

B
U

F

B
U

F SWITC
H

CLK

A
SY

N
 I/

F

A
SY

N
 I/

F

CLK

S
ER

IA
LI

S

D
E-

S
ER

I

32 8 8 8 32
32

8 8 32

I1

I2

SWITC
H

B
U

F

B
U

F

B
U

F

B
U

F SWITC
H

CLK

32 32 32 32 32

Proposed Asynch. per-trans.

Synchronous

SWITC
H

SWITC
H

CLK

AS
Y

N
 I/

F

AS
Y

N
 I/

F

CLK

SE
R

IA
LI

S

D
E-

S
ER

I

32 8 8 8 32
32

8 8 32

I3

Proposed Asynch. per-word

Fig. 9 Simulated Implementations

Fig. 10 shows the number of wires needed to achieve a
certain bandwidth across a link. The synchronous link
with 100, 200 and 300 MHz clock speeds are shown with
the proposed link. As is seen the number of wires increase
dramatically in the synchronous link as bandwidth
increases. The number of wires for the proposed
asynchronous serial link remains constant independent of
the switch clock speed as the asynchronous link is not
reliant on a synchronous clock to transfer data along the

wire. Fig. 10 shows that it is possible to achieve the same
performance as the synchronous link but with less wires.
For example, the proposed link (I3) can support 300
MFlits/s using a 300 MHz switch clock with 8 wires
whereas the synchronous link (I1) would need 32 wires at
300 MHz which is a 75% reduction. It is interesting to
note that the number of wires in the synchronous link
would need to increase if the switch clock speed was
reduced from 300 MHz to 100 MHz and maintain the
same throughput, this would require an increase to 96
wires at 100 MHz.

To give insight into the wiring area for a given wire
length consider Fig. 11. The benefit of reducing the
number of wires can clearly be seen, especially for longer
wire lengths. For example, assuming a wire length of 1000
µm, I3 has a wiring area cost of approximately 7,500 µm2
whereas the synchronous link (I1) is approximately 30,000
µm2. As the wire length increases there is a large increase
in the area cost for the synchronous link, unlike the
proposed asynchronous link which has moderate increase.
Note Fig. 11 was produce using the following equation:

))1((GWDataWires MetNMetNLAREA ×++××= ,
where N is the number of wires, L is the length of the

wires, MetW is the minimum metal width and MetG is the
minimum metal gap. For the global METAL6 layer in the
ST 0.12 µm technology MetW = 0.44 µm and MetG = 0.46
µm.

0

10

20

30

40

50

60

70

80

90

100

100 150 200 250 300 350
Bandwidth (Mflits/s)

N
o.

 o
f W

ire
s

I1-Synch@100

I1-Synch@200

I1-Synch@300

I3-Async (proposed)

Fig. 10 Bandwidth vs. Wires

0
10000
20000
30000
40000
50000
60000
70000
80000
90000

100000

0 500 1000 1500 2000 2500 3000

Wire Length (µm)

W
iri

ng
 A

re
a

(µ
m

2)

I1-Synch

I2 & I3-Asynch
(proposed)

Fig. 11 Wire Area

The power consumption of the synchronous and the
proposed asynchronous link are shown in Fig. 12 with
switch clock speed of 100 MHz for different numbers of
buffers in the link. As expected when a small number of
buffers are used, such as 2, the synchronous

implementation uses less power compared to the
asynchronous due to the extra overhead of the
synch/asynch converters and serializers. However, when
the number of buffers increase the power in the
synchronous implementation increases unlike the
asynchronous implementation which remains relatively
the same. Comparing 2 buffers against 8 buffers for the
wire link it can be seen the that power for the synchronous
implementation (I1) increases 300% from 372 µW to 1498
µW which is expected since there is four times the number
of synchronous buffers. The asynchronous per-transfer
scheme (I2) shows a small power increase of 20% of the
589 µW to 712 µW, while the per-word acknowledgement
scheme (I3) shows the least power increase of 2%, 623
µW to 637 µW, due to invertors being used along the
length of the wire instead of latched buffer elements.
Similar power consumption results can be obtained when
the switch clock speed is increased to 300 MHz (Fig. 13).
As expected the synchronous link power increases with
clock frequency and it can be seen that power increases
from 1498 µW to 3229 µW for 8 buffers. The best power
saving is obtained when the switch clock speed is 300
MHz and the number of buffers is 8, power is reduced by
65% from 3229 µW to 1110 µW when going from
synchronous to asynchronous in this case.

