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ABSTRACT 

3D stacked memory is being adopted as a promising solution to 

offer high bandwidth and low latency in memory access. Compared 

with the on-chip network design with conventional off-chip memory, 

it gives a new problem of minimizing communication conflicts since 

multiple concurrent high bandwidth data transfers will flow 

through the on-chip network. In order to tackle this problem, we 

propose applying an open-loop flow control scheme based on the 

accurate global information (destination and status) of on-chip 

communication. The proposed open-loop flow control scheme 

exploits the information and selectively buffers and arbitrates data 

transfers to remove conflicts at destinations in a preventive manner. 

As an implementation of the presented scheme, we present on-chip 

buffers called Buf3D’s that share the global information with each 

other to perform the selective buffering and arbitration of data 

transfers. Experiments with synthetic test cases and an industrial 

strength DTV design show that the proposed method improves 

aggregate memory bandwidth significantly (average 19.0%~25.8% 

in the synthetic cases and up to 18.4% in the DTV case) with a 

small area overhead (15.2% in the DTV case) of on-chip network. 

 

1. Introduction 
3D stacked memory is gaining more and more attention as one of 

promising system-in-package architectures [1][2][3]. The main 

benefits of 3D stacked memory are twofold: increased memory 

bandwidth and lower latency. It gives higher memory bandwidth 

with more memory ports (tens of 64b ports per memory die can be 

achieved via vertical die to die interconnect, e.g. face-to-face or 

through silicon via [2]) than conventional DDR memory usage (one 

or two ports per memory die). It gives also lower memory access 

latency since three dimensional interconnect can give shorter wire 

length than two dimensional one [2]. Thus, 3D stacked memory 

architectures are expected to be applied to many-core designs 

[4][5][6] where the requirements of memory bandwidth and latency 

will be much higher than current SoC designs. 

The problem of simultaneously accessing multiple slaves (e.g. 

small SRAM’s or multiple peripheral devices) may not be new in 

on-chip communication. In reality, it was not a performance critical 

issue. However, the performance to access multiple off-chip DDR 

memories is an important performance problem since it will 

determine the entire system performance.  

DDR memory is usually used for heavy (high bandwidth and 

large volume) data flows. With 3D stacked memory, masters can 

exploit the increased bandwidth and reduced latency by accessing 

multiple memory modules simultaneously. Thus, there can be 

significant amount of concurrent data transfers between a few 

heavily communicating masters and memory modules. In such a 

case, there will be more possibility of conflicts at those masters than 

when conventional (one or two port) DDR memory is used.  

The conflicts are mostly caused by concurrent data transfers 

going to the same destination. For instance, a master may generate 

concurrent data transfers (for read data) from multiple memory 

modules to the master by issuing consecutively multiple memory 

read requests to different memory modules. In such a case, the 

concurrent data transfers (carrying the requested data) from 

different memory modules may conflict with each other at the 

master interface port. 

Conflict (in other words, congestion) resolution requires flow 

control. In general communication networks, closed-loop flow 

control schemes are usually applied. Congestion (conflict) info is 

propagated from the congested destination (or congested link) to the 

sources via the feedback loop such as back-pressure through buffer 

overflow, delayed permit, increased retransmission, and/or choke 

packet [12][13]. However, these methods suffer from unnecessary 

occupation of network resource (e.g. buffer) and memory modules 

(whose new data transfer is blocked by the previously blocked data 

transfer) or large and unpredictable delay in the feedback loop. 

Section 3 gives the example of this problem in the context of 3D 

stacked memory usage.  

Compared with conventional communication networks, one 

salient characteristic of on-chip network is that the accurate global 

information, i.e. which data transfer flows currently from which 

source to which destination, can be gathered and exploited to better 

control conflicts in communication. In this paper, we propose 

applying an open-loop flow control scheme based on the accurate 

global information of on-chip communication at the communication 

sources, not based on the feedback information. Based on this 

information, the proposed scheme selectively buffers and arbitrates 

data transfers, in front of sources, to avoid conflicts at destinations 

in a preventive manner. For the implementation of the scheme, we 

present an on-chip network architecture with a global information 

bus and buffers dedicated to the open-loop flow control scheme.  

