
Increasing PCM Main Memory Lifetime
Alexandre P. Ferreira, Miao Zhou, Santiago Bock, Bruce Childers, Rami Melhem and Daniel Mossé

Department of Computer Science, University of Pittsburgh, Pittsburgh, Pennsylvania USA
{apf75,miaozhou,sab104,childers,melhem,mosse}@cs.pitt.edu

Abstract

The introduction of Phase-Change Memory (PCM) as
a main memory technology has great potential to achieve
a large energy reduction. PCM has desirable energy and
scalability properties, but its use for main memory also
poses challenges such as limited write endurance with at
most 107 writes per bit cell before failure. This paper
describes techniques to enhance the lifetime of PCM when
used for main memory. Our techniques are (a) writeback
minimization with new cache replacement policies, (b)
avoidance of unnecessary writes, which write only the bit
cells that are actually changed, and (c) endurance manage-
ment with a novel PCM-aware swap algorithm for wear-
leveling. A failure detection algorithm is also incorporated
to improve the reliability of PCM. With these approaches,
the lifetime of a PCM main memory is increased from just
a few days to over 8 years.

I.. Introduction
Current system designs have low power and energy

consumption as major requirements. As main memory
has become a primary energy consumer [1], many low-
power memory systems have been proposed that use new
technologies as replacements for DRAM [2], [3], [4]. One
technology that has potential is Phase-Change Memory
(PCM) due to its low energy, good read performance, non-
volatility and bit addressability [5], [4], [3], [2], [6]. How-
ever, PCM poses challenges that have to be addressed for
it to be used as a main memory replacement. Specifically,
PCM suffers from limited endurance (i.e., it wears out due
to write operations) and expensive write operations (i.e.,
high latency and energy). Indeed, too many writes to a
PCM main memory will lead to a short device lifetime,
poor performance and high energy consumption.

Other memory technologies also suffer from limited
endurance and expensive writes – Flash [7], [8] is the
most common example. Much attention has been given to
improve Flash memory lifetime and performance [7], [9].
As an example, Mylavarapu et al. introduce algorithms that
avoid erase operations and apply wear leveling (WL) to en-
hance lifetime and performance [7]. Because the problems
associated with Flash endurance/performance [8], [9] are
different from the ones for PCM, Flash WL algorithms
are of limited use in a PCM main memory. Flash WL

algorithms [7] avoid erasing a page on every write by
allocating a new clean physical page. This allocation is
unnecessary for PCM due to its bit-addressability. PCM
also has a larger overall endurance (i.e., it can sustain 107

writes rather than the 104 to 106 writes for Flash) and does
not require predefined blocking.

The use of PCM in main memory has recently been pro-
posed with techniques applied to increase PCM lifetime.
The PCM storage device presented in [10] implements a
read-before-write (RW) loop at the bit level to improve
reliability and extend lifetime. The work in [5] uses read-
before-write, row-level rotation (RL) and segment swap-
ping (SS) as endurance enhancements at the device level.
RL equalizes wear at the row level by rotating cache lines.
SS is done by swapping two segments: the one currently
being written and the one that is least-frequently-written
(LFW). However, the large segment size (1MByte) used in
SS [5] degrades lifetime compared to a small segment size
because the distribution of writes to a large segment can
be skewed. Nevertheless, large segments are used in [5]
to reduce the costs associated with searching for the LFW
segment during a swap.

A system level approach is used in [3] to incorporate
PCM in the memory hierarchy. This work proposes a
hybrid memory, where a large PCM memory is augmented
with a small DRAM that acts as a “page cache” for
the PCM memory. The page cache helps performance by
buffering frequently needed pages. It also helps endurance
by reducing the number of writes to PCM with write
combining and coalescing. Although the page cache filters
writes to PCM, it does not fully mitigate the endurance
problem. Additional techniques are applied at the cache
line and block levels. At the cache line level, only the
lines modified in a page are written to PCM. To avoid
unbalanced damage from writes, cache lines are rotated
on a page. Finally, swapping is used at the block level for
wear leveling.

In this paper, we propose three new approaches to
address the endurance problem when PCM is used in
main memory. First, a novel cache replacement policy
is applied to reduce writebacks from DRAM to PCM.
Second, read-Write-Read (RWR) and page partitioning
techniques are used to remove unnecessary writes and act
as a failure detection mechanism. This technique is similar
to device-level write differencing [10], [5]; however, our



approach is implemented in the memory controller to
reduce write bandwidth. Finally, a new swap algorithm is
used for endurance management. It has low overhead yet
allows small block granularities for effective WL. Overall,
our methods achieve a memory lifetime of at least eight
years, effectively solving the wear problem for PCM main
memory.

