Precise WCET Calculation 1n highly variant
Real-Time Systems

Pascal Montag
Daimler AG
pascal.montag @daimler.com

Abstract—Embedded hard real-time systems that are based on
software product lines using dynamically derivable variants are
prone to overestimations in static WCET analyses. This is due to
the fact that infeasible paths in the code resulting from infeasible
variant combinations are unknown to the analysis.

This paper presents an approach to incorporate variant
constraints in the calculation to exclude infeasible paths and thus
to decrease the WCET overestimation. Based on feature models
we propose a sound approach to identify significant infeasible
paths that can be safely discarded in the analysis. The benefits
of the approach are exemplified by a real world example from
the automotive domain where we are able to reduce the WCET
bound by up to 50 percent.

I. INTRODUCTION

Software is most valuable when it is reused in many
products or product variants. In the embedded systems domain,
software variants usually originate from different hardware
combinations and configurations that are controlled by the
embedded software. For example, car lines can be configured
with several engine types, gear boxes and other different
features. However, the same electronic control units (ECUs)
are often used for all variants to decrease production costs and
increase the efficiency in the garages.

The implementation of the resulting software variants
ranges from the use of several EEPROM parameters to self-
parameterization by detection of the hardware environment
(similar to plug-and-play). Highly variant systems arc char-
acterized by an amount of variants that render the validation
and verification of each single variant instance impossible.
Hence, sophisticated methods for testing and analyses have to
be applied to the entire ECU (including all possible variants).

In the case of embedded hard real-time systems a safe
estimation of the worst-case execution time (WCET) is re-
quired for the verification of the entire system behavior. When
applying static WCET analyses to highly variant systems,
conservative assumptions can lead to significant overestima-
tions [9].

Variants can be seen as system level constraints. For exam-
ple, engines using a turbo charger require different handling
of airflow and pressure control than engines without turbo
chargers. However, due to system level constraints the combi-
nation of different airflow and pressure control functionalities
is not possible. This mutual exclusion (cf. Figure 1 b) is

Sebastian Altmeyer
Saarland University
altmeyer@cs.uni-saarland.de

often not taken into account by the WCET analysis. This
is mainly due to the fact that system level constraints are
set by external variables that are not visible to the analysis.
A further reason for WCET overestimation arises from the
necessity of context approximations by the WCET analysis. As
it is practically impossible to trace each and every reachable
program context, system wide dependencies are prone to be
neglected by analysis optimizations. In this paper, we present

a) b) if(v1)

v
Mandatory ‘ ‘

Alternative 1

(Common))

Alternative 1
1)

Alternative 2
(v2)

Alternative 2
(v2)

Fig. 1. a) Variant constraint model b) Variant algorithm with infeasible
WCET path.

a variant-aware liming analysis, which derives a) a reduced
but sound WCET bound and b) the corresponding worst-case
variant that leads to this bound. The analysis consists of three
steps. We first determine the variant dependent control-flow
structures (loops and conditionals) and the type of dependency.
Then we derive a set of candidates for the worst-case variant.
In the last step, we extend the computation of the worst-case
execution path from the original timing analysis to derive the
WCET bound and the worst-case variant at once. Evaluation
shows a reduction of the WCET bound by up to 50%.

In the remainder of this paper, we present the original timing
analysis on which we base our approach in Section II. The
formal setting of the variant-aware timing analysis is given
in Section III and Section IV presents the analysis in detail.
Evaluation is then given in Section V and related work in
Section VI. Section VII concludes the paper.

II. TIMING ANALYSIS

We build our variant-aware timing analysis on top of the
aiT-Framework as depicted in Figure 2. It consists of a set of
different tools that can be subdivided into three main parts:
CFG Reconstruction, Static Analyses and Path Analyses.