This paper is organized as follows. Section 2 reviews related 

work. Section 3 gives an example of communication conflict with 

multiple memory modules. Section 4 presents the on-chip network 

architecture with the proposed flow control scheme. Section 5 

reports experimental results. Section 6 concludes the paper. 

 

2. Related Work 
In order to fully utilize both the increased bandwidth and 

reduced latency of 3D stacked memory, on-chip cache and on-chip 

network architectures need to be optimized for multiple memory 

modules. There have been several studies on cache and network-on-

chip (NoC) architecture for this purpose [2][7]. They tackle the 

design of cache and NoC by exploring cache design space (e.g., 

shared or private L2, inclusion or not, etc.) or by devising an NoC 

router architecture for communication among vertically stacked dies.  

Closed-loop flow control is applied to NoC in several studies 

based on buffer usage (e.g. credit-based [14], router-to-router 

978-3-9810801-3-1/DATE08 © 2008 EDAA 

 



handshake-based [9], etc.) or in a bufferless manner [15]. In [11], a 

method of predictive flow control is presented. It is based on the 

router and traffic source models that allow for the prediction of 

congestion in the network.  

In terms of exploiting the global information of communication, 

a concept of control NoC is presented in [16]. It transfers the 

information of communication statistics (e.g., # blockings) from 

destinations to sources. There are two main differences between 

[16] and ours: the source of global information and flow control 

scheme (open or closed-loop). [16] gathers an indirect information 

(e.g. congestion status) at destinations and exploits it in controlling 

packet injection rate at sources while ours gathers a more direct and 

detailed information (e.g. which transfers (can) go to which 

destinations) and exploits it to arbitrate (and buffer) data transfers at 

the source side. 

Compared with the existing closed-loop flow control schemes for 

on-chip networks, the benefit of the proposed open-loop scheme is 

that it allows for a more precise control of conflicts at the 

destinations based on the arbitration and buffering, at the source 

side, using the detailed global information of data transfers. 

 

3. Motivational Example 
Figure 1 illustrates an example of on-chip network with two 

memory modules. In the figure, the on-chip network is exemplified 

with a 2x2 mesh NoC (rectangles annotated with ‘R’ represent 

routers). We assume that masters and memory controllers have AXI 

interface [10]. Thus, we use network interfaces (NI’s) to connect 

them to the NoC. 
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Figure 1 An on-chip network with multiple memory modules 

 

Assume that master 1 tries to exploit the increased bandwidth 

and (possibly) reduced latency of multiple memories by making two 

independent read requests A and B consecutively to two memory 

modules as denoted with dotted and dashed arrows in Figure 11. 

Master 2 makes a read request C to memory 2 just after request B 

arrives at the memory controller 2. We assume zero-latency memory 

for the simplicity of explanation while this example and our 

approach hold for real delay cases as in our experiments. 

Figure 2 (a) shows an operation scenario of the memory accesses. 

At time t1, we assume that two requests A and B arrive at memory 1 

                                                                 

1 We assume that the master can make multiple outstanding requests 

that most of advanced on-chip network protocols, e.g. AXI and 

OCP support. Note also that there is a critical design issue on how 

many bus ports to use for accessing multiple memories. It is 

beyond the scope of this paper. We assume that the number of bus 

ports is fixed and that a single port can access multiple memories. 

and 2, respectively. Since both data transfers of requests A and B 

are ready, they start at time t1. However, they have a conflict with 

each other at their destination, master 1. Assume that request A’s 

data are transferred to master 1 before request B’s data2 . Thus, 

request B’s data are blocked 3 . The backpressure of blocking is 

propagated along the path in the NoC to memory 2. The blocked 

data transfer may continue to occupy the NoC resource (e.g. virtual 

channel buffers), and finally to block memory 2 during the blocked 

period. The figure illustrates the (partially) blocked status of NoC 

and memory 2 with shaded rectangles.  
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Figure 2 Two cases of data transfers 

 

The blocking is resolved at time t2 when the data transfer of 

request A finishes, and that of request B starts. Request C’s data 

transfer starts only after request B’s finishes at time t3. Thus, in this 

case, the three data transfers run sequentially though there is enough 

resource (two memory modules and multiple paths on NoC) for 

concurrent data transfers.  