II. A PCM Main Memory Architecture
Writes are expensive in PCM: they are about 5-10x

slower and consume 10x more energy than reads [6]. In
current devices, a PCM cell typically supports around 107

writes [6]. Thus, PCM will wear-out quickly in a main
memory. Because a DRAM page cache has been shown
to be very important for performance (and endurance to a
lesser degree) [3], we assume that a PCM main memory
architecture will use one. The DRAM page cache is a
set-associative structure, with a relatively high degree of
associativity. Figure 1 contrasts a current DRAM architec-
ture (left) with one that uses PCM (right). The memory
controller (MC) manages the DRAM page cache and the
PCM devices. It controls the information flow between the
CPU, PCM and DRAM. Tags and status information are
tracked by the MC and stored in its own internal SRAM.
DRAM and PCM are managed in small pages (a few
kilobytes) for good performance and low implementation
overhead. Endurance is improved by writing to PCM
devices only when a dirty page is evicted from DRAM
(i.e., a writeback). A writeback policy reduces the number
of PCM writes.

Fig. 1. DRAM and PCM + DRAM Architecture

III. Endurance Enhancement Techniques
Our proposed schemes manage writes since these op-

erations are the ones that cause PCM cells to fail [6].
We describe several techniques, including (a) a N-Chance
cache replacement mechanism for writeback minimization,
(b) Read-Write-Read and page partitioning to avoid unnec-
essary writes and (c) a practical swap WL algorithm that
distributes writes uniformly among PCM pages.

A. N-Chance Cache Replacement Policy

Set-associative processor caches usually implement a
Least Recently Used (LRU) policy to select a victim block

from a set for replacement. Such a policy could be used
for the DRAM page cache. However, PCM has asymmetric
read and write behavior: reads are fast, cheap (energy) and
harmless, while writes are slow, expensive and harmful
(i.e., wears out). The usual LRU policy does not consider
the asymmetric nature of PCM read/write operations.

We depart from LRU and propose a new clean-preferred
victim selection policy (CLP). This policy gives preference
to unmodified entries (i.e., clean pages) in a page set
when choosing a victim. CLP aims to keep dirty entries in
the page cache to increase the probability that writes are
coalesced. It can reduce latency and energy by trading an
expensive writeback for a small number of low cost reads
(i.e., it’s cheaper to read a clean page from PCM than to
write a dirty one). However, it can also have a negative
impact by raising the page cache’s miss rate too much.
CLP always extends the PCM lifetime, but the effect on
latency and energy depends on how much preference is
given to clean pages when selecting victims.

Based on these observations, we propose a family
of clean-preferred replacement policies, called N-Chance.
The parameter “N” reflects how much preference is given
to clean pages. The N-Chance policy is shown in Algo-
rithm 1. This policy selects a victim from a “page set”
as the oldest clean page among the N least recently used
pages. If such a page does not exist, the LRU page is
used. Note that 1-Chance is equivalent to LRU. Also, if N
is equal to the cache associativity, N-Chance will evict all
clean entries in a set before picking a dirty page.

Algorithm 1 N-Chance Algorithm in a M-Way Cache
Populate S with the entries with same cache index
Set S ⇐ SortByLastT imeUsed(S) {S[1] = LRU}
if CheckEntryStatus(S[1]) == INV ALID then

EntryToUse = 1
else

EntryToUse = 1
for I = 1 to N do

if CheckEntryStatus(S[I]) == CLEAN then
EntryToUse = I
break

end if
end for

end if
return GetWayOfEntry(S[EntryToUse])

B. Avoiding Unnecessary Writes

PCM failures are due to write operations [6]. Thus, it
is useful to avoid any unneeded writes, such as rewriting
information that is already stored on a page. We propose
two schemes to remove these writes: (a) page partitioning



and (b) page differencing with a RWR scheme. These
schemes are used together: page partitioning avoids write-
back of clean sub-pages and RWR removes unnecessary
writes within a sub-page.

Page partitioning divides pages into sub-pages. Each
sub-page has a separate dirty bit, which the memory con-
troller uses on page replacement. Only sub-pages with their
dirty bit set are actually written. Energy and endurance
benefit from a small sub-page size, but a small size needs
many dirty bits per page. Page partitioning applies only
to writebacks – a full page is always read from the PCM
memory on a page cache miss.

