Temperature-Aware Scheduler Based on Thermal
Behavior Grouping in Multicore Systems

Inchoon Yeo and Eun Jung Kim
Department of Computer Science and Engineering
Texas A&M University
College Station, TX77840, USA
{ryanyeo, ejkim@cs.tamu.edu

Abstract—Dynamic Thermal Management techniques have proactive DTMs are more effectively in temperature control
been Wld8|y accepted as a thermal solution for their low cost against thermal emergency, since they trigger the control
and simplicity. The techniques have been used to manage thegchemes hefore the core temperature reaching the desired

heat dissipation and operating temperature to avoid thermé . . . .
emergencies, but are not aware of application behavior in threshold. Since applications have used different funetio

Chip Multiprocessors (CMPs). In this paper, we propose a Units that can affect operating temperature, the temperatu
temperature-aware scheduler based on applications’ therml  difference among applications can be up t€95], [11]. In
behavior groups classified by aK-means clustering method in fact, the temperature difference between on-chip comgpsnen
multicore systems. The application’s thermal behavior grap has can be as much as) ~ 15 °C [11]. Also, all applications do

similar thermal pattern as well as thermal parameters. Withthese . S

thermal behavior groups, we provide thermal balances among not result 'n, th(lalsame he.at.d|SS|.pat|on pattern. In othedsyor
cores with negligible performance overhead. We implementrad  there are significant variations in the thermal charadtesis
evaluate our schemes in the 4-core (Intel Quad Core Q6600) dn among different applications [11], [13] and different coiia
8-core (two Quad Core Intel XEON E5310 processors) systems the same chip.

running several benchmarks. The experimental results showhat . . _
the temperature-aware scheduler based on thermal behavior In this paper, we propose a simple and accurate prediction

grouping reduces the peak temperature by up to 8C and 5°C in model_ to profile application’s_ thermal behavior and clqss?f
our 4-core system and 8-core system with only 12% and 7.52% them into several groups offline, and then measure the time

performance overhead, respectively, compared to Linux stedard ~ duration before reaching the desired temperature thréshol

scheduler. for each core. The proposed temperature-aware scheduler is

scalable to any current multicore model and architectuth wi

on-chip thermal sensors that can be accessed at the software
As power density increases with high technology, the chjpyel.

temperature has threatened the system performance,iigliab  The main contributions of this paper are summarized as

and even system safety. For high-performance Chip Mulfy|iows:

processors (CMPs), thermal control has become an important , . i

issue due to their high heat dissipation. Thermal packaginy  * W(_a classify appllcatlc_)ns thermal _behawor groups

fans can be the primary solution, but suffer from high cost an ~ USing K-means clustering method with a steady state

complexity. Therefore, Dynamic Thermal Management (DTM) ~ temperature.

has been getting more popular for its low cost and flexibility
In [2], the key goals of DTM were stated as: (1) to provide

inexpensive hardware or software responses, (2) thabtglia

reduce power, (3) while impacting performance as little as

possible. Although many hardware-based DTM techniques,

such as Dynamic Frequency and \oltage Scaling (DVFS)

and clock gating, have been proposed and applied in the

modern processors in nowadays, the demand of more effi- . v there i dditional hard .
cient DTM techniques are prevailing in the multiprocessor * Most importantly, there is no additional hardware unit re-

server systems [2], [4], [5], [12], [13], [16], [9]. In DTM quired for our temperature-aware scheduler. Our scheme

schemes for CMPs, a thread migration have been proposed is applicable to any multicore environment in real-world
to achieve thermal balance among cores without throttlireg t CMP products seamlessly.

computation performance in the CMPs systems. However, theThe remainder of the paper is organized as follows : Section
studies mentioned above, with the exception of [13], [16}, all notes the previous works and Section Ill provides the
reactive to the increased chip temperature, while [13]] [L&xplanation of thermal model in detail. In Section IV, we
are proactive based on the predicted future temperatuie. Bxplain thermal behavior group and how to classify applica-

