Design Automation for IEEE P1687

Farrokh Ghani Zadegan®, Urban Ingelsson!, Gunnar Carlsson? and Erik Larsson

I Linkoping University,
Linkdping, Sweden

ghanizadegan @ieee.org, urban.ingelsson@liu.se, erik.larsson@liu.se

Abstract—The IEEE P1687 (IJTAG) standard proposal aims
at standardizing the access to embedded test and debug logic
(instruments) via the JTAG TAP. P1687 specifies a component
called Segment Insertion Bit (SIB) which makes it possible to
construct a multitude of alternative P1687 instrument access
networks for a given set of instruments. Finding the best access
network with respect to instrument access time and the number
of SIBs is a time-consuming task in the absence of EDA support.
This paper is the first to describe a P1687 design automation
tool which constructs and optimizes P1687 networks. Our EDA
tool, called PACT, considers the concurrent and sequential access
schedule types, and is demonstrated in experiments on industrial
SOCs, reporting total access time and average access time.

Keywords-IEEE P1687 I1JTAG, Design Automation, Instrument
Access, Access Time Optimization

I. INTRODUCTION

Integrated circuits (ICs) are becoming increasingly advanced.
For example, an ASIC from Ericsson contains 64 processors
where each processor has its dedicated data memory and
instruction memory, and a number of SERDESs and hardware
accelerators; hence more than 200 blocks of logic. To ensure
testability and reliability most ICs have embedded test, debug
and monitoring logic (referred to as instruments). A typical IC
contains several hundreds of such instruments. In the Ericsson
ASIC mentioned above, each block of logic contains one or
more instruments. Examples of such instruments include Mem-
ory BIST, Logic BIST, scan-chains and temperature sensors.
It can be seen that the number of instruments in this ASIC
amounts up to several hundreds.

There is no standard method (and thus no EDA support) for
accessing on-chip instruments. Therefore, IEEE P1687 [1] is
proposed to provide a uniform access method for connecting to
instruments, and to facilitate test reuse in different stages of a
chip’s life cycle, i.e. prototyping, wafer test, board test, system
test and in-field test. Such standardization makes provision of
EDA tools possible. Without EDA support, manual design of
instrument access networks will be extremely time consuming,
particularly when there are many instruments, such as in the
above mentioned ASIC.

This paper contributes towards the provision of EDA support
for instrument access by design of P1687 networks. The
P1687 standard proposal introduces a programmable compo-
nent called Segment Insertion Bit (SIB) that is used to configure
the scan-path by including/excluding P1687 network segments.
A network segment can be an instrument or itself a smaller net-
work of SIBs and instruments. Given a set of instruments, the

978-3-9810801-7-9/DATE11/(©2011 EDAA

1

2 Ericsson AB,
Stockholm, Sweden
gunnar.carlsson @ericsson.com

State Register

SDI [SiB) SDO SDI
HIP-ToSDI ! HIP-FromSDO

—
HIP-ToSDI y | HIP-FromSDO

State Register @

SDO
—>

SDI SDO

(a) SIB ports
Fig. 1.

(b) Open SIB (c) Closed SIB

Simplified view of SIB component

use of SIBs makes it possible to create a multitude of alternative
P1687 networks, each leading to a different instrument access
time. Optimizing for low instrument access time makes P1687
network design a complicated and time-consuming task. To
eliminate time consuming manual design of P1687 networks,
this paper presents novel algorithms for automated design of
optimized P1687 networks. The algorithms are implemented in
a tool named P1687 Automatic Construction Tool (PACT).

The next section gives an overview of P1687 and reviews
prior work. Section III defines the P1687 network design
problem. Section IV and Section V present design automation
algorithms for two instrument access schedule types. Sec-
tions VI and VII present experimental setup and results.

II. OVERVIEW OF P1687 AND REVIEW OF PRIOR WORK

P1687 proposes to use the IEEE 1149.1 (JTAG) TAP for
accessing on-chip instruments from outside the chip. This is
in line with the widespread use of 1149.1 in ad hoc access
to on-chip test and debug features [2]. Therefore, P1687 has
received the informal name of IJTAG (Internal JTAG). To
interface the on-chip P1687 network to the JTAG TAP, a
special Test Data Register is added to the JTAG circuitry, which
will form a flexible scan-path including arbitrary subsets of
instruments, between the Test-Data-Input (TDI) and Test-Data-
Output (TDO) terminals of TAP. The special Test Data Register
is called Gateway and is selected by loading a JTAG instruction
called Gateway Enable (GWEN). The Gateway is composed of
one or more SIBs.