RWR is used to avoid writing PCM memory locations
that already hold the value to be written. This situation
can arise when, for example, only a single word is dirty
in a sub-page. The original sub-page in the PCM is read
and compared with the new sub-page to be stored. The
differences between the original and new information are
written to PCM. After the PCM write, a final read and
comparison is done for fault detection. If the value read
does not match what should have been written, then the
PCM bit cells for the written location have failed.

Note that PCM memory has two interesting reliability
characteristics: it is highly resistant to radiation and reads
do not damage bit cells. A very reliable PCM memory
can be achieved, without redundancy or Error Correcting
Codes (ECC), by verifying that the correct value was
indeed stored after the write. The read and comparison
(after the write) detects this situation and action can be
taken for the failure (e.g., allocating new PCM locations
to hold the data). The extra read has negligible impact on
performance and energy since reads are very efficient.

Page partitioning and RWR have the most impact on
applications that have a high miss rate in the page cache.
In these applications, each page lives in the cache only
for a short period, which reduces the chance that multiple
writes are captured before a page is evicted. In turn, the
amount of modified data on a page is reduced.

C. Endurance Management

Although a reduction in writes due to the previous
techniques will increase PCM lifetime, the distribution of
writes across the PCM devices can still affect lifetime.
Our experiments show that applications often have a highly
skewed distribution of writes to PCM (i.e., from page cache
writebacks). 70% of writes are directed to 1% of the pages
and 90% of the writes are directed to 20% of the pages.
The other pages are primarily read only. This behavior
quickly wears the bit cells of the heavily written pages,
leading to a lifetime for the overall PCM main memory of
a mere months.

To more evenly wear pages, we propose a WL technique
that swaps pages on page cache writebacks. This scheme

distributes writes to help ensure that all pages have a
similar amount of wear at any time. The scheme relies
on the notion of a logical page, which is mapped to a
PCM physical page (i.e., actual PCM locations). Our swap
algorithm is shown in Algorithm 2, where L is the logical
page to write and P is the physical page that is allocated
to L. The swaps are done on pages, rather than sub-pages,
to minimize implementation overhead.

Algorithm 2 Swap Algorithm
{Writeback of Logical page L onto a physical page P}
if SwapCondition() == FALSE then

write L data on P
else

P ′ = SelectSwapTargetPage()
P ⇐ P ′ {Copy data from P ′ to P}
write L data on P ′

end if

The swap algorithm assumes that L will be written
more than L′, so a swap of the physical pages (for L
and L′) will equalize the number of writes. The “swap
condition” in Algorithm 2 determines when a swap occurs.
Since a swap operation adds an additional write (both
pages have to be written), frequent page swapping will
lower memory lifetime. A natural condition to swap is
when the number of writes to L’s physical page crosses
a threshold. To implement this condition, a counter per
physical page is needed. A less precise but much lower
cost alternative is to use a single global counter. A swap
is done when the total number of writes to the whole
PCM crosses a threshold. The loss of precision means
that there can be more uneven wear – some pages receive
more writes than others. However, as the number of writes
increases over time, the difference in wear will “even out”.
The global counter has the desirable property that highly
written logical pages will be more frequently swapped,
which happens in most applications due to their skewed
write distributions.

The selection of a target page (P ′) for the swap is
crucial to achieve uniform wear. A bad choice would trade
two physical pages that have a similar number of writes.
The best choice is to use the LFW physical page. However,
finding the LFW page is extremely expensive due to the
large number of physical pages that have to be searched
to find the minimum count. Furthermore, LFW requires a
counter per page. A much simpler solution picks a random
physical page as the target. The probability of choosing a
highly written target page is low due to the large number
of physical pages and the small number of highly written
pages. The random algorithm will ultimately approximate
LFW for a large number of writes.

The swap algorithm uses a “mapping table” to map



logical and physical pages. It is indexed by logical page
number; each table entry contains the physical page ad-
dress for the logical page. The table size is small relative
to PCM size. For example, a 4GBytes PCM with 2KBytes
page size needs only 6MBytes (using 3 bytes per entry).
The table is updated only when a swap is done. It is
kept in both PCM and DRAM (for fast lookup on page
replacement).