The CFG reconstruction builds the control-flow graph
(CFG), the internal representation, out of the binary executable

i| FeatureModel Source Code

Impact Analysis

o
Executable

CFG Reconstruction

Loop Transformation Variant Reduction

Constraint Generation

Result Linking

Static Analyses Path Analyses

Loop Analysis ILP Generation

ILP Solver

™
WCET
- |

Fig. 2. The original aiT toolchain and the approach’s extensions (in the
dashed box)

[10]. This CFG consists of so-called basic blocks. A basic
block is a sequence of instructions such that the basic block
is always entered at the first and left at the last instruction. To
make sophisticated interprocedural analysis techniques appli-
cable, loop structures have to be transformed into tail-recursive
routines. Additionally, user annotations, such as upper bounds
on the number of loop iterations which the analysis cannot
automatically derive, are processed during this step.

The static analysis part consists of three different analyses:
loop analysis, value analysis, and a combined cache and
pipeline analysis. The value analysis determines the effective
addresses of memory accesses and also supports the loop
analysis to find upper bounds on the number of loop iterations
[8]. For this purpose, the analysis derives intervals for all
variables at each program point.

The loop analysis collects invariants for all potential loop
counters. This means it computes for all the variables changed
within a loop, how much they change during one iteration.
Then it evaluates the loop exits, requests start and end values
for these potential loop counters from the value analysis and
thus derives upper bounds on the number of loop iterations.

The cache and pipeline analysis performs the so-called
low-level analysis. It simulates the processor’s behavior in an
abstract fashion to determine an upper bound on the execution
time of each basic block[3], [5].

Value Analysis

Cache/Pipeline
Analysis

np =1;
n1 = N +ng;
na +ns = Ny + Ne:
N4 = Ns;
nyg <= blooanQ
ng +ng = 1;

nax : Zz (ZVj:nJ enters B; C,‘,Nj)

Fig. 3. Control flow graph and the corresponding flow constraints

The path analysis combines the timing information of each
basic block and all loop bounds and searches for the longest
path within the executable. In this fashion, it computes an
upper bound on a task’s execution time. Searching for the

longest path is done by using a technique called implicit
path enumeration (IPET) [6]: the control flow graph and the
loop bounds are transformed into flow constraints. The upper
bounds for the execution times of the basic blocks as computed
in the cache and pipeline analysis are used as weights. Figure
3 provides an example. The variables n;, also called traversal
counts, denote how often a specific edge is traversed. The first
and the last basic block are left, resp. entered, exactly once
(n1 = 1; and n3+ng = 1;). For all other basic blocks, the sum
of the traversal counts entering equals the sum leaving. The
loop body (basic block 4) is executed at most b, times as
often as the loop is entered (ny <= byoopn2;). The constant c;
denotes the cost of the basic block j. The maximum sum over
the costs of a basic block times the traversal counts entering
it determines the final WCET bound.

III. VARIANT CONSTRAINT SPECIFICATION

A common language for the description of variants is the
feature model [1]. This modeling language describes abstract
features of a product and the feature relationships as a tree.
The abstract features are either mandatory (necessary in all
products), optional (optionally available) or alternative (exactly
one of a given set). These feature types form a basic constraint
language that can be enhanced by more elaborate constraints.

A feature is anything that a customer can experience as a
functional entity. Hence, an engine is a mandatory feature,
whereas the engine type is an alternative decision. A sunroof
is usually an optional feature, that can only be chosen if
the car is not a convertible. Obviously, there are lots of
similar constraints in the software that controls all these
functionalities. While feature models are usually seen as

U VariantWCETFeatures
N — [N
N
— -

4 car0
4 Conflicts: 'taxi

&b engined

4% Conflicts: 'cart’

b enginet
@ Conflicts: ‘car0’

e

& cart

4@ Conflicts: 'ambulance’ A

&P default | ‘ 4% ambulance |

|¢s1a><| | |¢5 —]

Fig. 4. An example feature model.
marketing decision models, they can be used further. For
example, for the specification of the relationship of operating-
modes. The decision-space of a feature model in current real-
life applications may easily reach up to several million valid
combinations. We now provide a formal definition of a variant.

