
An Open-Loop Flow Control Scheme Based on the Accurate Global Information of

On-Chip Communication

Woo-Cheol Kwon, Sung-Min Hong, Sungjoo Yoo, Byeong Min, Kyu-Myung Choi, Soo-Kwan Eo

CAE Team, System LSI Division, Semiconductor Business, Samsung Electronics

ABSTRACT

3D stacked memory is being adopted as a promising solution to

offer high bandwidth and low latency in memory access. Compared

with the on-chip network design with conventional off-chip memory,

it gives a new problem of minimizing communication conflicts since

multiple concurrent high bandwidth data transfers will flow

through the on-chip network. In order to tackle this problem, we

propose applying an open-loop flow control scheme based on the

accurate global information (destination and status) of on-chip

communication. The proposed open-loop flow control scheme

exploits the information and selectively buffers and arbitrates data

transfers to remove conflicts at destinations in a preventive manner.

As an implementation of the presented scheme, we present on-chip

buffers called Buf3D’s that share the global information with each

other to perform the selective buffering and arbitration of data

transfers. Experiments with synthetic test cases and an industrial

strength DTV design show that the proposed method improves

aggregate memory bandwidth significantly (average 19.0%~25.8%

in the synthetic cases and up to 18.4% in the DTV case) with a

small area overhead (15.2% in the DTV case) of on-chip network.

1. Introduction
3D stacked memory is gaining more and more attention as one of

promising system-in-package architectures [1][2][3]. The main

benefits of 3D stacked memory are twofold: increased memory

bandwidth and lower latency. It gives higher memory bandwidth

with more memory ports (tens of 64b ports per memory die can be

achieved via vertical die to die interconnect, e.g. face-to-face or

through silicon via [2]) than conventional DDR memory usage (one

or two ports per memory die). It gives also lower memory access

latency since three dimensional interconnect can give shorter wire

length than two dimensional one [2]. Thus, 3D stacked memory

architectures are expected to be applied to many-core designs

[4][5][6] where the requirements of memory bandwidth and latency

will be much higher than current SoC designs.

The problem of simultaneously accessing multiple slaves (e.g.

small SRAM’s or multiple peripheral devices) may not be new in

on-chip communication. In reality, it was not a performance critical

issue. However, the performance to access multiple off-chip DDR

memories is an important performance problem since it will

determine the entire system performance.

DDR memory is usually used for heavy (high bandwidth and

large volume) data flows. With 3D stacked memory, masters can

exploit the increased bandwidth and reduced latency by accessing

multiple memory modules simultaneously. Thus, there can be

significant amount of concurrent data transfers between a few

heavily communicating masters and memory modules. In such a

case, there will be more possibility of conflicts at those masters than

when conventional (one or two port) DDR memory is used.

The conflicts are mostly caused by concurrent data transfers

going to the same destination. For instance, a master may generate

concurrent data transfers (for read data) from multiple memory

modules to the master by issuing consecutively multiple memory

read requests to different memory modules. In such a case, the

concurrent data transfers (carrying the requested data) from

different memory modules may conflict with each other at the

master interface port.

Conflict (in other words, congestion) resolution requires flow

control. In general communication networks, closed-loop flow

control schemes are usually applied. Congestion (conflict) info is

propagated from the congested destination (or congested link) to the

sources via the feedback loop such as back-pressure through buffer

overflow, delayed permit, increased retransmission, and/or choke

packet [12][13]. However, these methods suffer from unnecessary

occupation of network resource (e.g. buffer) and memory modules

(whose new data transfer is blocked by the previously blocked data

transfer) or large and unpredictable delay in the feedback loop.

Section 3 gives the example of this problem in the context of 3D

stacked memory usage.

