
School of Electrical, Electronic & Computer Engineering

Conditional Partial Order Graphs and
Dynamically Recon�gurable Control Synthesis

A. Mokhov and A. Yakovlev

Technical Report Series

NCL-EECE-MSD-TR-2008-125

January 2008

Contact:

Andrey.Mokhov@ncl.ac.uk

Alex.Yakovlev@ncl.ac.uk

Supported by EPSRC grant EP/C512812

NCL-EECE-MSD-TR-2008-125

Copyright c© 2008 University of Newcastle upon Tyne

School of Electrical, Electronic & Computer Engineering,

Merz Court,

University of Newcastle upon Tyne,

Newcastle upon Tyne, NE1 7RU, UK

http://async.org.uk/

A. Mokhov and A. Yakovlev: Conditional Partial Order Graphs and Dynamically Recon�gurable
Control Synthesis

Conditional Partial Order Graphs and Dynamically

Recon�gurable Control Synthesis

A. Mokhov and A. Yakovlev

January 2008

Abstract

The paper introduces a new formal model for specifying control paths in the context of asyn-

chronous system design. The model, called Conditional Partial Order Graph (CPOG), is capable of

capturing concurrency and choice in a system's behaviour in a compact and e�cient way. A problem

of CPOG synthesis is formulated and solved; various CPOG optimisation techniques are presented.

The introduced model can be used for the speci�cation of system behaviour and for synthesis of

area-e�cient dynamically recon�gurable controllers. The synthesis of a controller is based on a novel

generic architecture, called Transition Sequence Encoder (TSE). The synthesized controllers are speed

independent and thus very robust to parametric variations. The ideas presented in the paper can

be applied for CPU control synthesis as well as for synthesis of di�erent kinds of event-coordination

circuits often used in data coding and communication in digital systems.

1 Introduction

Speci�cation and synthesis of control circuits for systems of large complexity, such as CPU cores or on-

chip routers to name but a few, remains to be a challenging problem due to ine�ciency of the existing

design process. Typically designers of systems of such a complexity rely on the use of hardware descrip-

tion languages such as Verilog or VHDL, and RTL-based synthesis �ow [4]. Within this conventional

methodology, designers use �nite state machines to capture control speci�cations. Since standard RTL

�ow supports a synchronous design paradigm these techniques lead to synchronous FSMs for control

logic.

In asynchronous design there is a need for generic models which are able to capture concurrency and

choice in systems with many similar patterns in behaviour. To date there are several design methodologies

for asynchronous control logic, e.g. [9] and [7]. Some methods such as Tangram (or Haste) [10] and

Balsa [1] use CSP-like HDL languages for system speci�cation and syntax-direct translation for synthesis.

They are not particularly well suited for control logic speci�cation because they capture the entire design

as a collection of processes and channels; control is implicit in them. Other methods such as Burst-Mode

FSMs [6], as well as Petri nets (PN) and STGs [8], are more suitable for control logic design because

they capture concurrency at a very �ne level of granularity. The latter produce circuits that are more

compact and faster (e.g. in terms of latency) [7] compared to those derived from syntax-direct translations

from HDLs. However, the synthesis methods for Burst Mode machines and PNs (or STGs) are typically

targeted at controllers with a small number of choice options, where each option is rather unique. In

many applications such as a CPU controller, the designer is often faced with a problem of modelling

many di�erent behavioural patterns, or event orders, de�ned on the same domain of operational units.

For example, in designing a CPU core, such behavioral patterns can be constructed for instructions or

groups of instructions (see Section 4.3). The control �ow in the execution of instructions is determined

by the values of signals produced by the instruction operation decoder and hence is available to steer

the control through a certain partial order [2] of events associated with the activations of operational

NCL-EECE-MSD-TR-2008-125, University of Newcastle upon Tyne 1

A. Mokhov and A. Yakovlev: Conditional Partial Order Graphs and Dynamically Recon�gurable
Control Synthesis

units. Applying Burst Mode FSMs or PNs to such systems would lead to the circuits that are area and

performance ine�cient due to their explicit notion of control state transitions. Such models perform

explicit state tracking which requires signi�cant amount of logic and internal memory resources.