Definition 1 (Variant). Given a set of features F, a variant
is a mapping from features to boolean values, depending on
whether or not the feature is selected:

V:F—B

where B is the set of boolean values true and false. If a
variant obeys all constraints C determined by the variant

model, the variant is said to be valid. The set of all variants
is given by V and the set of all valid variants by V,, C V.

Note that we do not need to consider mandatory, optional
or alternative features separately as such requirements can be
considered to be modeled by constraints contained in C. For
the sake of simplicity, we represent a variant V' as a set of
features that evaluate to true: f € V < V(f) =T and f ¢
V < V(f) = F. Given the example in Figure 4, we have the
following set of features F and set of constraints C:

F = {car0, carl, engine0, enginel, cycle0, cyclel,

default, ambulance, taxi, police}

C ={(car0 @ carl), (engined @ enginel), (cycled ® cyclel),
=(car0 A enginel), =(carl A engine0), =(car0 A tazi),
=(carl A police), —(carl A ambulance)

(3lx € {default, taxi, police, ambulance} : x)}.

For instance, V' = {carl,enginel,taxi,cycle0} is a valid
variant. Note that within this small example there are already
210 variants from which only 10 are valid.

Timing analysis may derive a variant-depending timing
bound. Given a variant V, the specific information about all
identifiers can be encoded to be considered by the timing
analysis. The resulting time bound is then only valid for
this variant V. In such a case, we write WCET(V). If no
information about a specific variant or a set of variants is taken
into account, we write WCET for the variant independent time
bound. Note that VV' € V: WCET > WCET(V') The problem
of variant-aware timing analysis can then be seen as follows

Find V € V, s.t. VV' € V,, : WCET(V) > WCET(V")

This variant V is the so-called worst-case variant and provides
a precise global bound for the analyzed software. Determining
this variant by exhaustively deriving all WCET(V) is com-
putationally infeasible due to the high number of different
variants and the complexity of the timing analysis. Hence, we
first reduce the search space and then aim for an approximate
solution.

IV. VARIANT-AWARE TIMING ANALYSIS

Our approach for a variant-aware static WCET analysis (cf.

the dashed box in Figure 2) consists of the following steps:

o Impact Analysis: Which code parts are variant-dependent
and deliver major impacts on the WCET?

e Variant Reduction: Which variants are relevant to the
analysis? Which variants can be removed?

o Constraint Generation/Result Linking: The remaining
variants are transformed into ILP control flow constraints.
Hence, a variant-enriched ILP can be generated which is
then used to estimate WCET (V).

A. Impact Analysis

Two different control-flow structures may influence the
timing behavior depending on the chosen variant: loops and

conditionals. In case of conditionals, the taken branch may
depend on whether or not a feature is selected. In case of
loops, the loop iteration bound may be determined by the
feature selection. To analyze these dependencies, we first need
to identify the feature-dependent control-flow structures and in
a second step analyze, how these structures are influenced. The
set of identified conditionals is denoted as CO and the set of
loops as LO. Note that for the sake of simplicity, we restrict
the description of the approach to for- and while-loops as well
as to simple if-statements. Other statements can be seen as
extensions to our basic structures. For example, switch-cases
can be seen as combinations of multiple if-else structures.
We represent the variant-dependencies in the following way:

Cond : CO — (F — B)

A conditional c is assigned a partial mapping of features to
boolean values. (Cond(c))(f) evaluates to boolean value b,
iff conditional c always evaluates to b in case feature f is
selected.

Loop : LO — (F —~ N)

A loop ! is assigned a partial mapping of features to integers.
(Loop(1))(f) = n means that loop [is bounded by n if feature
f is selected.

More complex dependencies between features and condi-
tionals are possible. Consider a conditional that evaluates to
true, iff two out of three features are selected. Such cases do
not fit into this notion. The domain of the partial mapping
(F — B) for such a conditional would be empty.

I]‘{‘I]’ng 1 Variant I)ﬁpﬂnd]’ng Code EI'lg[IICI]I

const char clutch[2] =

11:

12: /%« car0 carl x/

13: { 10, 5} /xclutch linex/

[Blockl]

37: for(i=0;

38: i<clutch[c_car_type |;

39: ++1)

40: {

41: if (c_purpose==TAXI){...[Block2]...}
...[Block3]...