Compared with conventional communication networks, one

salient characteristic of on-chip network is that the accurate global

information, i.e. which data transfer flows currently from which

source to which destination, can be gathered and exploited to better

control conflicts in communication. In this paper, we propose

applying an open-loop flow control scheme based on the accurate

global information of on-chip communication at the communication

sources, not based on the feedback information. Based on this

information, the proposed scheme selectively buffers and arbitrates

data transfers, in front of sources, to avoid conflicts at destinations

in a preventive manner. For the implementation of the scheme, we

present an on-chip network architecture with a global information

bus and buffers dedicated to the open-loop flow control scheme.

This paper is organized as follows. Section 2 reviews related

work. Section 3 gives an example of communication conflict with

multiple memory modules. Section 4 presents the on-chip network

architecture with the proposed flow control scheme. Section 5

reports experimental results. Section 6 concludes the paper.

2. Related Work
In order to fully utilize both the increased bandwidth and

reduced latency of 3D stacked memory, on-chip cache and on-chip

network architectures need to be optimized for multiple memory

modules. There have been several studies on cache and network-on-

chip (NoC) architecture for this purpose [2][7]. They tackle the

design of cache and NoC by exploring cache design space (e.g.,

shared or private L2, inclusion or not, etc.) or by devising an NoC

router architecture for communication among vertically stacked dies.

Closed-loop flow control is applied to NoC in several studies

based on buffer usage (e.g. credit-based [14], router-to-router

978-3-9810801-3-1/DATE08 © 2008 EDAA

handshake-based [9], etc.) or in a bufferless manner [15]. In [11], a

method of predictive flow control is presented. It is based on the

router and traffic source models that allow for the prediction of

congestion in the network.

In terms of exploiting the global information of communication,

a concept of control NoC is presented in [16]. It transfers the

information of communication statistics (e.g., # blockings) from

destinations to sources. There are two main differences between

[16] and ours: the source of global information and flow control

scheme (open or closed-loop). [16] gathers an indirect information

(e.g. congestion status) at destinations and exploits it in controlling

packet injection rate at sources while ours gathers a more direct and

detailed information (e.g. which transfers (can) go to which

destinations) and exploits it to arbitrate (and buffer) data transfers at

the source side.

Compared with the existing closed-loop flow control schemes for

on-chip networks, the benefit of the proposed open-loop scheme is

that it allows for a more precise control of conflicts at the

destinations based on the arbitration and buffering, at the source

side, using the detailed global information of data transfers.

3. Motivational Example
Figure 1 illustrates an example of on-chip network with two

memory modules. In the figure, the on-chip network is exemplified

with a 2x2 mesh NoC (rectangles annotated with ‘R’ represent

routers). We assume that masters and memory controllers have AXI

interface [10]. Thus, we use network interfaces (NI’s) to connect

them to the NoC.

Memory

Controller

1

Memory

Controller

2

Master

2
R R

R R

NoC

Master

1

Memory

1

Memory

2

A

B

C

NI

NI

NI

NI

Figure 1 An on-chip network with multiple memory modules

Assume that master 1 tries to exploit the increased bandwidth

and (possibly) reduced latency of multiple memories by making two

independent read requests A and B consecutively to two memory

modules as denoted with dotted and dashed arrows in Figure 11.

Master 2 makes a read request C to memory 2 just after request B

arrives at the memory controller 2. We assume zero-latency memory

for the simplicity of explanation while this example and our

approach hold for real delay cases as in our experiments.

Figure 2 (a) shows an operation scenario of the memory accesses.

At time t1, we assume that two requests A and B arrive at memory 1

1 We assume that the master can make multiple outstanding requests

that most of advanced on-chip network protocols, e.g. AXI and

OCP support. Note also that there is a critical design issue on how

many bus ports to use for accessing multiple memories. It is

beyond the scope of this paper. We assume that the number of bus

ports is fixed and that a single port can access multiple memories.

and 2, respectively. Since both data transfers of requests A and B

are ready, they start at time t1. However, they have a conflict with

each other at their destination, master 1. Assume that request A’s

data are transferred to master 1 before request B’s data2 . Thus,

request B’s data are blocked 3 . The backpressure of blocking is

propagated along the path in the NoC to memory 2. The blocked

data transfer may continue to occupy the NoC resource (e.g. virtual

channel buffers), and finally to block memory 2 during the blocked

period. The figure illustrates the (partially) blocked status of NoC

and memory 2 with shaded rectangles.

