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Abstract

Algebraic torus-based cryptosystems are an alternative

for Public-Key Cryptography (PKC). It maintains the se-

curity of a larger group while the actual computations are

performed in a subgroup. Compared with RSA for the same

security level, it allows faster exponentiation and much

shorter bandwidth for the transmitted data. In this work

we implement a torus-based cryptosystem, the so-called

CEILIDH, on a multicore platform with an FPGA. This

platform consists of a Xilinx MicroBlaze core and a mul-

ticore coprocessor. The platform supports CEILIDH, RSA

and ECC over prime fields. The results show that one 170-

bit torus T6 exponentiation requires 20ms, which is 5 times
faster than 1024-bit RSA implementation on the same plat-

form.

1 Introduction

Diffie and Hellman introduced the idea of Public-Key

Cryptography (PKC) [3] in the mid 70’s. Their break-

through showed that one can eliminate the need for prior

agreement of a key in order to exchange some confiden-

tial data. One important application of Public-Key ser-

vices are digital signatures. The best-known and most com-

monly used public-key cryptosystems are based on factor-

ing (RSA) and on the discrete logarithm problem in a large

prime field (Diffie-Hellman, ElGamal, Schnorr, DSA) [7].

Elliptic Curve Cryptography (ECC), which was proposed

in the mid 80’s by Miller [8] and Koblitz [6], is based on a

different algebraic structure. In the case of ECC, instead of

integers modulo n another group is used i.e., the group of
points on an elliptic curve. It is important to point out that

ECC offers equivalent security as RSA for much smaller

key sizes. Other benefits include higher speed, lower power

consumption and smaller certificates which is especially

useful in constrained environments (smart cards, mobile

phones, PDAs, etc.).

Algebraic torus-based cryptosystems are another alter-

native for PKC. Torus-based cryptography assumes using

algebraic torus to construct a group on which the discrete

logarithm problem is defined. This idea was first introduced

by Rubin and Silverberg in 2003 [10] and they proposed the

name of CEILIDH. The idea behind it was to obtain the se-

curity of Fp6 , while data to be transmitted are compressed

with a factor 3 and the underlying arithmetic is performed

in a subgroup e.g. Fp. Their benefits are that they allow

for shorter transmissions which is of interest for embedded

applications.

So, torus-based cryptography gives a possibility to work

in a subgroup, while maintaining the security of a bigger

group. More precisely, Rubin and Silverberg showed that

the factor n
ϕ(n) can be achieved for compression. Here,

ϕ(n) is the Euler’s totient function that is defined to be the
number of positive integers less than or equal to n that are
coprime to n. For example, ϕ(6) = 2 i.e. the numbers 1 and
5 are coprime to 6. They introduced a new public-key cryp-

tosystem CEILIDH [10] that is based on torus T6. Hence,

in this case we get the compression of 6
ϕ(6) = 3. The ad-

vantage of the torus when compared for RSA for example,

lies in the compression factor, which allows one to use keys

of length three times smaller than those for RSA. Another

advantage is that the basic arithmetic behind is performed

in a prime field, where the prime is 160-170 bits long which

is a typical case of ECC. Thus, tori and ECC can be easily

implemented using the same arithmetic unit.

In this paper we consider efficient implementations of

CEILIDH. The work of Granger et al. [5] was first to intro-

duce efficient arithmetic on T6. They implemented T6 on a

PC and they concluded that CEILIDH is not much slower

than XTR, which is another PK cryptosystem using the

same idea of keeping the security of Fp6 while transmitting

only two elements of Fp. In this work we propose a flex-

ible platform architecture which supports CEILIDH, RSA

and ECC over prime fields. A hierarchical design method

is used, and in this manner we show that all three cryp-

tosystems can be efficiently supported by the same hard-
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ware platform. To our knowledge, this work presents the

first architecture for efficient implementation of CEILIDH,

ECC and RSA together.

The rest of the paper is organized as follows. Section 2

gives a brief introduction on the mathematical background

of torus. Section 3 describes the multicore platform and our

implementation considerations. We show the implementa-

tion results in section 4 and conclude the paper and give

some future work in section 5.