The sequential execution results from the conflict between A’s 

and B’s data transfers at master 1. Flow control based on buffering 

may resolve the conflict. Assume that a buffer is inserted between 

                                                                 

2 The optimal decision of which data transfer to allow first is a 

fundamental problem in this case. Our solution presented in this 

paper tackles this problem in the viewpoint of congestion control. 

A complete solution will require further investigations. 

3 Even in the case that virtual channels [8] are used in the link 

between master 1’s NI and the router and that both data transfers of 

request A and B share the link via virtual channels, we will still 

have the problem of occupying NoC resource (by each of the two 

data transfers at a half level) and, finally, possible blocking at 

memory 1 and 2. 



memory controller 1 and the NI as illustrated with a shaded oval in 

Figure 1. When using the buffer, one critical runtime decision is 

whether to store data in the buffer or to bypass the buffer without 

storing data. A simple closed-loop flow control scheme will be that, 

after the data transfer is blocked at the destination or somewhere on 

the NoC and the feedback of blocking information is received, the 

remaining data are stored in the buffer. If this scheme is applied, i.e. 

if request A’s data are not buffered but bypass the buffer, we will 

obtain the same scenario as the one in Figure 2 (a). Thus, we need a 

sophisticated scheme to make a better buffering decision to resolve 

the conflict. 

Figure 2 (b) exemplifies the flow control scheme proposed in this 

paper. At time t1, when both data transfers of requests A and B are 

ready, request A’s data do not enter the NoC, but are stored in the 

buffer. The decision of buffering request A’s data can be made 

based on the global information that there are two concurrent data 

transfers (of requests A and B) bound for the same destination 

(master 1). The rationale of buffering request A’s data is that since 

both data transfers are bound for the same destination and finally 

there will be an inevitable conflict, it will be better to buffer one of 

the two transfers and to allow the buffered one to be transferred 

later when there is no possibility of conflict. This scheme is ‘open-

loop’ one since it does not depend on the feedback information on 

conflicts on destination or NoC. Instead, based on the global 

information available at sources, it predicts precisely whether 

conflicts will occur at destinations or not and makes the decision of 

buffering and arbitration to avoid the conflicts in a preventive 

manner4. 

As shown in Figure 2 (b), at time t2, the buffered data of request 

A start to be transferred to master 1. At the same time, request C’s 

data are transferred from memory 2 to master 2. Note that at time t2, 

memory 1 becomes free after finishing the transfer of request A’s 

data to the buffer.  

As shown in Figure 2 (b), the proposed scheme gives two 

benefits. First, the total runtime decreases since both the data 

transfers of requests A and C run concurrently in this scheme. 

Second, there is no blocking on NoC and memory modules. 

Comparing the two cases in Figure 2, the proposed flow control 

scheme can give a better result than a simple closed-loop flow 

control scheme gives. 

 

4. Proposed Open-Loop Flow Control 

Scheme 
In this section, we first introduce an on-chip network architecture 

with the open-loop flow control capability. Then, we explain a two-

step arbitration to avoid conflicts based on the global information 

and the key component of the proposed scheme, the buffer called 

Buf3D (buffer for 3D stacked memory). 

 

4.1 On-chip Network Architecture with Open-

Loop Flow Control Capability 
Figure 3 shows the on-chip network architecture. The figure 

shows only the part of read data network in the on-chip network 

since there is no change in the other parts of on-chip network for 

                                                                 

4 To be exact, the proposed method performs an ‘open loop’ control 

from the viewpoint of entire on-chip network. However, there are 

closed loops among sources via the GI bus. 

request and write data processing compared with the conventional 

on-chip network. The read data network consists of the read data 

network of conventional on-chip network 5  (shown as On-chip 

Network in Figure 3) and two new parts: global information (GI) 

bus and buffers for 3D stacked memory (Buf3D’s). 