I. INTRODUCTION

« We propose an efficient temperature-aware scheduler
in multicore systems and implement it for Intel Quad-
Core Q6600 and two Quad Core Intel XEON E5310
processors systems. We demonstrate that our scheme is
able to successfully reduce the overall temperature and
provide thermal fairness among cores.



tions usingK-means clustering method as a thermal behavioverhead. This is because the real temperature cannot be
group. In Section V, a temperature-aware scheduler basedestimated solely by hardware performance counter, and both
thermal behavior group is described. The analysis resudts af priority scheduling and clock gating will introduce high
discussed and conclusions are provided in Section VI and Vlerformance overhead.

respectively.
IIl. THERMAL MODEL

Il. RELATED WORK The heat transfer equations are introduced to model the
Several advanced DTM studies [3], [10], [15], [9], [7] haveteady state temperatdiref systems with heat sources in [6].
been proposed to provide thermal fairness and reduce Wygh those heat transfer equations, Weetgal. present that
peak temperature through temperature-aware thread moigrathe rate of temperature change is proportional to the diffee
schemes. However, as presented in [11], an accurate and pbstween the current temperature and the steady state in [14]
tical dynamic model of temperature is needed to accuratalgt 7, be the steady state temperature of an application. Then,
characterize current and future thermal stress, appdicatiwe denote7'(t) as the temperature at timeand 7;,;; as
dependent thermal behavior, as well as to evaluate artiiggc the initial temperature when an application starts exeouti

techniques for managing thermal effects. (T'(0)=Tinit). Thus,
Donald et al. [3] introduce various thermal management dT
polices such as DVFS and thread migration based on current P bx (Tss —T). (1)

temperature, but their scheme fails to delve into the thlermah bis a th | ter d dent on hard
model for CMPs to determine which core would be bed'€'€0 1S @ thermal parameter dependent on hardware Spec-

after migration. Powelkt al. describe techniques for thread_'(;?t'ons' Solvmkg);t E_quat|on (1) Wit (0) = Tini andT'(c0)
assignment and migration to balance temperature [10]. Al-~** we can obtain

though their works use performance counter-based infeomat T(t) = Tos — (Tss — Tinig) x €% )
to determine migration, this information can not be a direct ) )
representation of thermal behavior. Using Equation (2) and our measurements, we can ofitain

Yang et al. propose the execution ordering between h&ndb using the following steps:
threads and cool threads for temperature control [15]. Howl. We first run each SPEC CPU 2006 benchmark suite on
ever, it is impossible which treads would be hot or cool at €ach core until the temperature is not changed anymore
runtime before their executions. Moreover, since appticet to obtain the respective steady state temperature.
do not have consistent thermal behavior, the change of exec@. Then, we calculate the thermal paramétéry accessing
tion ordering for threads does not guarantee thermal safety ~ the real temperature from the Digital Thermal Sensor
runtime. (DTS) within a core using Equation (2).

In [9], the thread with less task size tends to be migrated Therefore, once the thermal parameteand T, are ob-
easier than other threads to reduce the performance owerhigdned, they could be used in the proposed prediction model
caused by migration, but the task size does not necessatdyestimate each core's time duration before reaching the
means the memory usage, especially the cache usage inglelefined temperature threshold. Moreover, we can ndtate t
core. Moreover, due to our experiment results, the diffeeeneach core’s thermal parameteandT,, are different according
of migration cost between tasks with distinct memory usages which application works even though the cores are within
is only within 10 ms, and migration cost mainly comes fronthe same package.
the task suspension and resumption. Furthermore, these pri
works above are based on simulated results, and neglect the
thermal-correlation between cores. The power dissipaied b In this section, we propose to classify the thermal behavior
the rest of the chip is assumed to be negligible. Besides, ®wup by T,,. Also, we introduce how to predict future
migration action is triggered by the current temperaturegw temperature and time duration before reaching the predkfine
the temperature is higher than maximum allowed temperatutereshold using thermal parameteérand thermal behavior
in these studies; however, instead of considering the ourrgroups.
temperature, we propose to estimate each core’s future tem- :
perapture and meapsurrJe the time duration before reaching eThermaI Behavior Group
desired temperature threshold for each core to determime thAs shown in Fig. 17, of each benchmark suite is different
migration target core. from each other, although all of their CPU utilizations are