2 Mathematical Background

The field Fp6 can be viewed as an extension field of de-

gree 6 over Fp. More precisely, Fp6 = Fp[x]/(f(x)), where
deg(f) = 6. So, the elements of Fp6 are six-tuples of ele-

ments from Fp. There are other representations possible of

the field Fp6 e.g. using subfields with exponents 2 and 3. In

principle, it is possible to choose a representation in which

field arithmetic can be performed more efficiently and then

map an arbitrary element from torus T6 to the corresponding

one in any other representation. An algebraic torus T6(Fp)
is defined in such a way that over Fp6 , this structure can be

represented by a pair of elements from Fp. This means that

one can achieve the security of Fp6 , while transmitting only

two elements of Fp. Those maps between various represen-

tations as well as the representations are given in [5]. The

choice of representation is usually related to the implemen-

tation platform. This is where our considerations alter from

those in [5].

The first representation denoted as F1 is the basic one

i.e. viewing Fp6 as an extension field of Fp of degree 6, so

F1 = Fp6 = Fp[x]/(f(x)), where deg(f) = 6. We con-
sider only this representation for our implementation but for

a complete cryptosystem also the mappings between differ-

ent representations have to be implemented.

2.1 Overall Structure of Operations

In Fig. 1 we give the complete overview of all operations

included in the torus arithmetic. The mappings τ and ρ are
isomorphisms and so are the corresponding inverse map-

pings τ−1, ψ. Those mappings are used to change from one
representation to the other e.g. to map an element from T6 to

the one from F2 where F2 is a quadratic extension of Fp3 ,

so F2 = Fp3 [y]/g(y) and deg(g) = 2. In Fig. 1 we also
see the relations among all those operations. Further on, it

is denoted which subfields are used for representations F1

and F2.

2.2 The Representation F1

Here we focus on the representation F1 as the one in

which we perform the required arithmetic that includes ex-

addmul.inv.

add mul. inv.

add mul. inv.

τ ρ ψτ−1
Fp6Fp6Fp6Fp6

Fp3Fp3 Fp3 Fp3

FpFpFp F1

F2

Figure 1. An overview of the T6(Fp) opera
tions.

ponentiation in this group. F1 = Fp6 = Fp[x]/(f(x)) and

let p ≡ 2 mod 9 (or p ≡ 5 mod 9) and f(x) = x9
−1

x3
−1 =

x6+x3+1 is an irreducible polynomial with a root z. Then,
z6 = −z3−1 and each element from F1 can be represented

in the basis {1, z, z2, z3, z4, z5}. Hence, an arbitrary ele-

ment from this group is denoted as A(z) =
∑i=5

i=0 aiz
i. In

order to perform exponentiation in this group we will first

describe the basic operations in this field i.e. addition and

multiplication. We denote multiplication/squarings and ad-

ditions/subtractions in Fp withM and A respectively.

2.2.1 Addition in Fp6

Take two elements from F1, A(z) =
∑i=5

i=0 aiz
i and

B(z) =
∑i=5

i=0 biz
i. Then the sum is defined as: C(z) =

∑i=5
i=0 ciz

i =
∑i=5

i=0(ai + bi)z
i and it requires 6 additions in

Fp.

2.2.2 Multiplication in Fp6

Multiplication of two polynomials of degree five can be

performed in 18M plus many additions [1]. We explain

that in more detail as it was also elaborated in [11]. Let

A(z) =
∑i=5

i=0 aiz
i and B(z) =

∑i=5
i=0 biz

i be two fifth de-

gree polynomials to be multiplied. Write A = A0 + A1z
3

and B = B0 + B1z
3 where Ai, Bi for i = 0, 1 are sec-

ond degree polynomials. Then A · B = A0B0 + (A0B1 +
A1B0)z

3 +A1B1z
6 where one can precompute the values

C0 = A0B0, C1 = A1B1 and C2 = (A0 −A1)(B0 −B1).
This results in A · B = C0 + (C0 + C1 − C2)z

3 + C1z
6 .