The buffers (Buf3D’s) perform the open-loop flow control. Thus, 

they need to share the global information with each other and make 

the buffering decisions based on the information. In Figure 3, the GI 

bus carries the global information. Each Buf3D provides the GI bus 

with the information of its currently ready data transfer. Each 

Buf3D also receives via the GI bus the information of currently 

ready data transfers of the other Buf3D’s.  
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Figure 3 On-chip network architecture with the open-loop flow 

control 

 

Functionally, the Buf3D can handle multiple independent data 

flows. We define a data flow to be an ordered set of data transfers 

(identified by transaction id in the case of AXI protocol). The 

Buf3D supports a specified number (called reorder depth NRD) of 

those data flows. The Buf3D has one fifo per one data flow. Thus, 

dynamic assignment of fifos to data flows is performed in the 

Buf3D.  

When a data transfer arrives at the Buf3D from the memory 

controller, if there is any fifo assigned to the data flow of the data 

transfer and if the fifo is not full, the data is forwarded to the fifo. If 

there is no fifo assigned to the data flow and if there is an empty fifo, 

the fifo is assigned to the data flow of the data transfer.   

 

4.2 Two-Step Arbitration to Avoid Conflicts  
The arbitration of data transfers among Buf3D’s is the critical 

function in the presented open-loop scheme. It consists of two 

steps: local and global arbitration. Figure 4 illustrates the two-step 

arbitration. 

In the local arbitration, each Buf3D selects a local winner among 

multiple ready data transfers from its fifos. The global arbitration is 

performed per destination. It selects a global winner among the 

local winners of Buf3D’s that are bound for the same destination. 

For both local and global arbitration, we can apply existing 

arbitration schemes, e.g., (weighted) round robin, fixed priority, mix 

of round robin and fixed priority, min/max latency-based, etc. The 

                                                                 

5 For instance, in the case of AXI-based on-chip network, the read 

data network corresponds to the network connecting only the read 

data channels among the five AXI channels (read/write address, 

read/write data, and response channels). 



arbitration scheme(s) applies to the fifos in the local arbitration and 

to the Buf3D’s in the global arbitration. 

In Figure 4, we assume that the NRD of Buf3D is four. We denote 

ready data transfers with shaded rectangles. Each ready data transfer 

also shows its destination id. For instance, Buf3D #1 has three 

ready data transfers: one bound for master #4, another master #2, 

and the other master #36.  

As shown in Figure 4, the two-step arbitration is applied in a 

number of rounds (at maximum, min(# masters, # Buf3D’s) rounds). 

Suppose that the round robin scheme is applied to the local 

arbitration of all Buf3D’s7. Figure 4 exemplifies that Buf3D #1 

selects data transfer #2 as the local winner, Buf3D #2 data transfer 

#2, and Buf3D #3 data transfer #3 in the local arbitration of the first 

round.  
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Figure 4 An example of two-step arbitration 

 

In our example of Figure 4, in the global arbitration of the first 

round, two data transfers with destination id #2 (one from Buf3D #1 

and the other from Buf3D #2) have a conflict. To be exact, if they 

are allowed to start, they will finally have a conflict at their 

destination, master #2. Assume that the priority-based scheme is 

applied to the global arbitration and that the priorities are assigned 

as Buf3D #1 > Buf3D #2 > Buf3D #3 (Buf3D #1 has the highest 

priority). Since Buf3D #1’s priority is higher than Buf3D #2’s, 

Buf3D #1’s transfer becomes the global winner for destination #2. 

In the case of Buf3D #3, since there is no conflict with its data 

transfer bound for destination id #3, its data transfer becomes the 

global winner for destination #3.  