Master 1

Master 2

A B

C

Requests A and B arrive at memory 1 and 2

(a) Case #1

t1 t2 t3

Request C arrives at memory 2

Memory 1 A

NoC B

Memory 2 B B C

NoC is partially blocked by B

Memory 2 is blocked by B

Master 1

Master 2

B A

C

Requests A and B arrive at memory 1 and 2

(b) Case #2

Request C arrives at memory 2

Memory 1 A

NoC

Memory 2 B C

NoC is not blocked in this case.

A is transferred

from the buffer.

t1 t2 t3

Memory 1 transfers A to the buffer

Figure 2 Two cases of data transfers

The blocking is resolved at time t2 when the data transfer of

request A finishes, and that of request B starts. Request C’s data

transfer starts only after request B’s finishes at time t3. Thus, in this

case, the three data transfers run sequentially though there is enough

resource (two memory modules and multiple paths on NoC) for

concurrent data transfers.

The sequential execution results from the conflict between A’s

and B’s data transfers at master 1. Flow control based on buffering

may resolve the conflict. Assume that a buffer is inserted between

2 The optimal decision of which data transfer to allow first is a

fundamental problem in this case. Our solution presented in this

paper tackles this problem in the viewpoint of congestion control.

A complete solution will require further investigations.

3 Even in the case that virtual channels [8] are used in the link

between master 1’s NI and the router and that both data transfers of

request A and B share the link via virtual channels, we will still

have the problem of occupying NoC resource (by each of the two

data transfers at a half level) and, finally, possible blocking at

memory 1 and 2.

memory controller 1 and the NI as illustrated with a shaded oval in

Figure 1. When using the buffer, one critical runtime decision is

whether to store data in the buffer or to bypass the buffer without

storing data. A simple closed-loop flow control scheme will be that,

after the data transfer is blocked at the destination or somewhere on

the NoC and the feedback of blocking information is received, the

remaining data are stored in the buffer. If this scheme is applied, i.e.

if request A’s data are not buffered but bypass the buffer, we will

obtain the same scenario as the one in Figure 2 (a). Thus, we need a

sophisticated scheme to make a better buffering decision to resolve

the conflict.

Figure 2 (b) exemplifies the flow control scheme proposed in this

paper. At time t1, when both data transfers of requests A and B are

ready, request A’s data do not enter the NoC, but are stored in the

buffer. The decision of buffering request A’s data can be made

based on the global information that there are two concurrent data

transfers (of requests A and B) bound for the same destination

(master 1). The rationale of buffering request A’s data is that since

both data transfers are bound for the same destination and finally

there will be an inevitable conflict, it will be better to buffer one of

the two transfers and to allow the buffered one to be transferred

later when there is no possibility of conflict. This scheme is ‘open-

loop’ one since it does not depend on the feedback information on

conflicts on destination or NoC. Instead, based on the global

information available at sources, it predicts precisely whether

conflicts will occur at destinations or not and makes the decision of

buffering and arbitration to avoid the conflicts in a preventive

manner4.

As shown in Figure 2 (b), at time t2, the buffered data of request

A start to be transferred to master 1. At the same time, request C’s

data are transferred from memory 2 to master 2. Note that at time t2,

memory 1 becomes free after finishing the transfer of request A’s

data to the buffer.

As shown in Figure 2 (b), the proposed scheme gives two

benefits. First, the total runtime decreases since both the data

transfers of requests A and C run concurrently in this scheme.

Second, there is no blocking on NoC and memory modules.

Comparing the two cases in Figure 2, the proposed flow control

scheme can give a better result than a simple closed-loop flow

control scheme gives.