Let A0 = a0 + a1x + a2x
2 and B0 = b0 + b1x + b2x

2 ,
where ai, bi ∈ Fp for i = 0, 1, 2; then for C0 we get



C0 = a0b0 + (a0b1 + a1b0)x+ (a2b0 + a1b1 + a0b2)x
2 +

(a2b1 + a1b2)x
3 + a2b2x

4 . If the following values c0 =
a0b0, c1 = a1b1, c2 = a2b2, c3 = (a0 − a1)(b0 − b1),
c4 = (a0 − a2)(b0 − b2) and c5 = (a1 − a2)(b1 − b2) are
precalculated we finally get: C0 = c0 + (c0 + c1 − c3)x+
(c0 + c1 + c2 − c4)x

2 + (c1 + c2 − c5)x
3 + c2x

4 . It fol-
lows from above that each Ci requires 6M + 11A so the
total number of multiplications adds to 18M . The result
A ·B still has to be reduced modulo an irreducible polyno-
mial in Fp6 , which adds a few more additions to the total

number of multiplications. According to [5] this all adds to

18M +60A as the cost for one multiplication in F1 in basis

{z, z2, z3, z4, z5, z6}.

2.3 Operations in Fp

To summarize, we need the following arithmetic oper-

ations in Fp: addition, subtraction, multiplication and in-

version. Exponentiation is performed via repeated multi-

plications. We use Montgomery’s modular multiplication

algorithm to perform modular multiplications. The algo-

rithm of Montgomery is the best manner to avoid the time-

consuming trial division in modular multiplications [9].

Alg. 1 shows a high radix Montgomery algorithm called

FIOS (Finely Integrated Operand Scanning), which is suit-

able for a software implementation on a w-bit datapath.

Algorithm 1 Radix-2w n-bit Montgomery modular multi-
plication (FIOS). [2]

Input: integers P = (ps−1, ..., p0)r, X = (xs−1, ..., x0)r,

Y = (ys−1, ..., y0)r, where 0 ≤ X,Y < P , r = 2w, s =
⌈ n

w
⌉, R = rs with gcd(p, r) = 1 and p

′

= −P−1mod r.
Output: X · Y ·R−1 mod p

1: z = (zs−1, ..., z0)r ← 0
2: for i = 0 to s− 1 do
3: T ← (z0 + x0 · yi) · p

′

mod r
4: Z ← (Z +X · yi + P · T )/r
5: end for

6: if Z > p then
7: Z ← Z − P
8: end if

9: return Z

3 Implementation

3.1 Platform Architecture

We implement the torus-based cryptosystem on a multi-

core platform. This platform has multiple data-paths and is

completely programmable, thus different algorithms can be

efficiently implemented on it. In Fig. 2 the block diagram of

(a) Schematic block diagram for the platform.

(b) Schematic block diagram for the core.

Figure 2. Overview of the multicore system.

the platform is shown. It consists of a MicroBlaze processor

and a multicore coprocessor. MicroBlaze is a synthesizable

core offered by Xilinx, and is used here as a controller. The

coprocessor is the workhorse of the implementation. Multi-

ple cores of the coprocessor can be programmed to perform

different computation, such as modular multiplications and

additions with arbitrary operand length. Therefore, differ-

ent Public-Key cryptosystems such as ECC over Fp and

RSA can also be easily implemented on this platform.

As shown in Fig. 2(a), the MicroBlaze processor com-

municates with the coprocessor via memory-mapped regis-

ters, i.e., instruction register (A) and two data sharing reg-
ister (B and C), and an interrupt signal. The coprocessor

consists of a decoder, data memory (DataRAM), microin-

struction memory (InsRom) and multiple embedded cores.

Fig. 2(b) shows the block diagram of a core. Each core here



is a highly simplified Load/store CPU, and supports only 7

instructions. It does not support branch jumps. We also uti-

lize the dedicated multipliers on the FPGA to construct the

ALU of each core. In order to reduce the area, both InsRom

and DataRAM are single port memory and implemented in

the Block RAM of the FPGA.

