Separate Compilation and Execution of Imperative
Synchronous Modules

Eric Vecchié
INRIA Rennes - Bretagne Atlantique
Campus de Beaulieu
35042 Rennes Cedex, France
Eric.Vecchie @irisa.fr

Abstract—The compilation of imperative synchronous languages like
Esterel has been widely studied, the separate compilation of synchronous
modules has not, and remains a challenge. We propose a new compilation
method inspired by traditional sequential code generation techniques
to produce coroutines whose hierarchical structure reflects the control
flow of the original source code. A minimalistic runtime system executes
separately compiled modules.

I. INTRODUCTION

Synchronous programming languages are domain-specific lan-
guages dedicated to the design of real-time embedded systems.
The imperative style of Esterel [2] has been specifically designed
to ease programming control-dominated applications. Its efficient
compilation has been a major issue for more than a decade [3], [1],
[8]. More recently, the increasing complexity of systems and the need
for integrating IPs (Intellectual Property) have motivated a renewed
interest for the modular compilation of synchronous languages [10],
[9], [7]. True modular compilation suits application area focusing on
rapid prototyping, simulation and test or flexibility demands posed by
the need for dynamic reconfigurability (e.g. for space applications).
Unlike related approaches, we start from the very same notion of
modular compilation as in general-purpose languages like C: the
translation of an Esterel module into binary code with a header
file describing its interface. The instantiation of a module is simply
realized by passing its parameters and executing its code through
simple calling conventions.

Early Work: Because it was thought to make causality analysis
more difficult, modular compilation were not considered in early
implementations of Esterel. Instead, early compilers generate code
from a data-structure representing a flattened and inlined expansion
of the source program. For instance, [3] translates a program into an
extended finite state machine whose transitions are decorated with
code fragments. The obvious disadvantage of this technique is the
potential state-space explosion of the automaton. Its main advantage
is the very short execution time of the generated code. Compilation
techniques achieving a polynomial space complexity were first ob-
tained by using systems of equations to symbolically represent the
automaton of a program [1]. This approach was successfully used
for hardware synthesis and it is still at the core of commercial tools,
although the generated software is usually slower. Another approach
is based on the translation of programs into concurrent control flow
graphs [8] whose size grows linearly on the given program. At each
instant, the control flow graph is traversed until active nodes are found
to trigger the execution of the corresponding sub-tree.

Related Work: Some works [9], [10] address different notions
of “modular compilation”. In [10], the generated code is able to
partially deal with undefined inputs by using a three-valued logic.
The generated programs try to compute as many outputs as they

Jean-Pierre Talpin
INRIA Rennes - Bretagne Atlantique
Campus de Beaulieu
35042 Rennes Cedex, France
Jean-Pierre. Talpin @irisa.fr

Klaus Schneider
University of Kaiserslautern
P.O. Box 3049
67653 Kaiserslautern, Germany
Klaus.Schneider @informatik.uni-kl.de

can while ignoring inputs that are still unknown. In [9], the Esterel
dialect Quartz is translated into a “job language”. This translation
can be conceptually regarded as a graph of simultaneously active
jobs where each job contains an atomic task. In these approaches,
the increased effort involved for the compilation of the modules
separately does not spare some “tuning” of the generated code at
instantiation time, depending on the calling context. Unlike our
approach, this implies that the code of the instantiated module must be
duplicated. Other works [7] use multi-function interfaces to generate
modular code for synchronous block diagrams. Each function in the
interface is responsible for the evaluation of some outputs through
the evaluation of the relevant part of the module. The trade-off
between modularity (decreasing with the number of functions in the
interface) and reusability (increasing with the number of functions)
is also addressed. In our approach modularity is maximized since the
compilation of each module generates a single function. Reusability
is nevertheless ensured by a flexible model of execution which allows
causality issues to be resolved dynamically at run-time.

Our Approach: Our method tries to mimic the well-known code
generation techniques described in classical compilation books. Ex-
pressions are flattened and translated into assembly code sequences.
Conditional statements are replaced by conditional gotos and function
calls use stack frames for passing the parameters and saving the
register context of the caller. Meanwhile, this compilation scheme has
to capture the particular model of computation of the synchronous
languages.

