
Dynamic Task Allocation Strategies in MPSoC for Soft Real-time Applications

Eduardo Wenzel Brião, Daniel Barcelos, Flávio Rech Wagner

Universidade Federal do Rio Grande do Sul - UFRGS

Instituto de Informática

Porto Alegre, RS, Brazil

{ewbriao, danielb, flavio}@inf.ufrgs.br

Abstract

This work evaluates task allocation strategies based

on bin-packing algorithms in the context of multiproc-

essor systems-on-chip (MPSoCs) with task migration

capabilities, running soft real-time applications. The

task migration model assumes that the whole code and

data of the tasks are transferred from an origin node to

the chosen destination node. We combine two types of

algorithms to obtain better allocation results. Experi-

mental results show that there is a trade-off between

deadline misses and system energy consumption when

applying bin-packing and linear clustering algorithms.

In order to save energy, our system turns off idle proc-

essors and applies Dynamic Voltage Scaling to proces-

sors with slack. Depending on the algorithm selection

and on the application, it is possible to obtain a reduc-

tion on deadline misses from 30% to 100% and energy

consumption savings from 60% to 80%.

1 Introduction

The complexity of electronic embedded systems de-

sign has been increasing due to the technological evolu-

tion that allows the integration of a complete system on

a single chip (SoC – System-on-Chip). In order to re-

duce design costs and time-to-market, systems are built

by assembling pre-designed functional modules (proces-

sors, memory, dedicated hardware blocks), called IP

(Intellectual Property) cores [1]. They can be reused

from previous designs or acquired from third-party ven-

dors.

Nowadays, the most commonly used communication

architectures are not suitable for the communication

requirements of future SoCs, such as scalability and per-

formance. Networks-on-Chip (NoC) arise as a solution

to fulfill these requirements [2].

Several applications of the same or different domains

can be loaded and executed on an MPSoC platform,

since it provides appropriate resources to allow the si-

multaneous execution of several applications. However,

the system must know where and when allocating tasks

that compose the application.

In distributed computing systems, tasks must be allo-

cated as soon as they are available, such as to minimize

the impact of system degradation, due to a bad workload

distribution. Mechanisms for task migration are needed

to provide the infrastructure that allows dynamic load

balancing or concentration. They may enable resource

savings, since resources would be typically planned for

worst-case conditions that rarely occur. With this in

mind, there are on-line algorithms that may be combined

to decrease the communication among tasks and to allo-

cate tasks to processors such that timing constraints are

met. Linear clusterization [3] may be applied such that

clustered tasks are allocated to a single processor in or-

der to minimize inter-processor communication. This

approach may be combined with bin-packing algorithms

[4], which apply heuristics to allocate tasks to proces-

sors, considering the processor utilization. These algo-

rithms present a low overhead and may be efficiently

applied in a dynamic context, in embedded systems.

Various combinations of bin-packing algorithms may

explore different trade-offs between energy, power, per-

formance, and real-time constraints.

This work presents the evaluation of several task al-

location strategies based on bin-packing algorithms in

the perspective of MPSoCs. We show different trade-

offs between energy consumption and deadline misses

when applying bin-packing algorithms for task alloca-

tion. We show that, even using a task migration mecha-

nism with high overhead, it may be applied in embedded

systems based on NoC architectures. The use of task

migration is justified since it pays off the performance

and energy costs involved in the system. Results show

that task migration may greatly improve the fulfillment

of task deadlines in soft real-time systems and decrease

the energy consumption. In our work, the task migration

is triggered when the allocation heuristic is executed.

Afterwards, the task migration will be executed again

only when a new application is loaded by the user.

The remaining of this paper is organized as follows.

Section 2 discusses related work, while Section 3 shows

our energy and task models. Section 4 presents our

simulator and task migration support. Section 5 presents

experimental results, and, finally, Section 6 draws main

conclusions and addresses future work.

2 Related Work

Task allocation may be modeled as a bin-packing

problem [4]. In bin-packing, the objective is to pack a

set of items with given sizes into bins that have a fixed

capacity, and items whose total size exceeds this capac-

ity cannot be assigned to the bins. There are four main

bin-packing heuristics, but we concentrate on two of

them: Best-Fit (BF) and Worst-Fit (WF). WF generates

a task distribution with load balancing, while BF gener-

ates a distribution that is concentrated in some bins.

There are methods, such as clustering, that try either

to minimize the inter-process communication or to ex-

plore the parallelism. Linear clustering totally explores

the parallelism of the task graph, while non-linear clus-

tering reduces the parallelism, by serializing independ-

ent tasks in order to reduce communication costs [3].

Few works cover task migration in the context of em-

bedded systems. Bertozzi et al. [5] propose a user-

managed migration scheme based on code checkpoint-

ing and a characterization methodology for task migra-

tion overhead in a shared memory. However, in this

work, no figures for energy and power were measured.