... Micro

controller

Condition

signals

...

Handshake

signals

Data path

req ack

Reg

req ack

ALU

...

...

Environment

O
p
e
ra

ti
o
n

d
e
c
o
d
e
r

Figure 1: Recon�gurable controller

In this work we tried to come up with a new model that would retain the advantages of the existing

behavioural models Petri nets (or STGs) and FSMs and avoid using the explicit notion of state. The

former are advantageous for modelling a high degree of concurrency while the latter for choice. This

model, called Conditional Partial Order Graph (CPOG), builds on the order relation between actions or

events from a certain set. The order is determined by the combination of logical conditions presented to

the controller by the environment. To this end, the controller can be seen as an entity which communicates

with two parts of the environment (see Figure 1), one part is the source of condition signals (operation

decoder in case of a CPU) and the other part is a set of controlled objects with request-acknowledgement

interface (operational units). Thus the condition signals dynamically recon�gure our controller according

to the instruction being executed.

Bearing in mind the practical aspect of using such a model in designing real-life controllers, we believe

that the model itself presents a source of interesting formalisation and automation problems, and to the

best of our knowledge it is original and worth independent investigation.

2 Motivation

This section presents an example of speci�cation of a controller with two behavioural scenarios using

STGs. The example shows that STG speci�cation is inconvenient and ine�cient in the case. Synthesis

of a generalised version of this particular controller motivated our research.

Controller

x1
x2

go

done

req1

ack1

req2

ack2

Figure 2: Example controller interface

The controller's interface is shown in Figure 2. Depending on the control signals {x1, x2} the controller
has to initiate two handshakes either in order 1 → 2 or in order 2 → 1. The start of the handshake

sequence is prompted by signal go and as soon as the handshakes are completed the controller issues

signal done. This leads us to the STG shown in Figure 3(a). The STG has a global choice and the two

scenarios are speci�ed as two independent branches. The �rst scenario (the upper branch) is handshake

sequence 1 → 2; the second one (the lower branch) corresponds to 2 → 1. After the global merge the

handshakes are reset concurrently and the system returns to the initial state.

Although this speci�cation seems to be convenient, understandable and can be obtained manually it

duplicates events in di�erent branches. In general there can be exponential number of di�erent scenarios

composed of linear number of events: for instance, we can generalise the exemplar controller to control

order of execution of more than two events (handshakes) and for n events there will be n! di�erent

NCL-EECE-MSD-TR-2008-125, University of Newcastle upon Tyne 2

A. Mokhov and A. Yakovlev: Conditional Partial Order Graphs and Dynamically Recon�gurable
Control Synthesis

scenarios (such control circuits are called n-permutators). It is not e�cient to have an STG speci�cation

containing n! di�erent branches and it turns from ine�cient into infeasible for large values of n.

To specify the controller in a more compact way we can construct a behaviourally equivalent STG

without multiple event occurrences using Petrify [3] (see Figure 3(b)). Such compositional STGs tend to

be much more complicated and contain a lot of additional choice places tracking the current system state.

Even for such a simple controller that was taken as our example the obtained STG is non-trivial and

di�cult for manual design. In practice the only way to produce an optimal STG speci�cation is to start

with an ine�cient global choice STG and feed it to an optimisation tool (e.g. Petrify) but this is infeasible

for large controllers. Another issue is that generation of compositional STG involves construction of state

graph and examining all reachable states that is a very time and memory consuming process. It should

be mentioned however that if Petrify does not run out of time and memory resources it produces very

e�cient gate-level implementations of the controllers. Figure 4 shows controllers synthesised using the

presented CPOG-based approach and Petrify: the solutions are di�erent and our method produces a

smaller controller.