Model of Computation: Naive semantics of Esterel goes as
follows: programs behaviors are discretely divided into instants.
Control threads are executed until reaching a pause statement,
which cuts behaviors into atomic instants. We call “reaction” the full
behavior performed during a given instant. In a reaction cycle, input
signals are sampled, and internal computation takes place until output
signals are emitted in answer, and the program state is progressed.
Instants are based on a common logical clock, which paces all parallel
threads. This (the fact that all components proceed with the same
atomic logical instants) is why we call the model “synchronous”. Of
course in a reaction various parallel threads do not run independently,
as they may synchronize and affect one another causally. When
control reaches a statement involving the value of a signal, it may
have to postpone execution until a consistent definitive value is
obtained for the signal inside the current reaction (either because it is
assigned somewhere in parallel, or because other threads of execution
progressed to a point where provably all potential emissions were
discarded). The topic of constructive causality is a large body of
Esterel semantic theory, but we shall not address it here; instead we
shall assume that there is no cyclic dependency between signals.

Model of Execution: Our execution scheme is rather inspired
by the reactive kernel of Junior [6]. This tool is a relative of the
Esterel language used to write reactive applications through a Java
API. Unlike Esterel, the reaction to the absence of a signal is delayed
to the next instant. In Junior, each reaction step executes and reduces
a tree representing the instantaneous state of the reactive program and
reflecting its original structure. The major complexity of our approach
lies in the conciliation of this execution scheme with the traditional
compilation techniques. In this purpose, we use a mechanism similar
to co-routines [5] so that the control yields at some points of the
generated program. These co-routines are hierarchically nested to
reflect the control structure of the source program.

The paper is organized as follows: the section II describes the
considered language. We present the translation of the language into
“high-level” assembly code in section III and our solution for dealing
with signals communications in section IV. We finally conclude this
article by some future works.

II. THE SYNCHRONOUS LANGUAGE

As source language, we use a simple but sufficient Esterel-
like language, containing the essential constructions of imperative
synchronous languages. It contains the following statements:

« pause (division between instants)

e emit V /V = E (pure/valued signal emission)

e if F then P; else P» (conditional)

e do P while FE (iteration)

e { Pi; ...P, } (sequential block/scope)

e P || P> (synchronous parallel composition)

o [weak] abort P when F ([weak] abortion)

o suspend P when E (suspension)

e name (V1, ...V,) (module instantiation)

e module name (Vi, ...V,){P} (module declaration)

Variables are boolean, integer or pure signals. Expressions can
be any boolean (present, and, or, not), arithmetic (+, -, ...) or
comparison expression (==, !=, >, ...) based on signals and constants.
As we stick to the semantics of Esterel, further documentation can
be found in [2].

III. OUR COMPILER

The synchronous modules are translated into sequential code
intended to be executed in a Runtime System. The task of this system
is rather simple: it maintains a collection of cooperative threads to
be executed during the current logical instant (reaction) and a second
one to be executed at the next logical instant. The “current” list
of threads can be dynamically enlarged. This is typically the case
when a thread reaches a parallel statement. Thus, the execution of a
reaction step means the execution of all the threads of the current list
until it is made completely empty. The same way, the execution of
a synchronous program means the execution of reaction steps until
the “next” list of threads is empty. The second task of the Runtime
System 1is also to deal with the signal emissions and resets but we
shall come back to this later.

A. Compilation of Sequential Statements

The compilation of classical sequential statements follows a clas-
sical compilation scheme using conditional gotos for if-then-else and
do-while statements. We shall simply consider these statements as
part of our “high-level assembler”. In the same way, local variables
are referred through their names rather than FP[i] where FP is
the Frame Pointer register and 7 would be the relative address of

the concerned variable in the current frame. New stack frames are
allocated when scopes are entered. In our implementation, a particular
care has been taken to reallocate unused frames through a simple
garbage collection mechanism.