Fig. 1(a) shows a simplified view of a SIB. Besides Serial-
Data-In (SDI) and Serial-Data-Out (SDO) ports, the SIB has
a Hierarchical Interface Port (HIP) which connects to a P1687
network segment. A SIB has two states. It is either open
(Fig. 1(b)) and includes the segment on the HIP in the scan-
path, or it is closed (Fig. 1(c)) and transfers the data from its
SDI port to its SDO port, excluding the segment on the HIP.
Whether the SIB is open or closed, it corresponds to a 1-bit
data register on the scan-path. The state of the SIB is set by
scanning in a control bit into its register which is transferred
to its state register (shown in Fig. 1(b) and Fig. 1(c)) by an
update signal from the JTAG TAP.

Since IEEE P1687 has recently been proposed, only a few
studies have considered it [3], [4], [5], [6]. However, no study
has considered automated design of optimized P1687 networks.
In [3] and [4], the authors proposed techniques for testing IEEE
1500 wrapped cores and have considered future integration
of those techniques with P1687. In [5], a case study for test
and configuration of high-speed serial I/O (HSSIO) links using
P1687 is presented. There, it is mentioned that due to the
need for high-volume manufacturing test of HSSIO links and
difficulties associated with external test equipments, using on-
chip test instruments will be an attractive solution. However, in
[5] accessing P1687 instruments through JTAG TAP is regarded
as a bottleneck, from which it can be inferred that instrument
access time is an important parameter for optimization. Ac-
cording to [5] accessing the on-chip instruments can be done
individually or in unison. In [6], overall instrument access time
calculation methods are presented for P1687 networks having
scan-chains as instruments, while making use of sequential
and concurrent access schedules (similar to the individual and
in unison access methods in [5]). The overall access time (OAT)
consists of time transporting instrument data and two types of
overhead, i.e. SIB programming overhead and JTAG protocol
overhead (CUC overhead). The SIB programming overhead,
which is the time spent transporting the total number of
required SIB control bits, arises from the fact that SIB control
data (1 bit per SIB) are transported along with instrument data
on P1687 networks. CUC (Capture and Update Cycle) is the
progression of five states (Exitl-DR, Update-DR, Select-DR-
Scan, Capture-DR and Shift-DR) in the TAP controller state
machine. Every write and read operation on an instrument
requires a CUC to apply the inputs and capture the outputs.

In [6], it is pointed out that time spent transporting instru-
ment data is independent from the P1687 network structure
and the access schedule. In contrast, network structure and
access schedule affect both SIB programming overhead and
CUC overhead. Furthermore, it is shown that the length of the
scan-chain instruments has no impact on the overhead. It should
be noted that while in [6] the effect of the network structure
and the access schedule on overhead is observed, no method for
reduction of overhead is proposed. In [6], the P1687 network
is considered to be given and OAT is calculated. In this paper,
we develop the design automation of P1687 networks.

From the prior work, it can be seen that this paper is the
first to address the automated design of P1687 networks and
instrument access time reduction. From [5], we infer that P1687
networks should be optimized with regard to low instrument
access time. Therefore this paper presents design automation
results (Section VII) in terms of overall access time for a set of
instruments and both sequential and concurrent access schedule
types, as well as the corresponding average access time.

III. SCOPE AND PROBLEM DEFINITION

The following describes instrument access as used in this
paper. From [1], it is assumed in this paper that each instrument
contains a shift-and-update register. In this context, an access
to an instrument is defined as (1) shifting input bits into

the instrument’s shift-register, (2) latching the contents of the
shift-register to be applied as inputs to the instrument, (3)
capturing the output of the instrument into the shift-register
and (4) shifting the captured values out. The shifting out of
the instrument outputs can overlap in time with shifting in the
input command bits for the next access.