94: }
...[Block4]

As a short example, let us consider the feature model
in Figure 4 and the code snippet from Listing 1. In the
example (stripped down from existing code) we notice that
the dependency between feature model and code variables is
not always given directly. Hence, these relationships have to be
established via naming rules or manual mapping. In the above
case, for example, prefix ’c’ indicates a variant configuration
parameter (c_engine, c_car_type and c_purpose). There are
several possible ways to detect the basic structures in the
code. We decided for pattern matching as the following step
of constraint generation does not rely on a complete set
of variant dependencies. Undetected dependencies on loops

and conditionals will lead to missing constraints and thus to
an overapproximation of the result (but never to an under-
approximation). The impact analysis first finds the loop in
line L37 and the conditional in line L41 and then evaluates
both expressions: Loop(L37) = {(car0,10), (car1,5)} and
Cond(L41) = {(taxi, true)}.

B. Variant Reduction

Given the functions Cond and Loop, we can perform the
variant reduction in order to reduce the search-space for our
worst case variant.

1) Removing Timing-Irrelevant Features: We partition the
set of features IF into timing-relevant F, and timing-irrelevant
F_,.. A feature f is timing-relevant if there is at least one
loop [or conditional ¢ such that Cond(c)(f) or Loop(l)(f)
is defined. In our example, F,. = {car0,carl,taxi}. Note
that we also remove all constraints from the set C that
contain at least one timing-irrelevant feature: C, = {(car0 ®
carl), = (carOAtaxi)}. Since the set of constraints only limits
the possible variants, removing constraints may only lead to
an overapproximation and is thus sound.

Definition 2 (Reduced Variant). A variant is called reduced,
iff it only defines values for timing-relevant features F,.:

Vrp:F, —B
The set of all reduced variants is denoted as V.
The set of reduced variants for our example is

V. = {{}, {car0}, {carl}, {taxi}, {car0, carl},

{car0,taxi}, {carl,taxi}, {car0, carl, taxi}}.

The set V..., = {{car0}, {carl}, {carl, taxi}} gives all valid
reduced variants. All other variants do not comply with C,..

2) Dominating Features: In order to reduce the set of
possible worst-case variants even further, we need to identify
dominant features with respect to timing.

Definition 3 (Feature Domination). A feature f is said to
dominate feature f' (f 3 f'), iff

Ve € CO : (Cond(c))(f) = (Cond(c))(f)

and
VI € LO : (Loop(1))(f) > (Loop(1))(f")

In our example, engine0 J enginel since the loop bound
of the loop in line 38 is higher in case engine0 is selected
(while all other loops and conditionals remain unchanged).

Using the feature domination, we can safely exclude some
variants from the search space for the worst-case variant.
Hence, we lift the domination relation to variants.

Definition 4 (Variant Domination). A variant V is said to
dominate variant V' with V £ V', iff

VeV :feVv@feV:faf)

In such a case, we write V.21 V'

Assuming that a variant V' is dominated by another variant
V', we know that if V leads to the highest WCET-bound
then also V' does. In our example variant {car0} dominates
{carl}, but not {carl,taxi}.

3) Variant Search Space: The variant search space S C
V., is a subset of the set of all reduced variants. In addition,
we can exclude all dominated variants from the search space.

VWeS IV €SV AVAV IV

For the given example, the resulting search space is given by
S = {{car0}{carl, taxi}}.

C. Constraint Generation / Result Linking

In the last step, we extend the IPET model to derive the
worst-case variant.

Within the ILP to derive the worst-case path, we introduce
one variable V; for each remaining variant from the search
space S and one variable f; for each timing relevant feature
from the set IF,.. Constraint (1) ensures that at most one variant

is selected:
Sui=1 (1)

The set of constraints (2) links the remaining variants (from
the search space S) to their active features:

View, :f= YV)

vev/s

where VI = {V € S|f € V} is the set of variants where
feature f is selected.