Another aspect of swapping is page size: a small page
size causes less data to be copied and creates a large
physical page space over which to distribute writes. A
small page also has a high probability of avoiding specific
application behaviors that would impact lifetime. The
disadvantage of a small size is the need to track many
pages, since each logical page can map to any physical
page.

Our implementation of the swap algorithm uses a global
write counter for the swap condition and randomly selects
the target page. The global counter is a modulus counter. A
swap is done when the counter overflows. We use random
page selection due to its low cost – it avoids the need
for page usage counters. The target page is selected by
generating a random page number in the valid address
space. This number identifies the physical/logical page
to swap. The swap operation exchanges the logical page
entries in the mapping table for the source and target
pages. It also exchanges the data on the associated physical
pages. Although a swap causes two page reads/writes on a
writeback, it introduces only one additional page read/write
beyond what would be required anyway.

IV. Experimental Evaluation

To understand the effectiveness of our techniques, we
evaluated their impact on PCM lifetime. We used a main
memory architecture (referred to as “PMMA”) with PCM
and a DRAM page cache that implements the model in
Figure 1. Our evaluation is done with simulation. We con-
figured PMMA with a 4GBytes address space, a 2KBytes
page, and a 256Bytes write sub-page. This page/sub-page
configuration worked the best on average for our bench-
marks. We evaluated other page/sub-page sizes, but we do
not report the results for brevity. The PCM subsystem is
based on 1Gbit DDR-266 PCM devices [11]. The page
cache is implemented with a 256MBytes DDR2-1066
DRAM based on Micron’s 1Gbit 533MHz DDR2DRAM
devices. The page cache uses 224MBytes of the DRAM.
It is 14-way set associative. The remaining 32MBytes of
DRAM holds the mapping table.

Our simulation strategy uses Simics with a custom
simulator for PMMA. Simics is used to gather memory
traces, which are input to the separate PMMA simulator.
Simics models four 1.6 GHz x86 cores, with 32KBytes

instruction and data caches. A 4MBytes L2 cache is
shared per pair of cores. The PMMA simulator contains
a configurable timing and power model for both DRAM
and PCM. The simulator is exceptionally accurate because
it models the system at the bus and device event level.
This simulator was used to obtain performance and energy
results for the endurance techniques. It accounts for the
performance/energy overhead of the endurance manage-
ment techniques but does not model directly endurance
since a very large number of writes is necessary to damage
a page when our techniques are modeled (e.g., a 107 write
limitation, when multiplied by a few million pages would
need almost 1013 memory requests). To measure lifetime,
we used a separate fast behavioral simulator. A trace of
writes to PCM from the PMMA simulator was input to the
behavioral simulator. The trace can be repeated or mixed
with other traces to get the required number of writes to
damage a page.

Benchmarks with a large memory footprint and number
of main memory accesses were chosen from PARSEC,
SPECcpu2006 and SPECjbb2005. The benchmarks are:
Canneal and Facesim from PARSEC; MCF, GCC, Bwaves
and bzip2 from SPECcpu2006; and SPECjbb2005. A mix
of SPECcpu2006 applications, composed of MCF, GCC,
Bwaves and bzip2, were executed together to obtain a
large memory footprint and utilization. Each benchmark
was run in Simics for 2.5Billion requests to main memory.
The collected memory traces were repetitively applied in
the endurance management simulator until a page was
damaged (107 writes to a bit on a page). The lifetime
(years) was computed based on how many runs were
necessary for the first page to die and the simulated time
that each run takes.

A. Results

Figures 2, 3 and 4 show the impact of using the PCM-
aware N-Chance policy instead of LRU. Figure 2 shows
that the number of writes (and corresponding increase
in lifetime of the PCM memory) always decreases as
N is increased but the performance and energy gains
(Figures 3, 4) do not show the same behavior. In this 14-
way cache, a 7-Chance algorithm consistently gets most
of the gains in the three metrics.

Figure 5 shows lifetime with RWR. The results show an
increase in lifetime by a factor of 2 to 8, due to the write
behavior of the applications. The pages that are highly
written have only a small portion of each page modified.
Because the smallest granularity for a write is a sub-page
(256Bytes), any modified bit in the sub-page will cause
the whole sub-page to be updated. As the figure shows,
RWR is important to improve lifetime.