For the notation in this paper, a SIB having a single instru-
ment connected to its HIP is referred to as instrument SIB and
if the segment connected to the HIP is a network of SIBs and
instruments, the SIB is called a doorway SIB. It is assumed
that there is a fixed number of instrument SIBs, one for each
instrument, regardless of the network structure. This ensures
that for each instrument, access can be independently sched-
uled. In contrast, the number of doorway SIBs can vary with
the network structure. Since doorway SIBs effectively change
the length of the scan-path, by including/excluding network
segments that include other SIBs, the impact of the number and
placement of doorway SIBs on the SIB programming overhead
will be significant. Compared to the SIB programming over-
head, CUC overhead varies to a lesser degree with the number
and placement of doorway SIBs [6]. Therefore, an effective
way to reduce the instrument access time by P1687 network
design, as is the focus of this paper, is reduction of the SIB
programming overhead by appropriate placement of doorway
SIBs. Since the SIB programming overhead depends on the
access schedule (see Section II), the access schedule should
be considered in P1687 network design, as is discussed in
Section IV and Section V.

In this paper, to prioritize the access time for different
instruments, it will be assumed that each instrument has a
weight. The weight is the number of accesses to the instrument.
Each access requires SIB control bits which add to the SIB
programming overhead. Instruments with higher weights could
have a larger contribution to SIB programming overhead than
those with lower weights. Design of P1687 networks should
minimize the number of SIBs on the scan-path of the instru-
ments with high weights to reduce SIB programming overhead.

Above it was seen that effective reduction of access time is
possible by reduction of SIB programming overhead. There-
fore, the P1687 network design problem is defined as follows:
Given a set S of instruments, where W; is the weight of the
instrument ¢ (¢ € S), and a schedule which can be either
concurrent or sequential, a P1687 network should be found,
such that the SIB programming overhead is minimized and the
number of SIBs is kept low.

IV. METHOD FOR CONCURRENT SCHEDULES

Fig. 2(a) shows N instruments (represented by the white
boxes) in a single-level design, i.e. no hierarchy, which is
referred to as the flat architecture in the rest of this paper.
Fig. 2(b) shows the same instruments in a two-level design.
W, is the weight for instrument ¢. The instruments are ordered
so that W7 > ... > Wg > ... > Wpy. In the concurrent
schedule, all instruments are accessed at the same time and all
accesses are performed as soon as possible in the schedule.
Some instruments have fewer accesses than the others. By

E-1-1:3

(a) In a single-level design

Fig. 2.
closing the instrument SIBs whose corresponding instruments
are not accessed anymore (say instruments K through N) the
scan-path will become shorter for the instruments that are still
accessed (say instruments 1 through K — 1). For the flat archi-
tecture, this leaves the closed instrument SIBs themselves on
the scan-path, contributing to the SIB programming overhead
for each subsequent access. By using multi-level (hierarchical)
designs, such as the two-level design shown in Fig. 2(b), it is
possible to reduce the SIB programming overhead due to the
instrument SIBs (for instruments K through N) by excluding
them from the scan-path.

Before accessing instruments in the network shown in
Fig. 2(a), all the SIBs should be opened. This is done by
shifting N bits to program the SIBs followed by a CUC.
These NN bits are considered overhead since they are not
part of the input/output data for the instruments. Furthermore,
each of the N SIBs that are on the active scan-path must
be programmed for every access. Since W is the maximum
number of accesses among the instruments, a total of W)
accesses will be performed in the concurrent schedule and
(W71+1)-N clock cycles are spent in total on shifting these SIB
control bits. Therefore, the SIB programming overhead for the
design shown in Fig. 2(a) is calculated as O = N+(W;+1)-N.

To access the instruments in the network shown in Fig. 2(b),
K bits should be shifted in to open the SIBs at the first level
of hierarchy, marked 1 through K — 1 and d, followed by a
CUC. Subsequently, SIB control bits to open SIBgk through
SIBy are shifted in, together with the first input commands
for instruments corresponding SIB; through SIBg_;. Therefore,
N + 1 control bits are shifted in besides the instrument data.
Now that SIBs at the second level are open, W more accesses
are performed to all the instruments. At this point, no more
input data exists for the instruments for SIBx through SIBy
and SIB4 should be closed to shorten the scan-path for the rest
of instruments. Accessing the instruments Wy times, requires
shifting (Wx+1)-(IN+1) control bits. Once SIBy is closed, the
rest of input data (i.e. those left from W) are to be applied.
This requires (W7 — Wi — 1) - K more control bits to be
shifted in. Therefore, the total SIB programming overhead for
the design in Fig. 2(b) is calculated as O = K + (N + 1) +
Wk +1)-(N+1)4+ (Wy — Wk — 1) - K. Based on these
calculations, it can be concluded that if (1) is satisfied for the
set of N instruments shown in Fig. 2, the design in Fig. 2(b)
will result in less SIB programming overhead, at the cost of
the additional SIB4. Based on this observation, Algorithm C
(C for concurrent) is presented for the construction of P1687
networks, optimized for the concurrent schedule.