go+/1

req1+/1 req2+/1

ack2+/2

go+/2

req1+/2

ack2−
x2−

x1−

ack1−
go−/1

req2+/2

done+/1

done−

go−/2

ack2+/1ack1+/1

ack1+/2

req2−
x2+

x1+

req1−

done+/2

dummy

(a) Speci�cation with global choice and multiple event occurrences

x2−

x1+

x2+

ack2−

done+

req1−

req2−

ack1−

go− dummy

x1−

go+

req2+

req1+ ack1+

done−

ack2+

(b) Optimised speci�cation obtained by Petrify

Figure 3: Controller STG speci�cations

These motivation factors led us to Conditional Partial Order Graph Model introduced in this paper.

The model allows a designer to specify large systems manually as a collection of partial orders [2] and

then merge them into a compact CPOG that captures all the system functionality.

A partial order (PO) P (S,≺) is a binary relation ≺ over a set of elements S which satis�es the

following conditions:

1. Irre�exivity : ∀a ∈ S,¬(a ≺ a);

2. Asymmetry : ∀a, b ∈ S, (a ≺ b)⇒ ¬(b ≺ a);

NCL-EECE-MSD-TR-2008-125, University of Newcastle upon Tyne 3

A. Mokhov and A. Yakovlev: Conditional Partial Order Graphs and Dynamically Recon�gurable
Control Synthesis

x1

ack2

x2

req2
go

ack1

done

req1

(a) CPOG-based solution

ack2

done

go

x2 req1

ack1

x1

req2

(b) Petrify solution

Figure 4: Synthesised controllers

3. Transitivity : ∀a, b, c ∈ S, (a ≺ b)∧(b ≺ c)⇒ (a ≺ c).

POs are very natural for speci�cation of order of events in a system when some of the events are con-

strained to happen before others. These constraints can be speci�ed with PO such that if a ≺ b then

event a must happen strictly before event b. If neither a ≺ b nor b ≺ a holds then the events a and b can

happen in any order, possibly simultaneously.

The concept of system speci�cation with a set of POs is clari�ed by the following example. Consider

a processing unit that has registers p and q and performs three operations: addition of two variables,

multiplication of a variable by 2 (doubling), and exchange of two variables. Instruction execution of the

processing unit breaks up into six actions:

a) Decode instruction;

b) Load register p from memory;

c) Load register q from memory;

d) Add values from registers and store the result in p;

e) Save register p into memory;

f) Save register q into memory;

The POs corresponding to the operations are shown in Figure 5 (action labels are from the list above).

Sub�gure (a) shows PO for the operation of doubling. Four actions are ordered sequentially: decode

instruction, load p, add p = p+p, save p. Sub�gure (b) corresponds to addition: decode instruction, load

p and q concurrently, add p = p + q, save p. Action order of the exchange operation (Sub�gure (c)) is:

decode instruction, load p and q concurrently, save them concurrently into swapped memory locations.

ea b d

(a) P1 (doubling)

e
b

a

c

d

(b) P2 (addition)

f

eb
a

c

(c) P3 (exchange)

Figure 5: Operations speci�ed as POs

As soon as the system is speci�ed as a set of POs it is possible to synthesise a CPOG that will contain

all of them in a compressed form (see Section 4.3). But �rst we have to introduce CPOGs formally. This

is done in the next section.

NCL-EECE-MSD-TR-2008-125, University of Newcastle upon Tyne 4

A. Mokhov and A. Yakovlev: Conditional Partial Order Graphs and Dynamically Recon�gurable
Control Synthesis

3 Conditional Partial Order Graphs

Conditional partial order graph is a tuple H(V,E,X, φ) where V is the set of vertices (or nodes), E ⊆
V × V is the set of ordered pairs of vertices, called arcs, X is the set of Boolean variables, and function

φ : V ∪ E → F(X) assigns a condition to every vertex and arc in the graph. A condition on a vertex

or arc z ∈ V ∪ E is a Boolean function φ(z) ∈ F(X) where F(X) is the set of all Boolean functions

over variables in X. Let's also de�ne φ(z) = 0 for z /∈ V ∪ E in order to simplify some of the further

computations.