We now need to link the variants and features to the
IPET model. For a feature-dependent loop | € LO, we add
a constraint which bounds loop ! by (Loop(l))(f), in case
feature f is selected:

VI € LO:Vf € Dom(Loop(l)) :

Nioop—body(l) < (LOOp(l))(f) *Noop—entry(l) + (1 - f) ' CVbz'g

3)
Constant Cy;; € N is a big integer used to ‘deactivate’
constraint (3) if the corresponding feature is not selected.
Given that Cy,, is chosen big enough, the constraint does
not influence the final result. In the same manner, we add
a constraint for each feature-dependent conditional ¢ € CQO.
Let (Cond(c))(f) evaluate to b. If feature f is active, traversal
count for the —b edge (denoted as n_p) is set to 0.

Ve € CO:Vf € Dom(Cond(l)) :
N (Cond(e))(f) < (1= f) - Chig (4

Again Cy;y € N is used to ’deactivate’ the constraint, in case
f is not selected.

Figure 5 depicts the control flow graph and the correspond-
ing constraints for the code fragment from Listing 1.

The solution to the ILP determines the worst-case variant O
and an upper bound on the execution time valid for this variant
WCET(9).

ny = 1

ny +ng =no +nr;
No = N3 +ns;
N3 = Ng:

ne = N4 + ns;

v +vy =1
f(:am =U
fuw"l = U2
fl,(ul:z = U2

< fiawi - Chig
no < 10-nq + (1 - faarO)Cbzg
< 5 ny + (1 - fcarl)cbzg

max : Ei (ZV]:n] enters B, Cin])

Control flow graph and the corresponding flow constraints

Fig. 5.

D. Correctness

Each static WCET analysis can only estimate the actual
worst-case execution time. It is, however, crucial that the
actual execution time is never underestimated. The constraints
introduced in Section IV-C model restrictions on the control
flow graph and thus reduce the WCET bound. We now need
to argue that this reduction is sound, i.e. that the WCET bound
is still a safe approximation.

The allowed combinations of features (and thus of loop-
bounds and conditionals) depend on the set of variants V,. .
Although the set of reduced and valid variants is much smaller
than the set of variants V, V.., represents an overapproxi-
mation of the V, with respect to timing. By construction,
concentrating only on timing-relevant features does not in-
fluence the WCET analysis. In step three, we also reduce
the set of constraints C,. This, however, may only lead to
variants falsely considered valid (less constraints lead to more
valid combinations). Hence, we approximate the set of variants
considered in the final ILP on the safe side only.

The constraints link loops LO and conditionals CO to
features [F,., which again are linked to reduced and valid
variants V, . Both sets LO and CO only contain control
flow structures for which it was possible to determine a feature
dependency. Loops and conditionals for which we were unable
to determine a dependency remain unchanged and are not
influenced by our newly generated constraints. Again, we
approximate only on the safe side and may only deliver an
overapproximation, but no underapproximation.

Note that the derived worst-case variant V is only valid
with respect to the timing analysis. It may happen that the
actual worst-case execution time occurs for variant V' # V.
However, the bounds computed by our analysis are still valid,
ie, WCET(V) > WCET(V) holds for all variants V,
where WCET (V') denotes the execution-time bound and not
the actual worst-case execution time.

V. EVALUATION

The introduced variant-aware WCET analysis was applied
to several functions of the Daimler Trucks automatic gear

shifting application (AG). The existing AG feature model was
previously used for documentation- and test-case-generation
purposes. An existing feature model should be the typical use
case for the introduced approach so that no further effort is
necessary for the description of the variant constraints. The
used feature modeling tool is called pure::variants which is
currently being rolled out in several Daimler projects.

The entire feature model consists of 72 features that lead to
an estimated amount of 6.4 million valid variants, according
to the modeling tool. A stepwise analysis of all single valid
variants is thus not reasonable, which makes the AG a more
than appropriate use case for our approach. For comparabil-
ity reasons, we apply the variant-aware WCET analysis to
three separate AG-functions (i.c. ecomain, preparation and
target_range).