4. Proposed Open-Loop Flow Control

Scheme
In this section, we first introduce an on-chip network architecture

with the open-loop flow control capability. Then, we explain a two-

step arbitration to avoid conflicts based on the global information

and the key component of the proposed scheme, the buffer called

Buf3D (buffer for 3D stacked memory).

4.1 On-chip Network Architecture with Open-

Loop Flow Control Capability
Figure 3 shows the on-chip network architecture. The figure

shows only the part of read data network in the on-chip network

since there is no change in the other parts of on-chip network for

4 To be exact, the proposed method performs an ‘open loop’ control

from the viewpoint of entire on-chip network. However, there are

closed loops among sources via the GI bus.

request and write data processing compared with the conventional

on-chip network. The read data network consists of the read data

network of conventional on-chip network 5 (shown as On-chip

Network in Figure 3) and two new parts: global information (GI)

bus and buffers for 3D stacked memory (Buf3D’s).

The buffers (Buf3D’s) perform the open-loop flow control. Thus,

they need to share the global information with each other and make

the buffering decisions based on the information. In Figure 3, the GI

bus carries the global information. Each Buf3D provides the GI bus

with the information of its currently ready data transfer. Each

Buf3D also receives via the GI bus the information of currently

ready data transfers of the other Buf3D’s.

Master

2

Master

1

Memory

Controller 1

Memory

Controller 2

Master

4

Master

3

Memory

Controller 3

Memory

Controller 4

On-chip Network

GI bus

GCA

Buf3D

GCAGCAGCA

Figure 3 On-chip network architecture with the open-loop flow

control

Functionally, the Buf3D can handle multiple independent data

flows. We define a data flow to be an ordered set of data transfers

(identified by transaction id in the case of AXI protocol). The

Buf3D supports a specified number (called reorder depth NRD) of

those data flows. The Buf3D has one fifo per one data flow. Thus,

dynamic assignment of fifos to data flows is performed in the

Buf3D.

When a data transfer arrives at the Buf3D from the memory

controller, if there is any fifo assigned to the data flow of the data

transfer and if the fifo is not full, the data is forwarded to the fifo. If

there is no fifo assigned to the data flow and if there is an empty fifo,

the fifo is assigned to the data flow of the data transfer.

4.2 Two-Step Arbitration to Avoid Conflicts
The arbitration of data transfers among Buf3D’s is the critical

function in the presented open-loop scheme. It consists of two

steps: local and global arbitration. Figure 4 illustrates the two-step

arbitration.

In the local arbitration, each Buf3D selects a local winner among

multiple ready data transfers from its fifos. The global arbitration is

performed per destination. It selects a global winner among the

local winners of Buf3D’s that are bound for the same destination.

For both local and global arbitration, we can apply existing

arbitration schemes, e.g., (weighted) round robin, fixed priority, mix

of round robin and fixed priority, min/max latency-based, etc. The

5 For instance, in the case of AXI-based on-chip network, the read

data network corresponds to the network connecting only the read

data channels among the five AXI channels (read/write address,

read/write data, and response channels).

arbitration scheme(s) applies to the fifos in the local arbitration and

to the Buf3D’s in the global arbitration.

In Figure 4, we assume that the NRD of Buf3D is four. We denote

ready data transfers with shaded rectangles. Each ready data transfer

also shows its destination id. For instance, Buf3D #1 has three

ready data transfers: one bound for master #4, another master #2,

and the other master #36.

As shown in Figure 4, the two-step arbitration is applied in a

number of rounds (at maximum, min(# masters, # Buf3D’s) rounds).

Suppose that the round robin scheme is applied to the local

arbitration of all Buf3D’s7. Figure 4 exemplifies that Buf3D #1

selects data transfer #2 as the local winner, Buf3D #2 data transfer

#2, and Buf3D #3 data transfer #3 in the local arbitration of the first

round.