A sequence of vertices (v0, v1, ..., vn), vk ∈ V, k = 0...n such that (vk−1, vk) ∈ E, k = 1...n and n ≥ 0 is

called a path from v0 (start vertex) to vn (end vertex) and is denoted as 〈v0, vn〉. The fact that a CPOG
H contains a path 〈a, b〉 will be denoted as 〈a, b〉 ∈ H.

An arc e = (a, b) ∈ E is called transitive i� 〈a, b〉 ∈ H\{e}. H\{e} means a CPOG H without arc e.

3.1 Addition

The result of addition of H1(V1, E1, X1, φ1) and H2(V2, E2, X2, φ2) is CPOG H(V1 ∪ V2, E1 ∪ E2, X1 ∪
X2, φ), where ∀z, φ(z) = φ1(z) + φ2(z). Here φ1 + φ2 stands for Boolean disjunction of functions φ1 and

φ2. We will use standard notation for addition: H = H1 +H2.

CPOG addition is commutative (H1+H2 = H2+H1) and associative ((H1+H2)+H3 = H1+(H2+H3))
and thus redundant brackets can be omitted when more than two CPOGs are added.

3.2 Scalar multiplication

A CPOG H(V,E,X, φ) can be multiplied by a Boolean function f ∈ F(Y) (which in our context can be

called scalar). The resultant CPOG is H ′(V,E,X∪Y, φ′) where ∀z, φ′(z) = fφ(z) (fφ stands for Boolean

conjunction of functions f and φ). We will use standard notation for scalar multiplication: H ′ = fH.

Scalar multiplication and addition have the following common properties:

• Left distributivity: (f + g)H = fH + gH;

• Right distributivity: f(H1 +H2) = fH1 + fH2;

• Associativity: f(gH) = (fg)H;

3.3 Projection

A projection of a CPOG H(V,E,X, φ) under constraint x = α (x ∈ X) is denoted as H|x=α and is

equal to CPOG H ′(V,E,X \ {x}, φ|x=α) where notation φ|x=α means that variable x is substituted with

constant Boolean value α in all the functions φ(z), z ∈ V ∪E. Projection is a commutative operation i.e.

(H|x=α)|y=β = (H|y=β)|x=α.

A complete projection of a CPOG H is such a projection that all the variables in X are constrained to

constants. It is denoted as H|ψ where ψ : X → {0, 1} is an assignment function that assigns a Boolean

value to every variable in X. Complete projection is a CPOG whose vertex and arc conditions are only

Boolean constants φ|ψ (either 0 or 1).
We also de�ne a partial assignment function ψ : Y → {0, 1}, Y ⊆ X which assigns values only to a

subset of X.

Let H(V,E, ∅, φ) be a complete projection (∀z, φ(z) ∈ {0, 1}). We can construct a graph G(VG, EG)
such that VG = {v ∈ V |φ(v) = 1}

EG = {e = (a, b) ∈ E|φ(a)φ(b)φ(e) = 1}

NCL-EECE-MSD-TR-2008-125, University of Newcastle upon Tyne 5

A. Mokhov and A. Yakovlev: Conditional Partial Order Graphs and Dynamically Recon�gurable
Control Synthesis

In other words G contains only those vertices and arcs whose conditions in H are constant 1.
A complete projection H is valid i� its corresponding graph G is a directed acyclic graph (DAG) [2].