Wronski et al. [6] present a TLM SystemC NoC-based

simulator, which executes clustering and bin-packing

algorithms for task partitioning. The authors conclude

that the combination of load concentration (BF) with

DPM may result in lower energy consumption. How-

ever, the usage of load balancing (WF) minimizes the

number of deadline misses. This work does not consider

the task migration costs.

Our work, in turn, considers task migration overhead

in a dynamic environment and shows the evaluation of

bin packing algorithms in the context of NoC-based

MPSoCs, in terms of energy and soft real-time con-

straints.

3 Energy and Task Models

The dynamic power consumption of the network

routers and links is calculated with help of the Orion

library [7]. The energy spent by a data phit to be trans-

ferred between two routers is defined as:

phit wrt arb read xb link
E E E E E E= + + + +

[1]

where Ewrt, Earb, Eread, Exb, and Elink represent, respec-

tively, the energy spent in writing the phit in the buffer,

selecting the input channel, reading the phit from buffer,

crossbar, and output channel. The static consumption of

the memory is estimated by a model similar to [8]. In

this work, the only component with power management

capabilities is the memory and, in fact, it is the only one

that really affects the results.

Each application is a directed acyclic graph

()T G K A= , , where each node
i

k K∈ is a periodic task

and each arc
i ja A
,

∈ is a dependency and flow of mes-

sages between tasks
ik and

jk . The arc weight W

i j
a

,
 rep-

resents the amount of bits to be transferred between the

tasks. Each task
i

k K∈ is a tuple { , }C T S D α, , , , where C

is the worst case execution time, T is the task period, S

is the task size in bytes (including program size and data

size), D is the task deadline, and α is the average

number of gate switchings per cycle of the task in the

core.

4 Simulator and Task Migration

4.1 Serpens Simulator

The SystemC NoC-based Serpens simulator has been

developed to simulate the behavior of systems that run

sets of synthetic tasks, which are dynamically loaded.

The simulator also executes clustering and bin-packing

algorithms for task partitioning and implements an on-

line scheduling for tasks that are mapped to the same

processor. DVS and DPM mechanisms are implemented

to minimize energy consumption. The DAR (Dynamic

Average Rate) algorithm [12] was used for DVS. The

system is based on Java processors [9], each one with its

private memory and on the NoC presented in [10], both

of which have been developed in our research group.

The Java processor implements an execution engine for

Java in hardware through a stack machine compatible

with the Java Virtual Machine (JVM) specification. We

use the pipelined version of Femtojava. Each processor

has its own local scheduler – we use EDF.

The simulator uses the Orion library to evaluate the

power consumption. An in-house tool [11] is used to

calibrate the processor power values. The simulation

model uses NoC routers [10] that have been designed for

the synthesis of low power and low area NoC-based

embedded systems Each router has 5 bi-directional ports

with input buffer size of 4 phits. The phit size is 4 bytes.

More information about the simulator can be found in

[6].

4.2 Task migration infrastructure

The task migration mechanism adopted in this work

is based on a copy model. This model is very simple,

with highest overhead, since the whole context (code,

data, stack, and contents of internal registers) is migrated

and there is no task execution during the transfer. Costs

of task shut-off (deallocation of kernel-level data struc-

tures and user level-memory space) and task re-

spawning (task creation system calls) are not taken into

account. Of course they could bring an additional con-

tribution to the migration cost.

In each processor, there are mechanisms for inter-

process communication based on messages

(send/receive primitives). Figure 1 illustrates the schedul-

ing sequence for a task migration between two cores P0

and P3. The origin core P0 is executing a task T0. An

interrupt happens, and the system decides to migrate a

task T1 from P0 to P3. The label “MS” in the scheduling

indicates that P0 (origin core) is sending T1 to P3. Proc-

essor P3 is in idle until receiving the migration packets

sent from P0 (“MR”). When the last packet was received

by P3, the scheduler “S” in P3 monitors if there is some

new task, and the new task is released through “R” (“R”

inserts the new task in the ready queue of the core). The

migrated task T1 then starts to run.
Processor time

P0

P3

R S T0 S MS S T0 S T0

S I S R S T1MR S

S

Legend

R release

S scheduling

Tx task in execution

I idle

Tx task migrated in execution

MS master core sends a task for migration

MR target core receives a task for migration

Figure 1. Scheduling in the processors of the system

It is assumed that the packet transmission time is

much larger than the time of copying memory data.

Therefore, in our migration scheme, we afford to neglect

the time of copying memory data. To go through a

router, the packet transmission time is 40 cycles, and

one packet has 4 bytes.

5 Experimental Results

This section presents several experiments, based on

three case studies and different network sizes, which

demonstrate the feasibility and efficiency of the task

migration mechanism.