In [7], HybDTM, a methodology for fine-grained, coor-almost 100%. In order to manage temperature at runtime,
dinated thermal management using both software (prioridgcurate applications’ thermal behavior should be necgssa
scheduling) and hardware (clock gating) techniques, is pr@/e observe that amorifi;; and thermal parametérin Equa-
posed. In order to estimate temperature, HybDTM propost@n (2), Tss value is more sensitive than thermal parameter
a regression-based thermal model based on using hardware o _

. The steady state temperature of an application is defineteagetnper-
performance counters. However, HbeTM can not eﬁeCt'Vleure, which can be reached in real system if the applicasoexecuted
reduce overheat temperature without noticeable perfocmarnfinitely.

IV. THERMAL BEHAVIOR GROUP
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Fig. 3. Slopes for thermal pattern at runtime
Fig. 1. Tss according to SPEC CPU 2006 benchmark suite

temperatures while applications running. In our obseovati

. . L the thermal pattern can be divided by three regions as shown
b to different thermal behaviors of applications. As shown . . )
oo L - 2 In Fig. 3. Each region has a different thermal slope that can
in Fig. 2, applications’ thermal patterns are similar if ithe

. . ect the temperature increasing rate at a given time.
T,s are analogous. In this research, we classify SPEC Clglf,lf P 9 9

2006 benchmark applications wiihy; value as several thermal As_shown In abqve Fig. 3,_the slope (a), (b), and (c)
: ; . are different according to the time To calculate the slope
behavior groups using K-means clustering method.

. ) . for operating temperature, we can use a simple equations as
The K-means clustering method is an algorithm to cIust%”OVSS_ 9 P ple eq

n objects based on attributes info partitions, k¥ < n. As T(i+ At) —T(4)

our preliminary experiments for twelve SPEC CPU 2006 Si = At ) )

benchmarks; = 5_is the optimal value t_o classify applicaﬂo”%here& is the slope of application’s thermal pattern fioh
as thermal behavior group as shown in Table |I. region, T'(i) is the previous temperature, af®i + At) is
For example400. per | bench, 401. bzi p2,403. 9CC,  the current temperature. Alsht is a predefined time interval.

and 456. hmmer applications can be classified as the samggjng current temperature and the slope value, we can dstima
group ( Group A) that has a similar thermal pattern ddd 5, application’s current region at runtime. As mentioned

as shown in Fig. 2. above, applications in the same thermal group have similar
thermal pattern, and the slope of regions in the same group is
also similar. Based on those slope values and thermal bahavi
groups, a temperature-aware scheduler estimates more accu
rate future temperature, and provide more effective dynami
thermal management. We will explain how to exploit these
information for the temperature-aware scheduler in Sedfio
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V. TEMPERATUREAWARE SCHEDULER

Since Linux standard scheduler is not aware of operating
temperature for cores in multicore environments, we pre@os
[ temperature-aware scheduler that exploits this vartgliilithe
555' Loy pereneh context of multicore systems. Although the proagtive sodmem
T have _been proposed in [16], the_schemg in [16] fa|Is_to cgm&d
i i i i ‘ ‘ the difference of temperature increasing pattern in dbffier
50 100 150 200 250 300 350 . .
time (sec) cores, becausg;; and thermal parametérare impractically
assumed to be the same in each core within a single chip. Most
Fig. 2. Thermal Behavior for Group A importantly, in [16], the authors propose to migrate taskenf
a potentially overheated core to the future coolest coredas
, , on the temperature prediction results. However, we believe
B. The region of the thermal behavior group that the target core of task migration should be determined
While we use a steady state temperature valllg, for by the core which needs the longest time period to reach
clustering, we need to find another metric for the classificat the predefined temperature threshold, because temperdture
of a new application at runtime. Since before reaching steathe coolest can be increased faster than others due to the
state, thel,, value is not available, we use only the measurdtiermal correlation effects and applications’ thermaldwedrs.
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TABLE |
THE RESULT OF THERMAL BEHAVIOR GROUP USING&K-MEANS CLUSTERING ON4-CORE SYSTEM