In the second round, the Buf3D’s with global winners do not 

participate. Instead, only the Buf3D’s that lost the first round 

participate with a new local winner. In the example, as shown in the 

figure, Buf3D #2 selects data transfer bound for destination id #4 as 

the new local winner in the second round. Since there is no conflict 

with other transfers, the data transfer becomes the global winner for 

destination #4. 

Figure 5 shows the pseudo code of two-step arbitration in Buf3D. 

Note that the basic assumption of two-step arbitration is that each 

Buf3D has the same global arbitration scheme per destination. Note 

also that the arbitration makes the decision of ‘buffer the data’ 

                                                                 

6  In this section, we use two terms, destination and master, 

interchangeably. 

7 Note that each Buf3D can have different local arbitration schemes. 

For simplicity of explanation, we assume the same policy for all 

the Buf3D’s in this example. 

(when the data is not the winner) or ‘bypass the buffer’ (when the 

data just arrives at the Buf3D, if it becomes the winner in the two-

step arbitration, it is sent to the destination without being stored at 

the buffer) mentioned in Section 3. 

Note that the GI bus interconnects Buf3D’s that can be 

distributed over the entire SoC. Thus, the communication over the 

GI bus can have multi-cycle delay. In such a case, each Buf3D will 

perform the two-step arbitration based on the cycle(s) old 

information of the ready data transfers of the other Buf3D’s, which 

may degrade the performance of the proposed method. In our 

experiments, we investigate the effect of GI bus delay. 

 

1 TwoStepArbitration() {

2 while ( lw = LocalARB() ) {

3 gw = GlobalARB(lw);

4 if ( gw == lw ) { mark lw as the winner transfer; break; }

5 else goto line #2;

6 }

7 if ( there is a winner ) StartWinnerTransfer();

8 }  
Figure 5 Pseudo code of two-step arbitration 

 

4.3 Buffer for 3D Stacked Memory 
Figure 6 shows the internal structure of Buf3D (with AXI 

interface protocol 8). It consists of a shared data buffer (and its 

related logic) and a block for global conflict avoidance (GCA). 

Buf3D receives data from the memory controller while sending data 

to the on-chip network in a pipelined manner. Buf3D also provides 

the GI bus with its information of ready data transfer, i.e. 

destination id and the status of its local winner. In the case of AXI-

based Buf3D, destination id corresponds to master id9 and the status 

of data transfer to signal rvalid in the read data channel of AXI 

interface. They represent whether the data transfer bound for the 

master with master id is currently ready or not (if rvalid is high, the 

data are ready to be transferred). 
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Figure 6 Internal structure of Buf3D with AXI protocol 

 

In order to implement the fifos assigned to data flows, the shared 

data buffer has its own control logic that consists of transfer id 

                                                                 

8 Other interface protocols such as OCP can also be applied to the 

Buf3D design. In this section, we present the AXI-based Buf3D 

to give a more concrete example. 

9 Master id is a part of transaction id of AXI interface, called port id, 

in the case of ARM crossbar component, PL301 [10]. 



nodes and linked lists. In the figure, transfer id nodes are denoted 

with rectangles. Each independent data flow is managed with a 

separate linked list of transfer id nodes. The figure illustrates two 

linked lists of transfer id nodes. The head transfer id nodes are 

denoted with shaded rectangles. Only the data transfers at the heads 

of the lists are ready ones. Each transfer id node has an associated 

linked list of data elements in the data buffer as illustrated in the 

figure. 

The GCA block performs the two-step arbitration. To do that, it 

uses both the local and global information. The local information is 

the list of currently ready data transfers stored in the data buffer. As 

illustrated with two arrows going to the GCA block from transfer id 

nodes in Figure 6, the GCA block reads the local information of 

head transfer id nodes. It also reads the global information that is a 

set of signals from the GI bus (in this example, the set consists of 

master id’s and rvalid’s in the data channels of AXI interface of the 

other Buf3D’s).  

 

5. Experimental Result 
In our experiments, we use two test cases: synthetic ones and 

industrial strength DTV SoC case. 