B. Parallel Statements

In cooperative multithreading, each thread is responsible for relin-
quishing control. This is ensured by the assembly instruction “stop”.
Starting a new thread is done with the instruction “start pc, fp”
where pc is the address of the first instruction of the started thread
and fp is its frame pointer. The translation of the parallel statement
Py || P; is then the following:

sync = 2
start FORK_1bl, FP
Py
goto SYNC_1bl
FORK_1bl:
Py
SYNC_1bl:
sync = sync-1
if sync > O then stop endif

Here “sync” is a local variable used to synchronize P; and P so
that the first thread reaching SYNC_1bl is stopped and the second
one goes on. This translation can be easily adapted for n-ary parallel
statements.

C. Hierarchical Coroutines

The execution of a synchronous program is a succession of atomic
reactions during which threads run in parallel until reaching a pause
statement. In the beginning of each reaction step, the threads are
resumed at the very locations where the program eventually paused
at the end of the previous reaction. However, not all threads are
resumed: because of abort and suspend statements, the resumption
of threads should actually be performed hierarchically, according to
the structure of the source program and the dynamically fulfilled
conditions.

1) Guarded “pause”: Each pause statement is guarded by the
closest abort or suspend parent statement or, at the top level, by the
Runtime System. The assembly code for pause statements is then
the following:

RPC = PAUSE_1bl ; RFP = FP
FP = FP[0]™ ; goto parent_guard_Ibl
PAUSE_1bl:

The context of the thread is saved in two data registers: the resume
point is saved in RPC (Resume Program Counter) and the current
frame pointer in RFP (Resume Frame Pointer). The frame pointer is
then popped of as many levels (given in n) as to retrieve the frame
pointer of the guarding abort/suspend statement. At the address
parent_guard_lbl is the code responsible for managing the paused
thread. The values parent_guard_Ibl and n are defined at compile
time. In the following, we shall use the simpler assembly instruction
“resume res” where res is the address where the pause has to
resume at the next reaction step. The “resume 7es” instruction is
comparable to that of the yield() instruction of languages imple-
menting co-routines [5] (Java, Python, Lua...). Thus, the translation
of the pause statement becomes:

resume PAUSE_1bl
PAUSE_1bl:

2) Guard Statements: The task of abort and suspend statements
comprises of guarding the execution of their bodies. Their compila-
tion has to provide the assembly code for managing the nested pause
statements through the callback mechanism described before and the
data registers RPC and RFP. The compilation of abort statements
produces the following code:

P
goto END_1bl
GUARD_1bl:

if child == [] then
child = (RPC, RFP)::child ; resume RES_1bl
else
child = (RPC, RFP)::child ; stop
endif
RES_1bl:
if not(C) then
start_all(child)
endif
END_1bl:

; child = [] ; stop

The assembler block starting at the addresses RES_1bl is responsible
for resuming the execution of the paused threads inside P, under the
condition C'. Each time a thread of P is paused, it is added to a
list “child” (a local variable stored in the current frame). These
threads shall be passed through the registers RPC and RFP and
managed from the address GUARD_1bl. This label has to be provided
when compiling pause statements inside P, so that the control jumps
to this very address each time a thread is paused. When the first
thread is registered (child == []), the abort statement has also to
register itself to the parent guard (resume RES_1bl). The translation
of suspend statements is hardly different so that when the condition
C holds, the paused threads are not started. Instead, the list is kept
and the suspend statement registers itself again to the parent guard:

RES_1bl:
if C then
resume RES_1bl
else ...

In the case of the abort statement, P is simply not restarted and the
control flows to the rest of the program.

The translation of weak abort statements is slightly more com-
plex since the abortion of P has to take place one logical instant later
than it would be in the case of an abort statement. Nevertheless, this
translation is similar enough to that of the abort statement for doing
without such extra details here.

D. Instantiate Module as Function Call

The instantiation of synchronous modules can be compiled as
an almost classical function call: caller context and parameters are
passed through a new stack frame and control jumps to the first
instruction of the module. The only difference with respect to the
classical function call of sequential programs is that the guard context
has to be stored (since the module can be reentered several times
along the successive reactions):

FP

'

77 e

As to cope with our calling conventions, the declaration of a mod-
ule module mod_name(S1, ...S,) {P} generates the following
code:

guard ‘ FP,

s | Params...

mod_name:

P

ret = FP[0] ; FP = FP[1] ; goto ret
GUARD_1bl:

ret = FP[2] ; FP = FP[3] ; goto ret

Where GUARD_1b1 is the parent guard label of the module body P.
It is necessarily provided for the compilation of any pause, abort
or suspend statement of P.