5.1 Case studies

Experiments use two distinct applications, shown in

Table 1. The first application is part of the embedded sys-

tem synthesis benchmark suite (E3S) [13] and comes

from the telecom domain. The ‘telecom’ application has

a small number of tasks and a large volume of commu-

nication. The second application is a synthetic one. It

has a small amount of communication, but a large num-

ber of tasks. As shown in Table 1, the average context

size of each task is 1.3 KB and 1.1 KB for the ‘telecom’

and ‘synthetic’ applications, respectively.

Table 1. Case studies used in the experiments

Application # Task # Edges # Avg. context size #Comm.

Telecom 30 18 1.3 KB 850 KB

Synthetic 64 52 1.1 KB 0.052 KB

5.2 Simulation strategy

We implemented the WF and BF bin-packing algo-

rithms, and they are combined with linear clusterization

(LR). LR groups tasks with large communication with

each other and can minimize the cost of communication

among tasks, thus increasing the options of an appropri-

ate algorithm to minimize figures such as energy con-

sumption and deadline misses. In both case studies, we

first simulate the applications with tasks allocated in an

ad-hoc way. We simulate separately 10 different ran-

dom task allocations and calculate the average for dead-

line misses and energy consumption. Afterwards, we

consider that task migration has been required by some

higher-level mechanism and apply the algorithms to

decide on the task allocation after migration. The simu-

lated time for all experiments was 200 ms. The proces-

sor frequency varies from 100 MHz to 600 MHz, and

the voltage varies accordingly from 1.3 V to 2.0 V us-

ing DVS. The NoC runs at 266 MHz, and the network

size varies from 4x4 to 7x7 cores. The memory size of

each core is 64 KB.

5.3 Experiments

Tasks are considered to be periodic. They are sched-

uled and later on concluded, and then we count one task

finalization, even if the task is terminated after its pe-

riod. If this occurs, we count one deadline miss.

Figures 2 and 3 present, respectively, the deadline

misses ratio of synthetic and telecom applications for

each network size. These figures compare the situation

before (ad-hoc allocation) and after task migration. As

shown in Figure 2, there has been no significant im-

provement in the deadline misses ratio when the BF +

LR allocation was applied, when compared to the ad-hoc

allocation. Even grouping tasks with heavier communi-

cation between them, this algorithm could not decrease

the number of deadline misses, since the cluster alloca-

tion exceeded 100% of processor capacity in some proc-

essors.

0,00%

2,00%

4,00%

6,00%

Adhoc Best-f i t + LR Pur eBF Pur eWF Wor st-f i t + LR

4x4

5x5

6x6

7x7

Figure 2. Deadline misses ratio of the synthetic applica-
tion

The pure BF algorithm allocates single tasks. Dead-

line misses decreased when compared to an ad-hoc allo-

cation, since tasks did not exceed processor capacity.

The pure WF algorithm distributes tasks among proces-

sors. However, since there are communication depend-

encies between tasks, deadline misses increased. For

larger NoCs, deadline misses increase, since there is a

larger number of hops in sending messages. Even

though, we have at most 4% of deadline misses, a rea-

sonable rate for soft-real time systems. Finally, the WF

+ LR algorithm could reduce to 0% the deadline misses

ratio for most NoC sizes. Because of the linear cluster-

ing process, communication between clusters is very

low, thus reducing congestion and helping avoid dead-

lines.

Figure 3 shows the deadline misses ratio for the tele-

com application. We see an overall behavior similar to

that of Figure 2. However, since communication volumes

are higher than in the synthetic application, there is a

larger ratio of deadline misses. In this case, even the WF

+ LR algorithm could not reduce deadline misses to 0%.

We notice that, in the WF + LR algorithm, the NoC size

does not impact the ratio of deadline misses, since for

this application the number of clusters is less than 16,

such that networks larger than 4x4 do not bring any con-

siderable advantage.

0,00%

20,00%

40,00%

60,00%

Adhoc Best-f i t + LR Pur eBF Pur eWF Wor st-f i t + LR

4x4

5x5

6x6

7x7

 Figure 3. Deadline misses ratio of the telecom applica-
tion

These experiments consider soft real-time applica-

tions, where a small ratio of deadline misses can be tol-

erated. Of course, deadline misses found in Figures 2

and 3 could be further reduced by increasing system

throughput, especially network bandwidth and proces-

sors’ frequencies, although increasing energy consump-

tion. But the application of the WF + LR allocation algo-

rithm significantly reduces the required increase in sys-

tem throughput to achieve a given ratio of deadline

misses.