2 43 24 3

Local

Arbitration

Global

Arbitration

Local

Arbitration

Global

Arbitration

1st

round

2nd

round

Global winner

for dest id #2

Global winner

for dest id #4

Global winner

for dest id #3

Buf3D #1 Buf3D #2 Buf3D #3

Figure 4 An example of two-step arbitration

In our example of Figure 4, in the global arbitration of the first

round, two data transfers with destination id #2 (one from Buf3D #1

and the other from Buf3D #2) have a conflict. To be exact, if they

are allowed to start, they will finally have a conflict at their

destination, master #2. Assume that the priority-based scheme is

applied to the global arbitration and that the priorities are assigned

as Buf3D #1 > Buf3D #2 > Buf3D #3 (Buf3D #1 has the highest

priority). Since Buf3D #1’s priority is higher than Buf3D #2’s,

Buf3D #1’s transfer becomes the global winner for destination #2.

In the case of Buf3D #3, since there is no conflict with its data

transfer bound for destination id #3, its data transfer becomes the

global winner for destination #3.

In the second round, the Buf3D’s with global winners do not

participate. Instead, only the Buf3D’s that lost the first round

participate with a new local winner. In the example, as shown in the

figure, Buf3D #2 selects data transfer bound for destination id #4 as

the new local winner in the second round. Since there is no conflict

with other transfers, the data transfer becomes the global winner for

destination #4.

Figure 5 shows the pseudo code of two-step arbitration in Buf3D.

Note that the basic assumption of two-step arbitration is that each

Buf3D has the same global arbitration scheme per destination. Note

also that the arbitration makes the decision of ‘buffer the data’

6 In this section, we use two terms, destination and master,

interchangeably.

7 Note that each Buf3D can have different local arbitration schemes.

For simplicity of explanation, we assume the same policy for all

the Buf3D’s in this example.

(when the data is not the winner) or ‘bypass the buffer’ (when the

data just arrives at the Buf3D, if it becomes the winner in the two-

step arbitration, it is sent to the destination without being stored at

the buffer) mentioned in Section 3.

Note that the GI bus interconnects Buf3D’s that can be

distributed over the entire SoC. Thus, the communication over the

GI bus can have multi-cycle delay. In such a case, each Buf3D will

perform the two-step arbitration based on the cycle(s) old

information of the ready data transfers of the other Buf3D’s, which

may degrade the performance of the proposed method. In our

experiments, we investigate the effect of GI bus delay.

1 TwoStepArbitration() {

2 while (lw = LocalARB()) {

3 gw = GlobalARB(lw);

4 if (gw == lw) { mark lw as the winner transfer; break; }

5 else goto line #2;

6 }

7 if (there is a winner) StartWinnerTransfer();

8 }
Figure 5 Pseudo code of two-step arbitration

4.3 Buffer for 3D Stacked Memory
Figure 6 shows the internal structure of Buf3D (with AXI

interface protocol 8). It consists of a shared data buffer (and its

related logic) and a block for global conflict avoidance (GCA).

Buf3D receives data from the memory controller while sending data

to the on-chip network in a pipelined manner. Buf3D also provides

the GI bus with its information of ready data transfer, i.e.

destination id and the status of its local winner. In the case of AXI-

based Buf3D, destination id corresponds to master id9 and the status

of data transfer to signal rvalid in the read data channel of AXI

interface. They represent whether the data transfer bound for the

master with master id is currently ready or not (if rvalid is high, the

data are ready to be transferred).

GCA

t_id

t_id

t_id

t_id

GCA

master_id

rvalid

Global info:

{ master_id, rvalid }

from memory

to OCN

from GI bus

Data

buffer

Figure 6 Internal structure of Buf3D with AXI protocol

In order to implement the fifos assigned to data flows, the shared

data buffer has its own control logic that consists of transfer id

8 Other interface protocols such as OCP can also be applied to the

Buf3D design. In this section, we present the AXI-based Buf3D

to give a more concrete example.