(b) In a two-level design

N instruments in single-level and two-level designs

K+(N+1)+(Wrg+1) - (N+1)+ W1 —Wg—1)-K

<Nt+w+n.N D

Algorithm C Method for Concurrent Schedule
1: L:=1

//Initially the design has one level

2: S :={Wi,Wa,...,Wn} /nitially S contains all the instruments

3: while |S|> 2 do

4: Starting from Wa, find K that satisfies (1) for the instruments in S

5: if there is no such K then

6: break //No reduction is possible

7: end if

8: Iy, := First K — 1 instruments //Current level gets the first K-1
instruments in S

9: S=5-1Ip //The used instruments are removed from S

10: L:=L+1 //A new level is added for the rest of the instruments

11: end while

12: Ip, =S //The last level contains the remainder of the instruments

In Algorithm C, L is the hierarchical level number. It will
start at 1 (line 1) and be incremented (line 10) for each
successful introduction of a new hierarchy level (lines 3-11).
Initially, S contains [V instruments that are represented by their
weights and sorted in descending order based on their weights
(line 2). If the observation regarding (1) can be applied (line 4),
some instruments remain on the hierarchy level specified by L
(this corresponds to moving instruments from S to I, on line 8
and line 9) and the rest are moved to the next level of hierarchy
(they remain in S for further processing). This continues until
there are only two instruments in .S or the observation regarding
(1) cannot be applied. The outcome of Algorithm C is a list
of instrument sets, named I, Is, ..., Iy, where I; contains the
instruments on the first level, I5 contains the instruments for
the second level, and so on. It should be noted that when the
observation regarding (1) is applied on line 4, Wy in (1) refers
to the first element in the current set of instruments stored in
S. Furthermore, adding hierarchy levels is done by adding a
doorway SIB such as SIB4 in Fig. 2(b). There will be at most
one doorway SIB at each level of hierarchy in the network.

V. METHOD FOR SEQUENTIAL SCHEDULES

This section studies the design of P1687 networks with
the objective of access time reduction for sequential access
scheduling. In sequential schedules, instruments are accessed
one at a time. Therefore, the total SIB programming overhead
will be the sum of the SIB programming overheads for all the
instruments. The SIB programming overhead for Instrument 6,
which is connected to SIB¢ in Fig. 3(a) is taken as an example.
Before accessing Instrument 6, two levels of hierarchy should
be opened. On the first level of hierarchy, two SIB control
bits are required to open SIB, and to program SIB; to remain
closed. Subsequently, four SIB control bits are required to keep
SIBy; open, to open SIBg and to program SIB;; and SIB~
to remain closed. While Instrument 6 is accessed, these four
SIBs will be on the scan-path. So far, six (2+4) bits are shifted
to open the SIBs before the first access to Instrument 6. To
complete all eight (W = 8) required accesses to the Instrument
6, nine repetitions of the programming of the four SIBs on
the scan-path are required. After eight repetitions, all data to
the instrument has been shifted in and one more repetition is
required to shift out the output data for the eighth access. For
accessing Instrument 6 eight times, (8+1) x 4 SIB control bits
are required because of the four SIBs on the scan-path. In total,

(a) Output of Algorithm H
Fig. 3.

(b) Output of Algorithm HO
Example P1687 networks

the SIB programming overhead due to accessing Instrument 6
is 42 (2+ 4+ (84 1) x 4) clock cycles.

As mentioned in Section III, the instrument with the largest
weight could have the largest contribution to the SIB program-
ming overhead. Such instruments should be on a short scan-
path. In terms of a multi-level network, instruments with large
weight should be placed on a level close to the JTAG TAP to
avoid many SIBs on their scan-paths. Also, instruments with
lesser weight should be placed on a level further away from
the TAP so that their instrument SIBs do not add to the scan-
paths of the instruments with larger weight. To develop an
algorithm for constructing a P1687 network with the above
mentioned placement of instruments according to their weights,
we have taken inspiration from Huffman Construction, which
is a method for constructing labeled trees of symbols, used in
variable length coding [7]. The basic idea in Huffman Con-
struction is that symbols with higher frequency of occurrence
(weight) are assigned shorter length code words. To construct
such a tree, symbols with larger weights are placed closer to
the root of the tree.