The obtained DAG G(VG, EG) can be further converted into a corresponding PO P (VG,≺) such that

a ≺ b i� 〈a, b〉 ∈ G. Let this operation of partial order construction from a valid CPOG complete

projection H be shortly denoted as po: P = po(H) and the inverse operation as po−1: H = po−1(P).
There are 2|X| di�erent assignment functions ψ (each of the |X| variables can be assigned two di�erent

values) and therefore each CPOG can potentially represent 2|X| di�erent POs in a compressed form.

a e: xc db

x x

x
_

x
_

(a) Conditional partial order graph

a e: xc db

x x

x
_

x
_

(b) Projection under x = 1

a e: xc db

x x

x
_

x
_

(c) Projection under x = 0

Figure 6: CPOG and its projections

An example of a CPOG and its projections is shown in Figure 6. Sub�gure (a) shows the initial graph.

The conditional arc functions are indicated over the arcs: arcs (b, c) and (c, d) have conditional function
f = x; the function on arcs (a, c) and (b, d) is f = x; arcs (a, b), (d, e) and vertices a...d are unconditional

i.e. their functions are constant Boolean 1. Such functions are not shown on diagrams for simplicity. The

only conditional vertex e has condition f = x which is shown next to its label separated by a colon.

Figure 6(b) shows the complete projection under x = 1. The dotted arcs are those that turn to have

constant 0 conditions after the projection and therefore will be excluded from the resultant partial order.

The solid arcs have constant 1 conditions. The partial order de�ned with the projection is a simple series

of events: a→ b→ c→ d→ e.

Complete projection under condition x = 0 (Figure 6(c)) results in the following partial order. Events

b and c can happen only after a. There is no constraint between them, thus they can be concurrent.

Event d can happen only after event b. Event e is excluded from the partial order; note, that this implies

exclusion of arc (d, e) as well.

3.4 Ψ-equivalence

Let assignment set Ψ = {ψ1, ψ2, ..., ψn} be the set of n assignment functions ψk : X → {0, 1}. Two

Boolean functions f, g ∈ F(X) are Ψ-equivalent i� they evaluate to the same values over the assignment

set Ψ:

∀ψk ∈ Ψ, f |ψk
= g|ψk

A CPOG H is Ψ-well-formed i� every complete projection H|ψ, ψ ∈ Ψ is valid. Ψ-well-formed CPOGs

H1 and H2 are Ψ-equivalent i� they produce the same POs:

∀ψk ∈ Ψ,po(H1|ψk
) = po(H2|ψk

)

NCL-EECE-MSD-TR-2008-125, University of Newcastle upon Tyne 6

A. Mokhov and A. Yakovlev: Conditional Partial Order Graphs and Dynamically Recon�gurable
Control Synthesis

We will use the following notation for Ψ-equivalence: f
Ψ∼ g or H1

Ψ∼ H2. Ψ-equivalence is a proper

equivalence relation [2] as it satis�es the following properties:

• Re�exivity: a
Ψ∼ a;

• Symmetry: a
Ψ∼ b⇒ b

Ψ∼ a;

• Transitivity: a
Ψ∼ b ∧ b Ψ∼ c⇒ a

Ψ∼ c.

4 CPOG Synthesis

The previous section introduced CPOG algebra and showed that a CPOG can contain exponential number

of partial orders in a compressed form. The problem now is to synthesise a compact CPOG speci�cation

given the description of the system as a set of POs corresponding to di�erent behavioural scenarios in

the modelled system. The synthesis problem can even be more generalised: we can use not only POs as

building blocks but also mix them with CPOGs and synthesise an optimal CPOG containing all of them

among its projections. This can be useful if you, for instance, want to add a new scenario to already

existing CPOG without its complete resynthesis from POs.

Formally, let H = {H1, H2, ...,Hn} be the set of n given CPOGs. The objective is to synthesize CPOG

H(V,E,X, φ) and assignment set Ψ = {ψ1, ψ2, ..., ψn} such that ψk : XC → {0, 1} are partial assignment

functions over the control set XC ⊆ X and

∀ψk ∈ Ψ, H|ψk
= Hk

The idea behind our synthesis approach is to represent H as the following sum of given CPOGs:

H = f1H1 + f2H2 + ...+ fnHn =
n∑
k=1

fkHk

Now control set XC , functions fk ∈ F(XC) and ψk should be selected so that fk|ψk
= 1 and fk|ψj

=
0, j 6= k. This can be done in di�erent ways depending on the chosen encoding scheme. There are many

encoding schemes; two commonly used (one-hot and binary) are presented below.