SPEC CPU Core 1| Core 2| Core 3| Core 4
Applications Tss Tss Tss Tss k=2 | k=3 |k=4|k=5| k=6 || GROUP
400.perlbench 83°C 77°C 74°C 77°C 1 3 2 5 3 A
401.bzip2 83°C 77°C 73°C 77°C 1 1 2 5 3 A
403.gcc 84°C 76°C 74°C 77°C 1 1 2 5 3 A
429.mcf 84°C 80°C 76°C 78°C 1 1 1 3 4 D
445.gobmk 82°C 77°C 73°C 76°C 1 1 2 1 6 C
456.hmmer 84°C 77°C 73°C 77°C 1 1 2 5 3 A
458.sjeng 83°C 76°C 72°C 76°C 1 3 2 1 6 C
462.libquantum 92°C 84°C 81°C 84°C 2 3 2 4 1 E
464.h264ref 83°C 74°C 72°C 74°C 1 3 4 2 5 B
473.astar 84°C 79°C 74°C 77°C 1 1 1 3 4 D
483.xalanchbmk 83°C 74°C 73°C 76°C 1 4 2 2 2 B

As explained in Section IV, each core’s and application’s

thermal behavior is different b{f;; and thermal parameter
b. Therefore, migrating task from a potential overheatec cor glgorithm 1 Algorithm of Temperature-Aware Scheduler

to the coolest core is unnecessary and improper. 1: ClassificationTy, into the thermal behavior group by K-
In this paper, we first profil@,, of applications offline, and ~ Means clustering

then classify them as thermal behavior groups usiageans 2 Teur < AcCeSSOT Sremperature)

clustering method. Whenever an application starts to tm, t 3 sloper < Calculateleur, Tpreo) at the timet

slope of the application is calculated after triggering artst 4 Lhermalgroup; — Find(sloper, t) for application;

threshold. According to an execution timejt is possible that 5 Tss < Get(I"hermalgroup;)

this application can be classified into which thermal betavi © b — Get(l"hermalgroup;)

group. As a result, we can acquifg, and thermal parameter 7: for Tm“j > Tgate do

b for the application from this thermal behavior group at® for j=1to .MAXc,ores d_o

runtime. Based on thes&,, and thermal parameter, a > _Cal(fwate“mepe”‘)dest in Current CORE

temperature-aware scheduler starts to predict each datere ~ 1* it timeperiodesy < 2 Sect_hen

temperature and the time period before reaching the desired Target Core — Longesttime_CORE('[])
12: MIGRATION(process; — Target Core)

temperature threshold. If the estimated time period istless
2 seconds, it means the cores are going to be overheated in tfe
near future, and the task migration should be triggered. TH&
migration target core is determined by which other core aeed® €nd for
the longest time to reach the desired temperature threshold

Then, all the tasks on the potentially overheated core can be
migrated to the target core to balance the heat within narkic
environments.

end if
end for

Appl. App, App, App, App ., Appn.l App ,

VI. EXPERIMENTAL RESULTS ANDANALYSIS ===~ @ —/——/—/— ——————————

SYSTEM Application’s Thermal Behavior Group

In Intel's Core Architecture [1], Dynamic Thermal Sensor Profiler

(DTS) can be accessed by a Machine Specific Register (MSR). : i
The value in the MSR is an unsigned number and the unit is M/W UL o core Al LG U |

Celsius £C). Using these registers, we developed a thermal
device driver for getting operating temperature on mufgco
systems. Our scheme consists of three components such as
Application’s Thermal Behavior group, The Longest Core
Find Module, and Proactive Temperature-Aware Scheduler as
shown in Fig. 4. We conduct our experiments in two different

mu'tlcore SyStems as Shown In Table ”. H/w: L1 Cache L1 Cache L1 Cache | L1 Cache : : L1 Cache L1 Cache L1 Cache L1 Cache i

In order to demonstrate the applicability of our tempemtur 2 Coh e 2o e el 2.C000 el 2. )
aware scheduler for various applications, we utilize sver T TTTTTTTTTTTTT oo mommmmmmn e -
thermal behavior groups classified bB¢-means clustering Fig. 4. System Overview (8-core system)

method, as shown in Table I. In this paper, we used twelve
applications in SPEC CPU 2006 benchmark suite for profiling.