A. Impact Analysis

The input for the impact analysis is a simple mapping
between features and variable names (in the C-code). In our
case this manual work is rather simple as the variant-related
code structures can be found in central parameterization header
files where similar names are used for features and variables.
This way, 60 out of 72 features are mapped to one or (less
often) multiple variables. The remaining 12 features are either
structural model elements or features without direct code
impact. The automatic impact analysis applied to the entire
software identifies 14 out of 122 loop counters that are variant-
dependent (11 percent) while 499 of 3658 conditions are
variant dependent (14 percent). Hence, if we assume a similar
distribution for the other control flow statements (i.e. do-while,
switch etc.), approximately every 10*" control flow decision
depends on constant system constraints.

B. Variant Reduction

Our implementation of the variant reduction removes all
features that are directly or indirectly irrelevant to the analyzed
source code. Applying the reduction introduced in Section
IV-B, only 7 features are directly relevant in the case of
function preparation and 10 features in the cases of ecomain
and target_range. Additionally, we implemented a dependency
analysis that checks if two features exhibit a transitive depen-
dency. Assuming that, for example, only the features amount
of forward gears and amount of backward gears are used in
the code, the additional feature gear box is required to identify
the constraints of their transitive relationship.

The analysis reveals that 55 features are required to describe
the dependencies among the 7 original features in case of
function preparation. Respectively, 58 features are required
for ecomain and target_range. We see that between 19% and
26% of the features of our feature model can be discarded
from the analysis which might result in a decrease of analysis
precision. However, the choice is between speed and precision
while we always keep a sound result.

C. Constraint Generation and Solution

The remaining feature model, the dependent loops and
conditions are then transformed into single ILPs per analyzed

function. The size of these ILPs ranges from 43 (preparation)
to 61 (target_range) constraints. Before these ILPs can be
solved, they are linked to the intermediate aiT result ILP.

Analyzing the function preparation without variant con-
straints reveals a WCET of 201 ps. Adding the variant con-
straints leads to a WCET of 193 us, a reduction of almost 4
percent. In addition, the ILP solution also provides a worst-
case variant which is the so-called Unimog truck using a
particular engine and gear box. A portion of the 4 percent
reduction can be traced back to the fact that many loops
iterate over the amount of forward and backward gears. The
gearboxes are available with up to 16 forward and 8 backward
gears. However, a gearbox that exhibits both features at the
same time is not supported by the software. Hence, a gearbox
with 16 forward and 4 backward gears was automatically
identified as the worst-case.

The function target_range was analyzed in a similar way.
A variant-unaware WCET of 258 us can be seen as highly
overestimated when compared to the 129 pus variant-aware
WCET. This is a total of 50 percent. Furthermore, the result
analysis reveals a different *worst-case truck’ than before. The
function’s loops still iterate on the amount of gears, but the
particular truck (with a maximum of 6 forward gears) requires
special linearization functions to be called within each loop
iteration which leads to the found worst-case.

Finally, also ecomain revealed an improvement of more than
3 percent. The main reason here can be seen in the extensive
use of mode variables that trigger different functions in four
separate execution cycles. The result allows us to identify
the worst-case cycle and thus, to improve the distribution of
functions within these cycles to gain a real WCET benefit.

Generally, we can see a very diverse range of potential
reduction (3 to 50 precent) in the overestimation of WCET
caused by software variability. An explanation for this result
is the range of variant impact on the source code and thus
the WCET itself. With the three use cases, our approach has
proven to safely calculate reduced WCET estimates and to
additionally deliver worst-case variants that were previously
unknown.

VI. RELATED WORK

To our best knowledge, the issue of variant-aware (iming
analysis has been hardly addressed this far.

The incorporation of operating modes in the WCET analysis
(e.g. [4], [7], [11]) is strongly related to our approach: As
in our approach, a given piece of software exhibits different
execution times depending on a selected mode or variant,
respectively. While variants are statically fixed and explicitly
visible, modes are implicit in the source-code (e.g. start-
up, main-function, failure) and may change dynamically. In
addition, the number of modes is rather small, the number of
valid variants may reach up to several thousands.