5.1 Synthetic Test Cases 
The synthetic test cases are similar to the one in Figure 3. They 

consist of M 64b AXI masters and N 32b DDR memory modules 

(tCL-tRP-tRCD=3-3-3, 4 banks/memory). We change the number 

of masters, M (2 ~ 8) and that of memory modules, N (2 ~ 8) in the 

experiments. We use commercial AXI crossbar (PL301) and 

memory controller (PL340) [10]. PL340 has the data fifo with size 

16 (64b words). The GI bus consists of N x (log2M + 1) signals10. 

Thus, for instance, in the case of 8 memory modules and 8 masters, 

we have a 32b GI bus (32 = 8*(log28+1)).  

Given N memory modules, each master accesses all the memory 

modules simultaneously by continuously generating memory read 

requests (with random memory addresses and burst size 8). We run 

RTL simulation. In the simulation, each master reads the same total 

amount of data from multiple memory modules. We set the local 

and global arbitration schemes to round robin and priority-based 

one, respectively. We set NRD to four and the size of shared buffer 

to 128 bytes for each of Buf3D’s. 

Figure 7 shows the comparison of normalized performance (total 

runtime 11  to complete the entire simulation) among two designs 

with conventional closed-loop scheme (CL and CL+Buffer) and 

four designs with Buf3D. The X-axis represents the configurations 

of masters and memory modules (e.g. 4x8 represents the case of 4 

masters and 8 memory modules). We implement the case with the 

closed-loop scheme and buffer (CL+Buffer) by using Buf3D’s only 

as buffers. The four designs with Buf3D’s are experimented to show 

the effect of GI bus delay. We experiment the GI bus delay from 

zero (the case, Buf3D in the figure, with only combinational delay 

among Buf3D’s) to three cycles (Buf3D 3L).  
As shown in Figure 7, the open-loop flow control scheme gives 

significant performance improvement. It gives 9.2%~36.6%  

(average 25.8%) performance gain w.r.t. the closed-loop scheme in 

                                                                 

10 The size of destination id, i.e. port id size is log2M where M is the 

number of masters covered by all the Buf3D’s. 

11  In this case, the aggregate memory bandwidth is reversely 

proportional to the total runtime since the aggregate bandwidth is 

equal to (total transferred data volume that is fixed) / (total 

runtime). 

the case (Buf3D) that only the combinational delay exists in the GI 

bus. As the GI bus delay increases, the gain decreases slightly. Even 

in the case of significant GI bus delay of three cycles (Buf3D 3L), 

the gain is still 7.5%~25.3% (average 19.0%). These results show 

that the proposed scheme can be effective in removing the 

communication conflicts thereby improving the memory 

performance. 

Figure 7 also shows the case of applying only the buffering to the 

closed-loop scheme (CL+Buffer). As the figure shows, the buffering 

does not improve the average performance. This is a result already 

expected when flow control with buffer was mentioned in Section 3. 

Without a sophisticated scheme like the one presented here, a 

simple buffering in the closed-loop scheme is not effective. A more 

extensive comparison between the proposed method and general 

buffering methods (e.g. buffering in routers, memory controllers, 

and network interfaces) will be beyond the scope of this paper. We 

will investigate this issue in our future work. 
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Figure 7 Comparisons of normalized runtime 

 

5.2 Digital TV SoC Case 
The digital TV SoC consists of +30M gates and more than 50 

masters/slaves for QFHD size (3840x2160) video processing [17]. 