Figure 6 shows the lifetime achieved with different
swap algorithms. A counter-per-page (CT) swap condition



Fig. 2. N-Chance impact on #writes

Fig. 3. N-Chance impact on latency

Fig. 4. N-Chance impact on energy

Fig. 5. Read-Write-Read impact on lifetime

with a LFW replacement selection is closest to the ideal
WL (all pages have the same wear). We compare this
algorithm to a global counter (GC) with LFW and random
replacement selection algorithms. The lifetime was com-
puted by running each benchmark 500 times and recording
the number of writes per physical page. The number of
runs necessary to damage each page (107 writes) is com-
puted and the minimum overall is the predicted lifetime.
The measured lifetime is a conservative estimate since it
assumes that the distribution of writes per page will be the
same for all subsequent runs.

The GC and random algorithms are expected to have
better behavior for a larger number of writes, which will
tend to make the distribution of writes per page more
uniform as more runs are executed. The algorithms count
each write to a sub-page as one write to PCM. CT256-
LFW is an expensive algorithm that uses one counter per
page, which searches to find the LFW page on each page
swap. The other algorithms have less overhead. GC256-
LFW reduces lifetime by 8% versus CT256-LFW because

Fig. 6. Impact of wear-leveling on lifetime

it has a single counter to determine when to swap pages. It
does not guarantee a swap when the number of writes to a
particular physical page reaches a threshold. A random
replacement algorithm can be used to avoid searching
for the LFW page. GC256-Random uses a global counter
with random replacement. It reduces lifetime by 12.4% in
comparison to GC256-LFW and by 20% in comparison
CT256-LFW. GC256-Random causes an additional 3%
writes due to swapping. When the swap threshold is set
to 512, GC512-Random has a 25.4% reduction in lifetime
compared to GC256-LFW. In Figure 6 all algorithms have
at least eight years of lifetime, but GC256-Random and
GC512-Random have the lowest implementation cost and
overhead.

Table I shows the cumulative impact of 7-Chance,
RWR, and GC512-Random on lifetime as each one is
successively applied. Without any technique, the PCM
memory lasts only 15 days. 7-Chance nearly doubles the
lifetime although the number of writes is reduced by
only 17%. The impact of 7-Chance is large (83% of
lifetime increase) because it eliminates writes from the
most heavily written pages. RWR and swapping pages
increases lifetime to 8.11 years (97.29 months). The swap
algorithm is responsible for most of the lifetime; however,
all techniques should be used together to achieve the best
lifetime.

Technique Lifetime Cumulative Gain
Baseline (LRU) 0.47 month
7-Chance 0.86 month 1.83
+ RWR 3.36 months 3.91
+ GC512-Random 97.29 months 28.91

TABLE I. Impact of each technique

B. Comparison with Other Techniques

The use of large 1MByte swapping pages, as in [5],
has a negative impact on lifetime. In our experiments,
CT256-LFW with 1MByte pages has a lifetime of 7.5
years. This value is 31% smaller than the lifetime obtained
with 2KByte pages (CT256-LFW). GC512-Random gets
a 6.3% better lifetime with significantly lower cost than
swapping on 1MByte pages.

The RL algorithm is used in [3] for intra-page wear-
leveling. Intra-page wear-leveling is needed when writes



are biased toward certain cache lines in a page. To under-
stand how intra-page WL would work with our schemes,
we measured the distribution of writes over the cache
lines (64Byte line size). The distribution of writes is
largely uniform, with some cache lines receiving 3.5%
more writes. As a result, the increase in lifetime with intra-
page WL would be at most 3.5%.

V. Related Work

PCM for main memory has been proposed by [4], [3],
[5]. As discussed in Section I, the closest architecture
to PMMA, [3] applies four techniques for endurance
management: Lazy Writes, Line Level Write Back, Page
Level Bypass and Fine-Grained WL. Lazy Writes avoid the
first write to PCM for dirty pages; we achieve the same
effect by restricting CPU writes to DRAM and only writing
to PCM when a page is evicted. Our work also shows
the significant impact of different victim selection policies
on endurance, performance and energy consumption. Line
Level Write Back tracks which lines in the page are dirty
and writes only those lines to PCM when the DRAM
page is evicted. We propose combining two techniques
(page partitioning and RWR) to reduce wear and provide
fault detection. Page Level Bypass avoids PCM writes for
applications that have poor reuse in PCM, but requires
changes to the OS. Fine-Grained WL helps distribute write
traffic uniformly on all lines in the PCM page. However,
this does not solve the problem of an unbalanced writes
at the page level. In our experiments, the best balance
on each page was achieved with a small swap size. [3]
evaluates endurance based on the assumption that writes
are uniformly distributed to the entire PCM memory. The
GC256-Random algorithm is a feasible implementation of
their ideal, high-level WL algorithm [3]. We evaluate PCM
endurance impact by simulating the actual techniques to
obtain much more accurate results.