9 Master id is a part of transaction id of AXI interface, called port id,

in the case of ARM crossbar component, PL301 [10].

nodes and linked lists. In the figure, transfer id nodes are denoted

with rectangles. Each independent data flow is managed with a

separate linked list of transfer id nodes. The figure illustrates two

linked lists of transfer id nodes. The head transfer id nodes are

denoted with shaded rectangles. Only the data transfers at the heads

of the lists are ready ones. Each transfer id node has an associated

linked list of data elements in the data buffer as illustrated in the

figure.

The GCA block performs the two-step arbitration. To do that, it

uses both the local and global information. The local information is

the list of currently ready data transfers stored in the data buffer. As

illustrated with two arrows going to the GCA block from transfer id

nodes in Figure 6, the GCA block reads the local information of

head transfer id nodes. It also reads the global information that is a

set of signals from the GI bus (in this example, the set consists of

master id’s and rvalid’s in the data channels of AXI interface of the

other Buf3D’s).

5. Experimental Result
In our experiments, we use two test cases: synthetic ones and

industrial strength DTV SoC case.

5.1 Synthetic Test Cases
The synthetic test cases are similar to the one in Figure 3. They

consist of M 64b AXI masters and N 32b DDR memory modules

(tCL-tRP-tRCD=3-3-3, 4 banks/memory). We change the number

of masters, M (2 ~ 8) and that of memory modules, N (2 ~ 8) in the

experiments. We use commercial AXI crossbar (PL301) and

memory controller (PL340) [10]. PL340 has the data fifo with size

16 (64b words). The GI bus consists of N x (log2M + 1) signals10.

Thus, for instance, in the case of 8 memory modules and 8 masters,

we have a 32b GI bus (32 = 8*(log28+1)).

Given N memory modules, each master accesses all the memory

modules simultaneously by continuously generating memory read

requests (with random memory addresses and burst size 8). We run

RTL simulation. In the simulation, each master reads the same total

amount of data from multiple memory modules. We set the local

and global arbitration schemes to round robin and priority-based

one, respectively. We set NRD to four and the size of shared buffer

to 128 bytes for each of Buf3D’s.

Figure 7 shows the comparison of normalized performance (total

runtime 11 to complete the entire simulation) among two designs

with conventional closed-loop scheme (CL and CL+Buffer) and

four designs with Buf3D. The X-axis represents the configurations

of masters and memory modules (e.g. 4x8 represents the case of 4

masters and 8 memory modules). We implement the case with the

closed-loop scheme and buffer (CL+Buffer) by using Buf3D’s only

as buffers. The four designs with Buf3D’s are experimented to show

the effect of GI bus delay. We experiment the GI bus delay from

zero (the case, Buf3D in the figure, with only combinational delay

among Buf3D’s) to three cycles (Buf3D 3L).
As shown in Figure 7, the open-loop flow control scheme gives

significant performance improvement. It gives 9.2%~36.6%

(average 25.8%) performance gain w.r.t. the closed-loop scheme in

10 The size of destination id, i.e. port id size is log2M where M is the

number of masters covered by all the Buf3D’s.

11 In this case, the aggregate memory bandwidth is reversely

proportional to the total runtime since the aggregate bandwidth is

equal to (total transferred data volume that is fixed) / (total

runtime).

the case (Buf3D) that only the combinational delay exists in the GI

bus. As the GI bus delay increases, the gain decreases slightly. Even

in the case of significant GI bus delay of three cycles (Buf3D 3L),

the gain is still 7.5%~25.3% (average 19.0%). These results show

that the proposed scheme can be effective in removing the

communication conflicts thereby improving the memory

performance.

Figure 7 also shows the case of applying only the buffering to the

closed-loop scheme (CL+Buffer). As the figure shows, the buffering

does not improve the average performance. This is a result already

expected when flow control with buffer was mentioned in Section 3.

Without a sophisticated scheme like the one presented here, a

simple buffering in the closed-loop scheme is not effective. A more

extensive comparison between the proposed method and general

buffering methods (e.g. buffering in routers, memory controllers,

and network interfaces) will be beyond the scope of this paper. We

will investigate this issue in our future work.