In [2], Ermedahl et al. presented a method to derive the
input leading to the worst-case execution time. They perform
a binary search over the value range of each input parameter.
However, their approach does not handle boolean decisions

variables and is thus not applicable to variant-aware timing
analysis.

VII. CONCLUSION

This paper introduces a novel approach to incorporate
system level variant constraints into the static worst-case exe-
cution time (WCET) analysis. To this end, the approach first
identifies variant-dependent control flow structures, derives a
set of potential worst-case variants and finally computes a re-
duced variant-dependent WCET bound and the corresponding
worst-case variant. In addition, we have shown that despite
more accuracy the method results in a sound overapproxima-
tion, i.e., the derived WCET bound can only over-, but never
underapproximate the actual worst case execution time.

Based on industrial hard real-time examples, evaluation
shows a timing bound reduction of up to 50%. However,
as the amount of potential reduction mainly depends on the
(unknown) amount of overestimation introduced by variability,
our results cannot be evaluated by the achieved reduction rate.
In contrast, our achievement is to enable this kind of reduction
at all. Our examples show furthermore that the process scales
well with complex and large variant spaces. This allows even
more complex software and feature models to be analyzed with
the presented methods. For the future, we plan to support a
wider range of variant-dependent control flow structures to
further increase the precision of our approach. In addition,
we want to establish variant-dependent timing analysis in
Daimler’s development process.

REFERENCES

[1] K. Czarnecki and U. W. Eisenecker. Generative Programming: Methods,
Tools and Applications. Addison-Wesley, 2000.

[2] A. Ermedahl, J. Fredriksson, J. Gustafsson, and P. Altenbernd. Deriving
the worst-case execution time input values. In 27st Euromicro Confer-
ence of Real-Time Systems, (ECRTS’09), July 2009.

[3] C. Ferdinand, F. Martin, R. Wilhelm, and M. Alt. Cache behavior
prediction by abstract interpretation. Sci. Comput. Program., 35(2-3),
1999.

[4] M.-L. Ji, J. Wang, S. Li, and Z.-C. Qi. Automated WCET analysis based
on program modes. The Computer Journal, 52(5), 2009.

[5] M. Langenbach, S. Thesing, and R. Heckmann. Pipeline modeling for
timing analysis. In Proceedings of the Static Analyses Symposium (SAS),
volume 2477 of LNCS, Madrid, Spain, 2002.

[6] Y. Li and S. Malik. Performance analysis of embedded software using
implicit path enumeration. In in Proceedings of the 32nd ACM/IEEE
Design Automation Conference, 1995.

[71 P. Lucas, O. Parshin, and R. Wilhelm. Operating mode specific weet
analysis. In C. Seidner, editor, Proceedings of the 3rd Junior Researcher
Workshop on Real-Time Computing (JRWRTC), October 2009.

[8] F. Martin, M. Alt, R. Wilhelm, and C. Ferdinand. Analysis of loops. In
K. Koskimies, editor, CC, volume 1383 of Lecture Notes in Computer
Science. Springer, 1998.

[9] P.Montag, S. Gorzig, and P. Levi. Challenges of timing verification tools

in the automotive domain. In 2nd IEEE International Symposium on

Leveraging Applications of Formal Methods, Verification and Validation,

Paphos (Cyprus), November 2006.

R. Wilhelm, D. Grund, J. Reineke, M. Schlickling, M. Pister, and

C. Ferdinand. Memory hierarchies, pipelines, and buses for future

architectures in time-critical embedded systems. IEEE Transactions on

CAD of Integrated Circuits and Systems, 28(7), July 2009.

R. Wilhelm, P. Lucas, O. Parshin, L. Tan, and B. Wachter. Improving the

precision of WCET analysis by input constraints and model-derived flow

constraints. In S. Chakraborty and J. Eberspécher, editors, Advances in

Real-Time Systems, LNCS. Springer-Verlag, 2010. To appear.

[10]

[11]