0

500

1000

1500

2000

2500

3000

3500

2 4 6 8
No. of Buffers

Po
w

er
 (µ

W
)

I1-Synch

I2-Asynch

I3-Asynch

Fig. 12 Number of Buffers vs. Power @ 100 MHz

0

500

1000

1500

2000

2500

3000

3500

2 4 6 8
No. of Buffers

Po
w

er
 (µ

W
)

I1-Synch

I2-Asynch

I3-Asynch

Fig. 13 Buffers v Power @ 300 MHz

To give insight as to where the power consumption is in
the various components of the links, Fig. 14 shows a
breakdown of the power for 50% usage. It can be seen that
the dominant power in the asynchronous implementations
(I2 and I3) are the asynch/synch and synch/asynch
conversion circuits. This is expected since these circuits
contain clocked synchronous parts. Comparing the
proposed asynchronous links I2 and I3 which serialize
down to 8 bits, it can be seen that that overall power used

is similar. The I3 buffer power is considerably smaller
than I2 at 9 µW versus 82 µW due to the fact that the
buffers are simple invertors along the length of the wire
and not latched elements as is the case for I1 and I2. The
I2 de-serializer uses more power than the I3 de-serializer
as a shift register based implementation is used instead of
a de-multiplexer, so all four registers are being latched
every time a slice of the flit arrives opposed to just one
register being latched in the de-multiplexer version.

The average power was obtained for the transfer of 4
data items (0xA5A5A5A5, 0x5A5A5A5A,
0xA5A5A5A5, 0x5A5A5A5A) which exercise the data
wires as much as possible and give worst case data
activity. The time the link is in use when transferring the 4
data items is approximately 70 ns on the synchronous
implementation running at 100 MHz, and the simulation
runs set to 140 and 280 ns. This allows the average power
for 50% usage to be obtained. The link can be considered
‘in use’ when one or more of the buffers is occupied by a
flit/data. The same simulation run time was used for the
asynchronous implementations to provide a comparison
between the implementations. The power for each block
was obtained through Spectre simulations, the average of
the supply voltage multiplied by the current over the
simulation run time was taken.

0

100

200

300

400

500

600

700

800

I1-Synch 50% I2-Asynch8 50% I3-Asynch8B 50%

Implementation (link usage)

A
ve

ra
ge

 P
ow

er
 (µ

W
)

Ser/Des

Buffers

Asynch
Synch
Conv.

Fig. 14 Average Power for 50% usage

The area overhead of the synchronous and proposed
asynchronous links are given in Table 1. To give an idea of
which portions of the asynchronous link use most resource
a breakdown of the circuit or cell area used for each
module for the implementation I2 is shown in Table 2. The
proposed architectures, I2 and I3, have an area increase of
approximately 20% compared to the synchronous link
(I1).

Table 1 Area overhead of the synchronous and proposed link

Table 2 Breakdown of Implementation I2

Module Area (µm2) Qty.
Synch to Asynch interface 9408 1
Asynch 32 to 8 serializer 869 1
Asynch 8 wire buffer 294 4
Asynch 8 to 32 de-serializer 1030 1
Asynch to Synch interface 6710 1

Total 19193

Implementation Area (µm2)
Synchronous (I1) 15864

Asynchronous per-transfer ack. (I2) 19193
Asynchronous per-word ack. (I3) 18396

To evaluate the accuracy of the per-transfer and per-
word performance we developed two equations which can
be used to calculate the cycle delay of a word transfer and
find the upper bound of the throughput. For the per-
transfer acknowledge scheme (Fig. 15) the cycle delay can
be calculated:

TnextflitTackoutTackackTreqackTreqreqTpD +++++××=)4(4
where Tp is the propagation time along the wires (of

which there are 4), Treqreq is the time of the request to
write data into the buffer to the request to write the data
out to the next buffer, Treqack is the time to request to
write data into the buffer to the acknowledgment of the
data, Tackack is the acknowledgement into the buffer to
the acknowledgement out to the previous buffer and
Tackout is the acknowledgement into the buffer to the
output of a new slice of data. This is multiplied by 4 since
the 32 bit flit is sent 8 bits at time and will take 4 transfers
to complete a whole flit. Tnextflit is the time taken to get
the next flit to be ready on the outputs of the transmitter.

B
U

F

B
U

F

B
U

F

Tp Tp

Tp Tp

Treqreq
Treqack

Tackack Tackout

TR
A

N
S.

Tnextflit
Fig. 15 Cycle Delay for the Per-transfer

For the per-word acknowledge scheme (Fig. 16) the
cycle delay can be calculated using:

TburstTackoutackTvalidwordTinvTpD +++×+×= 810
where Tp is the wire propagation delay (in this case

there are 10), Tinv is the inverter gate delay (of which
there are 8), Tvalidwordack is the delay from receiving a
valid word to acknowledge output, Tackout is the
acknowledge in to new flit output and Tburst is the burst
period of the 4 slices of flit.