4.1 One-hot encoding scheme

In this scheme we use n additional control variablesXC = {x1, x2, ..., xn}. Functions fk and ψk (k = 1...n)
are trivial: fk = xk, ψk(xk) = 1, ψk(xj) = 0, j 6= k.

One-hot scheme provides a simple and intuitive way of encoding but it is ine�cient because of the

large size of control variables set XC : |XC | = n. Synthesis of the example controller CPOG using one-hot

encoding is trivial:

x1 · (
ba) + x2 · (

ab) =
ba x1

x2

4.2 Binary encoding scheme

In binary scheme only m = dlog2 ne control variables XC = {x1, x2, ..., xm} are used which is the theo-

retical minimum. Let bjk denote j-th bit of integer number k. Then we can de�ne functions fk and ψk

(k = 1...n) as:

ψk(xj) = b(j−1)(k−1) , fk =
m∧
j=1

(xj ⇔ ψk(xj))

NCL-EECE-MSD-TR-2008-125, University of Newcastle upon Tyne 7

A. Mokhov and A. Yakovlev: Conditional Partial Order Graphs and Dynamically Recon�gurable
Control Synthesis

For example, if n = 3 we will get ψ1 = (0, 0), ψ2 = (1, 0) and ψ3 = (0, 1). Functions fk are:

f1 = (x1 ⇔ 0)(x2 ⇔ 0) = x1 x2, f2 = x1x2 and f3 = x1x2.

4.3 Synthesis from partial orders

CPOG synthesis from POs is a special case of general synthesis problem presented above. Given a set of

n POs P = {P1, P2, ..., Pn} we can convert them to CPOGs Hk = po−1(Pk), k = 1...n and then use the

general method to synthesise CPOG containing H = {Hk|k = 1...n}.
The result of synthesis of CPOG containing the three behavioural scenarios from Figure 5 is shown

in Figure 7(a). One-hot encoding scheme with control set {x, y, z} was used. You can check that its

projections ψ1 = (1, 0, 0), ψ2 = (0, 1, 0) and ψ3 = (0, 0, 1) produce POs P1 (doubling), P2 (addition) and

P3 (exchange) respectively.

c: y+z

b: x+y+z

d: x+y

a: x+y+z

f: z

e: x+y+z

x+y+z

y+z

z
x+z

x+y

x+y

y
z z

(a) Synthesised CPOG

b

a

f: ze

x+y+z

y+z

z
x+z

x+y

x+y

y
z z

c: x
_

d: z
_

(b) Vertex conditions optimisa-
tion

b

a

f: ze

c: x
_

d: z
_

(c) Arc conditions optimisation

b

a

f: ze

c: x
_

d: z
_

(d) Projection y = 1, x = z = 0

Figure 7: CPOG synthesis and optimisation

5 Logic Optimisation

The size of the physical controller implementation is proportional to the size of CPOG speci�cation

measured as the total number of literals in its conditional functions. It is possible to use logic optimisation

techniques and exploit structural properties of a CPOG in order to minimise the number of literals and

thus to obtain an area e�cient controller.

5.1 Vertex conditions optimisation

Vertex conditions optimisation is based on the notion of Ψ-equivalence of functions. If a function φ(z), z ∈
V ∪E in a CPOG H(V,E,X, φ) is replaced with a Ψ-equivalent function φ′(z) then the modi�ed CPOG

H ′ is Ψ-equivalent toH. This property provides a powerful optimisation technique: a conditional function

can be optimised independently of the others. Moreover optimisation under the Ψ-equivalence relation

allows logic optimisation tool to consider the variable assignments not in Ψ as don't cares.