0

20

40

60

80

100

120

2x2 2x4 2x8 4x2 4x4 4x8 8x2 8x4 8x8 AVG

CL

CL+Buffer

Buf3D

Buf3D 1L

Buf3D 2L

Buf3D 3L

Figure 7 Comparisons of normalized runtime

5.2 Digital TV SoC Case
The digital TV SoC consists of +30M gates and more than 50

masters/slaves for QFHD size (3840x2160) video processing [17].

Many of masters/slaves are connected to low bandwidth local

AXI/AHB/APB buses. We evaluate the effect of the proposed

scheme by applying it to the backbone on-chip network of this SoC

which is similar to the one in Figure 3. The backbone network has

four memory modules, four memory controllers (PL340’s), and four

Buf3D’s. We use the same configurations of Buf3D and memory

controller (the fifo size is 16) as in the synthetic test cases. It has

eight masters: four video codec IPs and four different pixel

processing IPs (e.g. noise reduction, mixer, 3D graphics, etc.).
In terms of memory access behavior of masters, video codec IPs

and pixel processing IPs have different access patterns. Each of

video codec IPs accesses only one dedicated memory module since

each IP covers 1/4 of total video frame. Thus, the memory accesses

from different video codec IPs do not overlap with each other at

memory modules. However, each of pixel processing IPs accesses

all the four memory modules. This design decision results mainly

from the fact that duplicating pixel processing IPs incurs too high

area overhead. Thus, there are conflicts at the input of pixel

processing IPs when the requested data transfers arrive

simultaneously at the same master inputs.

Figure 8 shows the performance comparison for digital TV SoC

case. The proposed scheme gives up to 18.4% and 12.6%

improvement (in the case of Buf3D in the figure) in aggregate

memory utilization and average memory access latency (from

master’s request to the end of data transfer at the master). Aggregate

memory utilization is defined to be the average of each memory

module’s utilization. The memory utilization of each memory

module is defined to be (# clock cycles used for data transfer) / (#

total clock cycles).
Figure 8 also shows the effect of GI bus delay on the aggregate

memory utilization and latency. We obtain the best case when the

GI bus has a combinational delay (Buf3D). As the GI network

latency increases up to three clock cycles, the aggregate memory

utilization and average memory access latency degrade slowly. Thus,

when the delay is three clock cycles, the improvements are still

significant, 8.5% and 10.3% in utilization and latency, respectively.

The results show that the proposed method is still effective when

the GI bus has a relatively long latency cycle. However, in the case

that the latency becomes more severe, application-specific

optimizations (topology and floorplan) of GI bus design and

latency-aware methods for the open-loop flow control will be

required, which is our future work.

(a) Utilization (%)

(b) Memory access latency (cycles)

150

200

250

300

CL CL+Buffer Buf3D Buf3D 1L Buf3D 2L Buf3D 3L

50

55

60

65

70

75

CL CL+Buffer Buf3D Buf3D 1L Buf3D 2L Buf3D 3L

Figure 8 Performance comparison in the DTV SoC case

Table 1 Area comparison for digital TV SoC case (in gates)

 Conventional Proposed

Total area of OCN 646K 762K

Area of four Buf3D’s 0 116K (15.2%)

Table 1 shows the area comparison obtained from synthesis

(Synopsys DC) with 200MHz as the target frequency at a

proprietary 65nm low power technology. The total area of on-chip

network (OCN) includes that of PL301 (including internal pipeline

stages to meet 200MHz), PL340’s, and Buf3D’s. As shown in the

table, the proposed scheme has a small area overhead (15.2%)

compared with the total on-chip network area including that of

Buf3D’s. The area overhead of the GI bus (32b) is very small w.r.t.

that of total on-chip network area. As a specific example, assuming

a fully connected implementation of GI bus among the four

Buf3D’s with three cycle latency, the gate count of the GI bus will

be about 5.8Kgates (32b/link * 6 links * 3 * 10gates/b ~ 5.8Kgates)

where a 1 bit F/F is assumed to have 10 gates. Considering the total

chip size (+30Mgates), the overhead (116Kgates, less than 0.39% of

total chip area) can be justified by the significant improvement

(18.4%) in the aggregate memory bandwidth of on-chip

communication over the backbone network.