RE
C

V
R

TR
A

N
S

.

Tp

Tinv

Tvalidwordack

Tackout

Tp Tp Tp Tp

Tp Tp Tp Tp Tp

Tburst

Tinv Tinv Tinv

Tinv Tinv Tinv Tinv

Fig. 16 Delay for per-transfer and per-word

The per-word equation can be checked using an
example. Consider, Tp=0 since the simulation was gate
level, Tinv=0.011 ns from the ST 0.12 CORE9GPLL
datasheet, Tburst ~ 1.1 ns from simulation, Tvalidwordack
~ 0.7 ns and Tackout ~ 1.4 ns also from simulation. Using
these values the per-word delay is 3.21 ns from which we
obtain an upper bound throughput of around 311 MFlits/s
which matches with the supported bandwidths shown in
Fig. 10. Further improvements to the upper bound
throughput could be achieved by earlier acknowledging or
nacking which the authors are investigating for future
work.

VI. CONCLUDING REMARKS
This paper has proposed and demonstrated the
effectiveness of serialization in reducing the number of
wires without compromising the performance. The
potential problems with synchronous design such as
global clock distribution and clock skew have also been
reduced. The proposed asynchronous link also reduces
power by up to 65% compared to the synchronous link
when 8 buffers are used. Furthermore, we have compared
the area overheads of synchronous and the proposed
asynchronous link and shown that although the proposed
link has a 20% circuit overhead the number of wires has
been reduced by up to 75%.

The validations and comparison were carried out using
synthesized gate level designs and realistic simulation
environment. It is hoped the proposed link makes a
valuable contribution to the area of efficient NoC
architecture for multi-processor SoC.

REFERENCES

[1] A. Adriahantenaina, H. Charlery, A. Greiner, L. Mortiez, and C.
A. Zeferino, "SPIN: a scalable, packet switched, on-chip
micro-network," in DATE 2003.

[2] D. Bertozzi and L. Benini, "Xpipes: A network-on-chip
architecture for gigascale systems-on-chip," IEEE Circuits
and Systems Magazine, vol. 4, pp. 18-31, 2004.

[3] K. Goossens, J. Dielissen, and A. Radulescu, "AEthereal network
on chip: concepts, architectures, and implementations," IEEE
Design & Test of Computers, vol. 22, pp. 414-21, 2005.

[4] D. Siguenza-Tortosa and J. Nurmi, "Proteo: a new approach to
network-on-chip," in IASTED Conference on Communication
Systems and Networks, Malaga, Spain, 2002, pp. 355-9.

[5] D. Wiklund and L. Dake, "SoCBUS: switched network on chip for
hard real time embedded systems," in IPDPS 2003.

[6] M. Amde et al, "Asynchronous on-chip networks," in System-on-
Chip: Next Generation Electronics, B. M. Al-Hashimi, Ed.:
IEE, 2006, pp. 625-52.

[7] E. Beigne et al, "An asynchronous NOC architecture providing
low latency service and its multi-level design framework," in
11th IEEE International Symposium on Asynchronous
Circuits and Systems, 2005.

[8] S. Moore, G. Taylor, R. Mullins, and P. Robinson, "Point to point
GALS interconnect," in International Symposium on
Asynchronous Circuits and Systems, 2002.

[9] A. Morgenshtein et al, "Comparative analysis of serial vs parallel
links in NoC," in International Symposium on System-on-
Chip Tampere, Finland, 2004, pp. 185-8.

[10] A. Pullini et al, "NoC Design and Implementation in 65nm
Technology," in Networks-on-Chip, 2007. NOCS 2007. First
International Symposium on, 2007, pp. 273-282.

[11] L. Kangmin, L. Se-Joong, and Y. Hoi-Jun, "Low-power network-
on-chip for high-performance SoC design," IEEE
Transactions VLSI Systems, vol. 14, pp. 148-60, 2006.

[12] D. E. Muller and W. S. Bartky, "A Theory of Asynchronous
Circuits," in Proceedings of an International Symposium on
the Theory of Switching, 1959, pp. 204-243.

[13] R. David, "Modular design of asynchronous circuits defined by
graphs," IEEE Transactions on Computers, vol. C-26, pp.
727-737, 1977.

[14] L. Morin and H. F. Li, "Design of synchronisers: a review," IEE
Proceedings E (Computers and Digital Techniques), vol. 136,
pp. 557-64, 1989.

[15] S. B. Furber and P. Day, "Four-phase micropipeline latch control
circuits," IEEE Transactions VLSI Systems, vol. 4, 1996.