E. About Scopes

Schizophrenia is a usual issue in the compilation of imperative
synchronous programs [2]. It comes from the fact that, because of
loops, several instances of a same variable can coexist simultaneously
(in a same reaction step). The problem does not arise here thanks
to the use of stack frames: each time a scope is re-entered a new
data frame is allocated. The separation between control and data is
at the heart of our modular compilation technique since it allows to
simultaneously run several threads sharing the same code but working
on distinct data.

IV. DEALING WITH SIGNALS

Over the rigid framework provided by the structural translation of
synchronous modules into cooperative sequential threads, we shall
now provide a solution to deal with runtime causality induced by
signals. Let us consider the following example where I is an input
signal, 0 is an output signal and S1 and S2 are local signals:

1 { if present(I) then emit S1;
2 if present(S2) then emit 0 }
3 || if present(S1) then emit S2

The correct execution of this program starts with the beginning of
the first thread (at line 1), then carry on to the second one (at
line 3) and finally resume the first one (at line 2). This program
is a friendly illustration of the problem. In real life we might face
some nastier configurations where such statements are nested in
different locations and different modules in the program. Considering
modular compilation, there is no solution for statically scheduling our
compiled threads in the general case. In our approach, causality issues
are then resolved at execution time.

A. Implementation of Signals

At the end of a reaction step, the status of any signal has to be
either present or absent. Inside a reaction, every signals but inputs
remain wundefined until reaching an emit statement or reaching a
state of the program where all potential emissions are discarded. We
propose the following approach: before a signal is read or tested, we
check its status. If it is undefined, then the execution of the thread is
suspended. Each signal maintains a list of pending threads, so that
they are immediately restarted as soon as a definitive value or status
of the signal is determined (observer pattern). For this purpose, we
use an assembly instruction “wait S”, defined as a macro for the
following code:

if S.status == UNDEFINED then
S.pending = (RES_1bl, FP)::S.pending
stop
endif
RES_1bl:

The emission or absence of a signal is realized through the assembly
instruction “emit S, status, value”, defined as a macro for the
following code:

S.status = status

if status == PRESENT then
S.value = value

endif

start_all(S.pending)

B. Immediate Reaction to Absence

Reacting to the absence of a signal depends on the global behavior
of the program. Our approach involves the Runtime System at the
top level which maintains a list “pending” of undefined signals. At
some point some signals have to be declared absent so as to achieve
the current reaction step. However, not all the pending signals can
be declared as absent. Let us consider the following example:

if present(S1) then emit S3 else emit S2
|| if present(S2) then emit S3
|| if present(S3) then emit O

where S1, S2 and S3 are local signals. The execution of this program
leads to a point where the threads are blocked on these signals. At
this very point, only S1 is safe to be set absent since S2 and S3 still
have potential emitters.

1) Potential Emissions: Our solution relies on a local knowledge
of the potentially emitted signals at each point of the program. We use
reference counters on signal to indicate which signal can be safely set
absent. We use the instructions “can S” to mark a signal as possibly
emitted in the current thread (S.refcount = S.refcount+1). We
use the instruction “cannot .S” to mark that the control just reached a
point where a signal cannot be emitted any more in the current instant
and by the current thread (S.refcount = S.refcount-1). This
strategy is closely related to the “Can” sets used in the Constructive
Behavioral Semantics of Esterel [2].

Different semantics for causality issues in Esterel were discussed
in [4]. This paper presents several variations of the constructive
semantics of the Esterel language. These semantics are more or less
restrictive depending on the way the Can sets are computed by so-
called “Potential Functions”. In our approach, we compute our Can
sets with the help of the Potential Function corresponding to the v3
version of the Esterel semantics.