Ψ x y z f = x+ y + z g = 1 f = x+ y g = z

ψ1 1 0 0 1 1 1 1

ψ2 0 1 0 1 1 1 1

ψ3 0 0 1 1 1 0 0

Table 1: Ψ-equivalence of functions

NCL-EECE-MSD-TR-2008-125, University of Newcastle upon Tyne 8

A. Mokhov and A. Yakovlev: Conditional Partial Order Graphs and Dynamically Recon�gurable
Control Synthesis

Let's take the CPOG in Figure 7(a) as an example. Vertices {a, b, e} have conditional function

f = x+y+ z. This function is Ψ-equivalent to function g = 1. It is demonstrated in Table 1: both f and

g give the same result 1 for the variable assignments in Ψ. Thus the condition on vertices {a, b, e} can be

optimised from f = x+ y + z to g = 1. Table 1 also shows that x+ y
Ψ∼ z. This is used for optimisation

of conditions of vertices c and d.

The result of optimisation of the CPOG in Figure 7(a) is shown in Figure 7(b). In total 11 literals

were saved.

5.2 Arc conditions optimisation

Functional Ψ-equivalence can also be applied for arc conditions optimisation. But in addition to that it

is possible to exploit two other potentialities discussed below.

Let arc e = (a, b) have condition f = φ(e) and connect vertices with conditions va = φ(a) and

vb = φ(b). It is possible to substitute function f with another (possibly simpler) function g if the

following relation is satis�ed:

(vavbf ⇔ vavbg) Ψ∼ 1

In other words if arc e exists in the original CPOG (term vavbf) then it exists in the modi�ed CPOG

(term vavbg) and vice versa. Note, that these terms have to be equal only up to the assignment set Ψ
and thus we use

Ψ∼ 1 and not = 1 relation. The above equation can be simpli�ed into

va + vb + (f ⇔ g) Ψ∼ 1 (1)

For example, let's take arc (a, c) in Figure 7(b). We have va = 1, vc = x and f = y + z. Using (1)

you can see that it is possible to substitute f with g = 1: 1 + x+ ((y+ z)⇔ 1) = x+ y+ z
Ψ∼ 1. It saves

us two literals.

Another opportunity is to optimise transitive conditions in CPOGs. For instance, arc (b, e) in Fig-

ure 7(b) is transitive with respect to path b → d → e (this path exists in the graph if (x + y)z is true)

and this fact can be exploited.

Let arc e = (a, b) have condition f and path 〈a, b〉 ∈ H\{e} exist in the H\{e} if condition t is true.
Then it is possible to substitute function f with function g if

((f + t)⇔ (g + t)) Ψ∼ 1

In other words if a path between vertices a and b (either via arc (a, b) or via path 〈a, b〉 ∈ H\{e})
exists in the original CPOG (term f + t) then it exists in the modi�ed CPOG (term g+ t) and vice versa.

After simpli�cation we get

t+ (f ⇔ g) Ψ∼ 1 (2)

We can apply (2) to arc (b, e) in Figure 7(b) and check that it can be also done unconditional (g = 1).
We have f = x+z and t = (x+y)z which gives us (x+y)z+((x+z)⇔ 1) = (x+y)z+x+z = x+y+z Ψ∼ 1.

It is possible to combine these two techniques and get the general optimisation relation (simpli�ed):

va + vb + t+ (f ⇔ g) Ψ∼ 1 (3)

Let's use (3) to optimise arc (c, e) in Figure 7(b). We have vc = x, ve = 1, t = xyz(x+ y) and f = z.