The decoder fetches instructions from the instruction

register (register A), and performs correspondding microin-

structions stored in InsRom. The microinstructions are dis-

patched to the cores in parallel via the instruction bus. The

data memory has only one read/write port, therefore, a sin-

gle data memory access is allowed in each cycle. The

decoder manages the data memory so that conflicts are

avoided.

3.2 Implementation Hierarchy

As shown in Fig. 1, torus arithmetic can be represented in

various ways and on different levels. On the platform shown

in Fig. 2, the torus exponentiation is performed in three lev-

els. One torus exponentiation consists of a sequence of Fp6

operation, which consists of a sequence of Modular Multi-

plications (MM) and Modular Additions (MA) in Fp. Ob-

viously, the sequence of modular operations can either be

generated in software e.g. as a C code or can be put in the

coprocessor. We investigate both of these two types of im-

plementation.

3.2.1 Type-A Implementation

Figure 3. Torus exponentiation in hierarchy:

TypeA Implementation.

Fig. 3 shows the Type-A implementation. Here the Mi-

croBlaze generates the sequence of MM and MA, and sends

them to the coprocessor one by one. For example, the Mi-

croBlaze puts a ”MM” instruction to register A to perform

a modular multiplication.

MM AddrC, AddrA, AddrB

The coprocessor decodes this instruction, and executes the

corresponding microinstructions that are stored in the In-

sRom. After finishing this multiplication, the coprocessor

generates an interrupt signal, which will be monitored and

handled by the MicroBlaze. Afterwards the MicroBlaze can

send next instruction.

As one Fp6 operation consists of 18M + 60A, the total
of 78 register A accesses and 78 interrupts handling are re-

quired. One register A access together with one interrupt

handling requires 184 clock cycles, while one 170-bit mod-

ular multiplication requires 193 clock cycles. Therefore, the

communication between the MicroBlaze processor and the

coprocessor becomes the bottleneck of the whole system.

3.2.2 Type-B Implementation

One possible way to improve the performance is to reduce

the communication overhead. Without losing any flexibil-

ity, we add another instruction ROM (InsRom1) to the co-

processor and we denote this architecture as Type-B. In the

InsRom1 we store the sequence on level 2. Fig. 4 shows this

implementation.

Figure 4. Torus exponentiation in hierarchy:

TypeB Implementation.

Now MicroBlaze sends instruction on level 1.

T6M AddrC, AddrA, AddrB

The coprocessor decodes this instruction, and fetches the

corresponding sequence of MM and MA in InsRom1. For

each MM or MA, the coprocessor performs the correspond-

ing microinstructions stored in InsRom2. The Type-B im-

plementation requires only one register A access and one

interrupt for each Fp6 operation, therefore the performance

is improved.

Both Type-A and Type-B offer high flexibility. Instead

of 170-bit MM/MA, one can compose program with mi-

croinstructions to perform 1024-bit MM/MA, thus 1024-bit

RSA is supported. In order to support ECC, on level 2 we

can also put a sequence of MM/MA to construct a Point

Addition (PA) or Point Doubling (PD) operations instead of

Fp6 . We also implemented 160-bit ECC and 1024-bit RSA

on this platform to compare their performance with the per-

formance of the torus.



3.3 Implementation of Montgomery Modular
Multiplication

The performance of one Montgomery modular multipli-

cation is bounded by the system architecture and the in-

struction scheduling method in use. Efficient instruction

scheduling method for Montgomery modular multiplication

on multicore system was discussed in [4]. The main chal-

lenge here is to reduce the number of data transfers between

different cores. The data dependency of Alg. 1 is mainly

caused by the carry generated by additions, i.e., by the

computation of Z ← (Z + X · yi + P · T )/r. To uti-
lize all the cores efficiently, carry should be used only in the

core where it was generated. In [4], we observed that only

Z0 has to be generated in the end of each iteration, while

Zs−1, .., Z1 can be generated in the end of the loop. Based

on this observation, an instruction scheduling method which

avoids carry transfers and efficently utilizes all the cores is

proposed. The result in [4] shows that a 256-bit MM on a

4-core system is 2.96 times faster than the single core based

implementation. We use this instruction scheduling method

here in the CEILIDH implementation.