Figure 4 shows the energy consumption resulting

from all allocation algorithms applied to the synthetic

application. We notice that the BF and BF + LR algo-

rithms showed smaller energy consumption, since tasks

and task clusters are concentrated on a smaller number

of processors, while the remaining processors and their

memories may be switched off. The WF + LR algorithm

presents a constant energy consumption for 5x5 and

larger NoCs, since cluster sizes are small than 25 and,

even increasing the NoC size. The number of active

processors will remain constant.

Energy spent (sinthetic)

0

1000

2000

3000

4000

5000

6000

7000

Adhoc Best-fit + LR PureBF PureWF Worst-fit + LR

E
n

e
rg

y
 (

m
J
o

u
le

s
)

4x4

5x5

6x6

7x7

Figure 4. Energy spent in the synthetic application

Figure 5 presents the energy consumption, for a

simulation time of 200 ms, resulting from all allocation

algorithms applied to the telecom application. Algo-

rithms BF and BF + LR present less energy consump-

tion, while WF + LR presents less consumption than

pure WF, since LR groups tasks with heavier communi-

cation between them.

0

2000

4000

6000

Adhoc Best-fit +

LR

PureBF PureWF W orst-fit +

LR

E
n

e
rg

y
 [
m

J
]

4x4

5x5

6x6

7x7

 Figure 5. Energy spent in the telecom application

Results also show that migrations take less than 1%

of the execution time and are responsible for approxi-

mately 2% of the total spent energy, on average. This

means that migration costs can be easily amortized by

the system, since energy consumption and deadline

misses can be significantly improved after migration.

6 Conclusions and Future Work

This work demonstrated by experimental results that

there is a trade-off between deadline misses and system

energy consumption when applying bin-packing and

linear clustering algorithms in MPSoCs where proces-

sors are interconnected by a network-on-chip. A small

execution time of the task allocation heuristics is essen-

tial in order that the overall cost of the task migration

may be amortized, and the combination of bin-packing

and linear clustering shows this property. Our group is

now working on a new task admission control algorithm,

which already considers the communication costs in the

scheduling phase.

As future work, we will measure the overhead im-

posed by on-line monitoring resources running on the

processors. This monitoring will be basic to more ad-

vanced allocation algorithms.

References

[1] R.Bergamaschi, W.Lee. “Designing System-on-Chip using
Cores”. In: 37 th Design Automation Conference (DAC), USA,
2000, pp. 420-425.

[2] L.Benini, G.DeMicheli. “Networks on chips: a new SoC
paradigm”. IEEE Computer, vol.35, n.1, pp. 70-78. 2002.

[3] A.Gerasoulis, T.Yang. “On the Granularity and Clustering of
Directed Acyclic Task Graphs”. IEEE Trans. Parallel Distrib.
Syst., v.4, n.6,. 1993. pp. 686-701

[4] D.Johnson. Near-optimal Bin-packing Algorithms. Cambridge,
Mass. 1973

[5] S.Bertozzi, A.Acquaviva, D.Bertozzi, A.Poggiali. “Supporting
Task Migration in Multi-processor Systems-on-chip: a
Feasibility Study”. In: Design, Automation and Test in Europe
Conference (DATE), Munich, Germany, 2006, pp. 15-20.

[6] F.Wronski, E.Brião, F.R.Wagner. "Evaluating Energy-Aware
Task Allocation Strategies for MPSoCs". In: IFIP Working
Conference on Distributed and Parallel Embedded Systems
(DIPES). Braga, Portugal, October 2006.

[7] H.Wang. “Orion: A Power-performance Simulator for
Interconnection Networks”. In: ACM MICRO. Istanbul, Turkey,.
2002. pp. 294-305

[8] J.Butts, G.Shoi. “A Static Power Model for Architects”. In:
International Symposium on Microarchitecture, ACM Press,
California, 2000, pp. 191-201.

[9] S.A. Ito; L. Carro; R.P. Jacobi. “Making Java Work for
Microcontroller Applications”. IEEE Design & Test of
Computers vol 18, Issue 5, 2001, pp. 100-110.

[10] C.Zeferino, A.Susin. “SoCIN: a Parametric and Scalable
Network-on-Chip”. In: Symposium on Integrated Circuits and
Systems Design (SBCCI), 2003, pp.169–174.

[11] A. Beck, J. Mattos,; F. Wagner; L. Carro. “CACO-PS: A
General Purpose Cycle-Accurate Configurable Power
Simulator”. In: Symposium On Integrated Circuits And Systems
Design, 2003, São Paulo, Brasil. IEEE Computer Society Press,
2003. p.349-354.

[12] J. Zhuo, and C. Chakrabarti. “An Efficient Dynamic Task
Scheduling Algorithm for Battery Powered DVS Systems” In:
Design Automation Conference Asia and South Pacific (ASP-
DAC), 2005, pp.846-849.

[13] EEMBC. The Embedded Microprocessor Benchmark
Consortium. http://www.eembc.org 2006.