2) Reference Counter Policy: At compile time, we locally com-
pute the Can set of potentially emitted signals for each statement of
the program. We then generate the can statements at each resumption
point of the program (i.e for each pause statement), so that a thread
immediately declares its potentially emitted signals as soon as it
is started or resumed. Finally, we generate the cannot statements
at each point of the target code where the Can set decreases. For
example, the insertion of can and cannot statements in the code of
the first column will produce the code of the second column:

pause; pause;
can A; can B; can C;
emit A; emit A; cannot A;
if present(S) then if present(S) then
cannot C;
emit B emit B; cannot B
else else
cannot B;
emit C; emit C; cannot C
pause pause

A signal can thus be safely declared absent when its reference
counter is equal to zero and when the list of active threads is empty
(which means that any active threads had the opportunity to increase

the reference counter of the concerned signals before suspending
their execution). The global information about the potentially emitted
signals is thus obtained by the execution of all the active threads
providing local partial information. This strategy for the generation
of can and cannot instructions is not unique and leaves room for
optimizations.

In the context of a modular execution, the correct compilation of
programs requires some minimal knowledge about the modules. So
as to identify the potentially emitted signals, we then need to know
1. which parameters can be emitted at the first reaction of the module
and 2. if the module can be instantaneous. This information can
be carried by a type system and stored in a header file. When a
module is about to return, it also requires the list of signals that are
potentially emitted by the caller after the termination of the callee.
This information is actually passed on stack frames.

V. CONCLUSION

We presented a new strategy for compiling Esterel-like modules
into sequential cooperative threads. The static scheduling induced by
the syntax is ensured by a structural compilation into sequential code.
The dynamic behavior induced by the inter-process communications
is solved by the definition of a protocol for the emission of signals.
This technique has been implemented as a lightweight compiler
where consumption and recycling of memory in the generated code
has been a particular focus.

Our work can further be extended in various direction. We shall
investigate some optimizations around the reference counting policy
or the minimization of context switches. We could also work on some
architecture-dependent implementations like multi-core processors.
Questions also arise from the theoretical point of view: synchronous
programs are traditionally used for modeling finite and static systems.
However, this modular compilation scheme lets us to make the
language much more flexible. It can thus be slightly adapted so as to
cope with recursive, potentially infinite synchronous systems as well
as higher-order programming and dynamically modifiable systems.
To provide the same degree of correctness-by-construction as modern
Esterel-like compiler, our technique could additionally be paired with
a modular analysis associating each separately compiled module with
a profile declaring an abstraction of its behavior.

REFERENCES

[1] G. Berry. A hardware implementation of pure Esterel. In Workshop on
Formal Methods in VLSI Design, Miami, Florida, 1991.

[2] G. Berry. The constructive semantics of pure Esterel.
sop.inria.fr/esterel.org, 1999.

[3] G. Berry and G. Gonthier. The Esterel synchronous programming
language: Design, semantics, implementation. Science of Computer
Programming, 19(2):87-152, 1992.

[4] F. Boussinot. SugarCubes implementation of causality. Research Report
3487, INRIA, 1998.

[5] M. Conway. Design of a separable transition-diagram compiler. Com-

munications of the ACM, 6(7), 1963.

L. Hazard, J.-F. Susini, and F. Boussinot. The Junior reactive kernel.

Research Report 3732, INRIA, 1999.

[71 R. Lublinerman and S. Tripakis. Modularity vs. reusability: Code

generation from synchronous block diagrams. In Design, Automation
and Test in Europe (DATE), 2008.

[8] D. Potop-Butucaru and R. de Simone. Optimizations for faster execution
of Esterel programs. In Formal Methods and Models for Co-Design
(MEMOCODE), Mont Saint-Michel, France, 2003.

[9] K. Schneider, J. Brandt, and E. Vecchié. Modular compilation of
synchronous programs. In IFIP Conference on Distributed and Parallel
Embedded Systems (DIPES), Braga, Portugal, 2006.

[10] J. Zeng and S. Edwards. Separate compilation for synchronous mod-

ules. In International Conference on Embedded Software and Systems
(ICESS), Xian, China, 2005.

http://www-

[6

=