6. Conclusion
In this paper, we propose an open-loop flow control scheme and

its implementation, a buffer called Buf3D. The proposed scheme

reduces the conflicts of data transfers from multiple memory

modules to the same masters thereby improving the memory

utilization by up to 18.4% with a small area overhead (15.2%) of

on-chip network for an industrial strength DTV SoC design.

The design space related with Buf3D can be large since there are

many parameters impacting the performance/area/power of

Buf3D’s: reordering depth and fifo size per Buf3D, local and global

arbitration schemes (including QoS) per Buf3D and per destination

id, respectively, the assignment of Buf3D’s to memory modules, etc.

In addition, since the proposed open-loop scheme does not take into

account congestion in the NoC, there can be further optimizations

by integrating both open and closed-loop flow control schemes to

tackle both conflicts at destination and network links.

7. References
[1] T. Ezaki, et. al., “A 160Gb/s Interface Design Configuration for

Multichip LSI”, Proc. ISSCC, 2004.

[2] F. Li, et. al., “Design and Management of 3D Chip Multiprocessors

Using Network-in-Memory”, Proc. ISCA, 2006.

[3] S. Borkar, “Thousand-Core Chips - A Technology Perspective”, Proc.

DAC, 2007.

[4] Intel TeraScale Computing, available at http://www.intel.com

[5] S. Vangal, et. al., “An 80-Tile 1.28TFLOPS Network-on-Chip in 65nm

CMOS”, Proc. ISSCC, 2007.

[6] K. Asanovic, et. al., “The Landscape of Parallel Computing Research: A

View From Berkeley”, available at

http://view.eecs.berkeley.edu/wiki/Main_Page

[7] L. Hsu, et. al., “Exploring the Cache Design Space for Large Scale

CMPs”, SIGARCH Computer Architecture News, 33(4), 2005.

[8] W. Dally, “Virtual Channel Data Flow Control”, IEEE Trans. Parallel

Distributed Systems, 3(2), March 1992.

[9] A. Pullini, et. al., “Fault Tolerance Overhead in Network-on-Chip Flow

Control Schemes”, Proc. SBCCI, 2005.

[10] AMBA3 protocol and components, available at

http://www.arm.com/products/solutions/AMBAHomePage.html

[11] U. Y. Ogras and R. Marculescu, “Prediction-based Flow Control for

Network-on-Chip Traffic”, Proc. DAC, 2006.

[12] D. Qiu and N. B. Shroff, “A Predictive Flow Control Scheme for

Efficient Network Utilization and QoS”, IEEE Trans. on Networking, 12(1),

Feb. 2004.

[13] D. Bertsekas and R. Gallager, “Data Networks”, Prentice-Hall, 1992.

[14] A. Radulescu, et. al., “An Efficient On-chip NI Offering Guaranteed

Services, Shared Memory Abstraction, and Flexible Network

Configuration”, IEEE Trans. on CAD, 24(1), 2005.

[15] E. Nilsson, et. al., “Load Distribution with the Proximity Congestion

Awareness in a Network on Chip”, Proc. DATE, 2003.

[16] P. Avasare, et. al., “Centralized End-to-End Flow Control in a Best-

Effort Network-on-Chip”, Proc. EMSOFT, 2005.

[17] Y. Lin, “Design Challenge of a QuadHDTV Video Decoder”, MPSoC

School, 2007, available at http://tima.imag.fr/mpsoc.

	Main
	DATE08
	Front Matter
	Table of Contents
	Author Index