Trying to substitute f with g = 1 we get x+1+xyz(x+y)+(z ⇔ 1) = x+xyz+z
Ψ∼ 1 and thus g = 1 is

a proper substitution of f for arc (c, e). The result of arc conditions optimisation of CPOG in Figure 7(b)

is shown in Figure 7(c). Interestingly enough the resultant CPOG does not contain conditional arcs at all

and has only 3 conditional vertices. During the both optimisations the total literals count was reduced

NCL-EECE-MSD-TR-2008-125, University of Newcastle upon Tyne 9

A. Mokhov and A. Yakovlev: Conditional Partial Order Graphs and Dynamically Recon�gurable
Control Synthesis

from 29 to 3. The obtained CPOG is Ψ-equivalent to the original one in Figure 7(a) and has the same

projections. For example, projection ψ2 ∈ Ψ is shown in Figure 7(d) and it de�nes PO P2 for addition

operation from Figure 5(b).

As a result of logic optimisation the obtained controller (see Figure 8) is quite small. Speed-

independent implementation of controllers is based on Transition Sequence Encoder circuit [5] and consists

of mapping of CPOG logic conditions into logic gates and equipping the resultant circuit with go/done

interface.

req_d

req_e

req_b

ack_c

x

go

ack_d

z

req_c

req_a

ack_a ack_b req_f

go

Figure 8: Gate-level implementation

6 Results and conclusions

The presented approach for control speci�cation and synthesis was tested on a set of benchmarks that

included CPU core speci�cation and n-permutators synthesis (see Section 2). The results are compared

with Petrify solutions obtained from STGs. Benchmarks show (Table 2) that CPOG speci�cation size

grows polynomially for systems with exponential number of behavioural scenarios while STGs size and

Petrify runtime grow exponentially.

The presented model, CPOG synthesis and optimisation techniques and TSE-based controller imple-

mentation provide a consistent design �ow for asynchronous control path speci�cation and synthesis.

number of number of STG size Petrify CPOG size Synthesis

actions scenarios (�le size) time (literals) time

3 6 1.3 Kb 1.4 sec 6 < 1 sec

4 24 5.8 Kb 191 secs 12 < 1 sec

5 120 34.3 Kb - 20 < 1sec

Table 2: Synthesis of n-permutators

Acknowledgement

This work was supported by EPSRC grant EP/C512812/1.

References

[1] Andrew Bardsley and Doug Edwards. The Balsa asynchronous circuit synthesis system. In Forum

on Design Languages, 2000.

[2] G. Birkho�. Lattice Theory. Third Edition, American Mathematical Society, Providence, RI, 1967.

[3] J. Cortadella et al. Petrify: a tool for manipulating concurrent speci�cations and synthesis of

asynchronous controllers. IEICE Transactions on Information and Systems, E80-D(3):315�325, 1997.

[4] G. Martin L. Lavagno, L. Sche�er. Electronic Design Automation For Integrated Circuits Handbook.

2006.

[5] A. Mokhov and A. Yakovlev. Transition sequence encoder. Technical report, Newcastle University,

2006.

[6] Steven Nowick. Automatic Synthesis of Burst-Mode Asynchronous Controllers. PhD thesis, Stanford

University, 1993.

NCL-EECE-MSD-TR-2008-125, University of Newcastle upon Tyne 10

A. Mokhov and A. Yakovlev: Conditional Partial Order Graphs and Dynamically Recon�gurable
Control Synthesis

[7] Danil Sokolov and Alex Yakovlev. Clock-less circuits and system synthesis. In IEE Proceedings,

Computers and Digital Techniques, 2005.

[8] Jens Sparsø and Steve Furber. Principles of Asynchronous Circuit Design: A Systems Perspective.

Kluwer Academic Publishers, 2001.

[9] Kees van Berkel, Mark Josephs, and Steven Nowick. Scanning the technology: applications of

asynchronous circuits. In Proceedings of the IEEE, 1999.

[10] K. van Berkel et al. The VLSI-programming language Tangram and its translation into handshake

circuits. In European Conference on Design Automation, 1991.

NCL-EECE-MSD-TR-2008-125, University of Newcastle upon Tyne 11