In [4], PCM is proposed as main memory. Techniques,
including redundant bit-write removal (RW), byte shifting
at row level (BS) and segment swapping (SS), are proposed
to improve the lifetime of PCM. RW only updates PCM bit
cells with changed values instead of updating all bit cells
on a page. This eliminates redundant bit-writes. It is imple-
mented at the circuit level, requiring device changes. We
implement page partitioning and sub-page RWR (similar to
RW) in the memory controller. This obtains a reduction in
memory bandwidth consumption since read bandwidth is
much higher than write bandwidth [10]. We reduce PCM
reads and writes by keeping recently accessed data in a
writeback DRAM cache. BS and SS uniformly distribute
PCM writes on bit and segment granularities. In contrast,
we propose a more thorough set of write management
schemes at the page level.

Zhou et al. describe a 3D main memory for PCM [5].
It uses read-before-write at the row level to avoid unnec-
essary writes. Row-level rotation and “segment swaps” are
used for WL. The segment swap scheme is equivalent to
CT-LFW with 1MByte pages. Our GC-Random algorithm
avoids the search required in Zhou et al.’s scheme. It also
permits a small page size. Overall, our schemes achieve a
better lifetime (8 years with 107 writes per cell) with less
complexity.

VI.. Conclusion
PCM is a viable main memory technology but en-

durance is a weak point of PCM. We present a number of
techniques to extend the lifetime of a PCM main memory
to more than 8 years. Our writeback minimization cache
replacement and a swap-based WL schemes are essential to
achieve good lifetime. These techniques also have minimal
overhead and low implementation complexity.

VII.. Acknowledgments
This work was supported in part by the National Science

Foundation through grants CCF-0811295, CCF-0811352,
SES-0729456, CNS-0702236 and ANI-0325353.

References

[1] N. AbouGhazaleh, B. Childers, D. Mossé, and R. Melhem, “Power
management in external memory using PA-CDRAM,” in The Int’l.
Journal for Embedded Systems (IJES), vol. 3-1, 2007, pp. 65–72.

[2] W. Zhang and T. Li, “Exploring phase change memory and 3D
die-stacking for power/thermal friendly, fast and durable memory
architectures,” in Int’l. Conf. on Parallel Architectures and Compi-
lation Techniques (PACT), 2009, pp. 101–112.

[3] M. K. Qureshi, V. Srinivasan, and J. A. Rivers, “Scalable high
performance main memory system using phase-change memory
technology,” in Int’l. Symp. on Computer Architecture (ISCA), 2009,
pp. 24–33.

[4] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Architecting phase
change memory as a scalable dram alternative,” in Int’l. Symp. on
Computer Architecture (ISCA), 2009, pp. 2–13.

[5] P. Zhou, B. Zhao, J. Yang, and Y. Zhang, “A durable and energy
efficient main memory using phase change memory technology,” in
Int’l. Symp. on Computer Architecture (ISCA), 2009, pp. 14–23.

[6] S. Raoux et al., “Phase-change random access memory: A scalable
technology,” in IBM Journal of Research and Development, vol. 52,
no. 4, 2008, pp. 465–479.

[7] S. Mylavarapu, S. Choudhuri, A. Shrivastava, J. Lee, and T. Givar-
gis, “Fsaf: File system aware flash translation layer for nand flash
memories,” in DATE ’09., April 2009, pp. 399–404.

[8] K. Takeuchi, “Novel co-design of nand flash memory and nand flash
controller circuits for sub-30 nm low-power high-speed solid-state
drives (ssd),” Solid-State Circuits, IEEE Journal of, vol. 44, no. 4,
pp. 1227–1234, April 2009.

[9] “Process integration, devices and structures,” in Int’l. Technology
Roadmap for Semiconductors, 2007.

[10] Lee, K. J. et al, “A 90 nm 1.8 v 512 mb diode-switch pram with
266 mb/s read throughput,” Solid-State Circuits, IEEE Journal of,
vol. 43, no. 1, pp. 150–162, Jan. 2008.

[11] Kang et al, “A 0.1 µm 1.8V 256Mb 66MHz Synchronous Burst
PRAM,” in IEEE Int’l. Solid-State Circuits Conf. (ISSCC), 2006.