TABLE Il
EXPERIMENTAL SYSTEMS DESCRIPTIONS VIl. CONCLUSION

In this paper, we propose a temperature-aware scheduler
based on thermal behavior grouping in multicore systems. To
Cores 4 cores 8 cores classify applications according to the thermal behaviog, w

Processor| Intel Quad Core| two Intel Quad Core useT'ss value as a classification factor irmeans clustering
Q6600 XEON E5310 ) ;
Memory LGB LGB method. We observe thdls; is more proper to explain
oS SUSE 10.3 | RedHat Enterprise 4 application’s thermal pattern out of the thermal parameter
b and T,,. The proposed temperature-aware scheduler finds

a core which takes the longest time to reach a temperature

In our experiments, We choobeip2 andlibquantumin SPEC threshold instead of the coolest core for migrations. Tafyer
CPU2006 benchmarkiacation from STAMP benchmark [g]. the proposed temperature-aware scheduler, we implement it
We selectbzip2 and libquantum because they are CPU-ON two multicore systems such as a 4-core (Intel Quad Core
intensive. Also,vacation is a client/server travel reservationQ6600) and 8-core (two Quad Core Intel XEON ES5310
system benchmark that is appropriate to present the dem&H@Cessors) systems. We develop a thermal device driver to
of thermal control in the server systems. access the Digital Thermal Sensor in these two systems. We
To compare with other schemes, we also rebuild the Pi@emonstrate that a temperature-aware scheduler is able to
dictive Dynamic Thermal Management (PDTM) [16] andeduce the overall temperature and provide thermal fasrnes
Thermal Balancing Policy (TBP) [9] in our systems. All@MONg cores. Also, a temperature-aware seheduler can pro-
experiments in this paper is under ambient temperatureajpntvide more accurate prediction and more efficient tempegatur
and the speed of cooling fan is also fixed. management using thermal behavior grouping and the method
to find the longest core with lower performance overhead
compared to other schemes such as Linux Standard Scheduler,
To verify a temperature-aware scheduler for 4-core systefhermal-Balancing Policy, and Predictive DTM.
two applications run simultaneously. As shown in Fig. 5,
compared to Linux Standard Scheduler, a temperature-aware
scheduler reduces peak temperature up t€.8However, [1] “Intel 64 and IA-32 Architectures Software Developerfglanual,”
. http://support.intel.com/design/processor/manuals/.
PD_TM reduce the peak temperature byC2, while TBP [2] D.Brooks and M. Martonosi, “Dynamic Thermal ManagemfamtHigh-
is increased by . For the performance overhead evalua- = performance Microprocessors,” HPCA, 2001.
tion, the temperature-aware scheduler presents less #fan 1[3] J. Donald and M. Martonosi, “Techniques for Multicore éfmal Man-
agement: Classification and New Exploration,”|BCA, 2006.
performance overhead, and P_DTM ha_s 8% Compar?d tot S. Gunther, F.Binns, D.Carmean, and J.Hall, “Managihg tmpact
Linux Standard Scheduler, while TBP incurs 35%. Since the  of increasing Microprocessor Power Consumptiomtel Technology
temperature-aware scheduler finds the longest core instead éOULnaJ, iooBl- dK A o “Reducing P Dendfiyough
. Aeo, K. barr, an . Asanovic, educing FPower ben ug
the coolest core ur}der .therma! threshelq, our scheme redu Activity Migration.” in 1SLPED, 2003.
the number of migration while providing better thermal-[s] F. Kreith and M. S. BohnPrinciples of Heat Transfer. CENGAGE-
balancing for cores compared to other DTMs. Therefore, the Engineering, 2000.

_ . [7] A. Kumar, L. Shang, L.-S. Peh, and N. K. Jha, “HybDTM: A Geo
temperature-aware scheduler based on thermal behavigp-gro ™" =1 o e Sofware Approach for Dynamic Thermanitge-

|  System | System |I

A. 4-core system
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