Figure 5. Parallelized 256bit Montgomery

modular multiplication on a 4core system.

Fig.5 shows how this method works. During the whole

loop (z1, z0) is generated and stored in core-1, (z3, z2) in
core-2, (z5, z4) in core-3 and (z7, z6) in core-4. Carry is
only used in the local core. At the end of each iteration, z2
in core-2 becomes new z1 and is sent to core-1. Also, z4 is
sent to core-2 and z6 is sent to core-3. After eight iterations
and a conditional substraction, Z = X · Y · R−1 mod P
is obtained and stored separately in the register file of each

core.

4. Results

We implemented this platform on a Xilinx FPGA Virtex-

II Pro. Table 1 shows the number of clock cycles for differ-

ent modular operations. The result shows that one 170-bit

Montgomery modular multiplication requires 193 clock cy-

cles, while one addition needs 47 clock cycles. The rea-

son that modular additions are relatively slow is that we

only use one core to perform modular additions and sub-

tractions. This is because carry needs to be transferred if

multiple cores are used to perform modular additions.

While 160-bit modular operations are a little bit faster

than 170-bit operations, 1024-bit Montgomery modular

multiplication is about 23 times slower than 170-bit mul-

tiplication.

Table 1. Number of clock cycles for different

operations.
Bitlength Operations Number of

clock cycles

Interrupt Handling 184

Modular Mult. 193

170-bit Modular Add. 47

(torus) Modular Sub. 61

Modular Mult. 163

160-bit Modular Add. 40

(ECC) Modular Sub. 53

1024-bit (RSA) Modular Mult. 4447

Table 2 shows the results of Fp6 multiplication and ECC

PA/PD of Type-A and Type-B implementations. One 170-

bit Fp6 multiplication takes 22348 clock cycles for the

Type-A implementation. However, only 5908 clock cycles

are requried for the Type-B implementation, which is 3.78

times faster than the Type-A implementation. For ECC,

PA on Type-B implementation is about 2.49 times faster

compared with that on Type-A, and PD is about 2.17 times

faster.

The design is synthesized and implemented on a Xilinx

Virtex-II Pro (XC2VP30) FPGA. A maximum frequency

of 74 MHz can be achieved. The data memory and in-

struction memory are implemented in block RAM of the

FPGA board. In total, 5419 slices are used for this design,

where the coprocessor requires 3285 slices. Table 3 shows

the performance of torus, ECC and RSA on this platform.

One 170-bit T6 exponentiation requires 20 ms, while one
1024-bit RSA exponentiation requires 96 ms. In this case,
CEILIDH is about 5 times faster than RSA on the same plat-

form. Note that one Fp6 multiplication requires 18 MM and

60 MA. Further performance improvement is acquirable by



Table 2. Number of clock cycles for different

operations in TypeA and TypeB implemen
tation.
Architecture Operations Number of

Type clock cycles

torus T6 Mult. 22348

Type-A ECC PA 7185

ECC PD 5793

torus T6 Mult. 5908

Type-B ECC PA 2888

ECC PD 2665

Table 3. Performance comparison between
torus, ECC and RSA on the same platform.

PKC Area Freq. Time

[slices] [MHz] [ms]
170-bit torus 5419 74 20

1024-bit RSA 5419 74 96

160-bit ECC 5419 74 9.4

performing parallel computation between these modular op-

erations. On the same platform, one 160-bit ECC scalar

multiplication requires 9.4 ms, which is about two times
faster than CEILIDH.

5 Conclusions and Future work

We describe a design approach of CEILIDH on a mul-

ticore platform. A MicroBlaze is used as a controller to-

gether with a multicore coprocessor. The result shows that

170-bit T6 exponentiation requires 20ms, which is about 5
times faster than 1024-bit RSA on the same platform. Com-

pared to ECC, CEILIDH has the same advantage of small

key size and small cypher length. However, it is about two

times slower than ECC with equivalent security.

For future work, we believe that by deploying fast mod-

ular adders, the performance can be improved. Also, by ex-

plorering parallelism between modular operations, further

improvement is obtainable.
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