Many of masters/slaves are connected to low bandwidth local 

AXI/AHB/APB buses. We evaluate the effect of the proposed 

scheme by applying it to the backbone on-chip network of this SoC 

which is similar to the one in Figure 3. The backbone network has 

four memory modules, four memory controllers (PL340’s), and four 

Buf3D’s. We use the same configurations of Buf3D and memory 

controller (the fifo size is 16) as in the synthetic test cases. It has 

eight masters: four video codec IPs and four different pixel 

processing IPs (e.g. noise reduction, mixer, 3D graphics, etc.).  
In terms of memory access behavior of masters, video codec IPs 

and pixel processing IPs have different access patterns. Each of 

video codec IPs accesses only one dedicated memory module since 

each IP covers 1/4 of total video frame. Thus, the memory accesses 

from different video codec IPs do not overlap with each other at 

memory modules. However, each of pixel processing IPs accesses 

all the four memory modules. This design decision results mainly 

from the fact that duplicating pixel processing IPs incurs too high 

area overhead. Thus, there are conflicts at the input of pixel 

processing IPs when the requested data transfers arrive 

simultaneously at the same master inputs. 

Figure 8 shows the performance comparison for digital TV SoC 

case. The proposed scheme gives up to 18.4% and 12.6% 

improvement (in the case of Buf3D in the figure) in aggregate 

memory utilization and average memory access latency (from 



master’s request to the end of data transfer at the master). Aggregate 

memory utilization is defined to be the average of each memory 

module’s utilization. The memory utilization of each memory 

module is defined to be (# clock cycles used for data transfer) / (# 

total clock cycles).  
Figure 8 also shows the effect of GI bus delay on the aggregate 

memory utilization and latency. We obtain the best case when the 

GI bus has a combinational delay (Buf3D). As the GI network 

latency increases up to three clock cycles, the aggregate memory 

utilization and average memory access latency degrade slowly. Thus, 

when the delay is three clock cycles, the improvements are still 

significant, 8.5% and 10.3% in utilization and latency, respectively. 

The results show that the proposed method is still effective when 

the GI bus has a relatively long latency cycle. However, in the case 

that the latency becomes more severe, application-specific 

optimizations (topology and floorplan) of GI bus design and 

latency-aware methods for the open-loop flow control will be 

required, which is our future work.  
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Figure 8 Performance comparison in the DTV SoC case 

 

Table 1 Area comparison for digital TV SoC case (in gates) 

 Conventional Proposed 

Total area of OCN  646K 762K 

Area of four Buf3D’s 0 116K (15.2%) 

 

Table 1 shows the area comparison obtained from synthesis 

(Synopsys DC) with 200MHz as the target frequency at a 

proprietary 65nm low power technology. The total area of on-chip 

network (OCN) includes that of PL301 (including internal pipeline 

stages to meet 200MHz), PL340’s, and Buf3D’s. As shown in the 

table, the proposed scheme has a small area overhead (15.2%) 

compared with the total on-chip network area including that of 

Buf3D’s. The area overhead of the GI bus (32b) is very small w.r.t. 

that of total on-chip network area. As a specific example, assuming 

a fully connected implementation of GI bus among the four 

Buf3D’s with three cycle latency, the gate count of the GI bus will 

be about 5.8Kgates (32b/link * 6 links * 3 * 10gates/b ~ 5.8Kgates) 

where a 1 bit F/F is assumed to have 10 gates. Considering the total 

chip size (+30Mgates), the overhead (116Kgates, less than 0.39% of 

total chip area) can be justified by the significant improvement 

(18.4%) in the aggregate memory bandwidth of on-chip 

communication over the backbone network. 

 

6. Conclusion 
In this paper, we propose an open-loop flow control scheme and 

its implementation, a buffer called Buf3D. The proposed scheme 

reduces the conflicts of data transfers from multiple memory 

modules to the same masters thereby improving the memory 

utilization by up to 18.4% with a small area overhead (15.2%) of 

on-chip network for an industrial strength DTV SoC design.  

The design space related with Buf3D can be large since there are 

many parameters impacting the performance/area/power of 

Buf3D’s: reordering depth and fifo size per Buf3D, local and global 

arbitration schemes (including QoS) per Buf3D and per destination 

id, respectively, the assignment of Buf3D’s to memory modules, etc. 

In addition, since the proposed open-loop scheme does not take into 

account congestion in the NoC, there can be further optimizations 

by integrating both open and closed-loop flow control schemes to 

tackle both conflicts at destination and network links.  
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