In construction of a P1687 network, an analogy can be made
between weight of a symbol in Huffman Construction, and the
weight of an instrument. That is, since instruments with larger
weights are accessed more frequently, they should be placed in
the P1687 network such that the number of SIBs on their scan-
path (which is analogous to the length of the code word for the
symbol) becomes relatively low. Algorithm H (H for Huffman)
shows the steps to construct a P1687 network out of a given
set of instruments, such that the access time is optimized for
the sequential schedule. On line 1, Algorithm H receives a set
of weights for the instruments. The algorithm applies a key
idea of Huffman Construction, which is to combine a set X
of instruments (lines 4-6) and treat them as one instrument,
where Wx = >, W;. To combine a set X of instruments,
a doorway SIB is added and the set X of instruments are
connected to its HIP. In Algorithm H, two instruments are
combined at a time. By starting with the instruments with the
smallest weight (line 3), they will end up in the hierarchy levels
further away from the JTAG TAP. This means that instruments
with high weights end up with a short scan-path. The procedure
of combining instruments continues until all instruments have
been combined on the HIP of a single doorway SIB (lines 2-7)
which is replaced by JTAG TAP (TDI-TDO) afterwards.

Fig. 3(a) shows the P1687 network that was designed using
Algorithm H for a set of instruments with the weights 1, 1, 1, 1,
5, 8 and 25. It should be noted how the instruments are placed
in the network. The weights determine the hierarchy level and

Algorithm H Construction for Sequential Schedule

1: S ={W,Wa,...,Wn}
2: while |S| > 1 do

3: Find W; and W that are smaller than all other items in S
4: Combine the two instruments ¢ and j to form X

5: Remove W; and W; from S

6: Add Wx to S

7: end while

Algorithm HO Method for Sequential Schedule

1: run Algorithm H
2: for each SIBy do
SIBOverhead = SIB programming overhead of the network
Remove SIB4
NewSIBOverhead = SIB programming overhead of the network
if NewSIBOverhead > SIBOverhead then
Restore SIB4
end if
9: end for

A

the instrument with the highest weight (25) is placed so that
it can be accessed with only two SIBs on the scan-path. If the
instruments in Fig. 3(a) were arranged in flat architecture, the
SIB programming overhead would be 350 clock cycles with the
sequential schedule, while the SIB programming overhead for
the design in Fig. 3(a) is 244 clock cycles. Therefore, reduction
of SIB programming overhead is achieved at the cost of five
additional doorway SIBs (SIBg through SIB;,).

It can be possible to further reduce the SIB programming
overhead in the network constructed by Algorithm H. From
the design shown in Fig. 3(a), SIBg, SIBy and SIB;; can be
removed, as shown in Fig. 3(b), to reduce the SIB programming
overhead to 215 clock cycles. The reason for this possibility
of further SIB programming overhead reduction is that in the
analogy to Huffman Construction, there is no counterpart for
the SIB programming overhead coming from opening the SIBs
before the first access to a given instrument. An optimization
step should therefore follow the construction, to analyze a
P1687 network and find the doorway SIBs that should be
removed to further reduce the SIB programming overhead.
The complete method for the sequential schedule is thus as
suggested in Algorithm HO (HO for Huffman Optimized). The
basic idea in Algorithm HO is to construct an initial network,
using Algorithm H, and examine the effect of removal of each
of the doorway SIBs in that network (line 4) on the total SIB
programming overhead. Removal of a doorway SIB is done by
replacing the doorway SIB by the network segment on its HIP.
To this end, Algorithm HO compares the SIB programming
overhead before (line 3) and after (line 5) removal of each of
the doorway SIBs, and restores the removed SIB (line 7) if the
SIB programming overhead increases after removal of the SIB
(line 6).

VI. EXPERIMENTAL SETUP

A design automation tool, P1687 Automatic Construction
Tool (PACT), has been implemented. As inputs PACT accepts
a schedule type (either concurrent or sequential) and a set
of instruments S, specified by a weight W, (see Section III)
which represents the number of accesses that are required for
instrument ¢ (¢ € S). The output of PACT is a description of
a P1687 network (a tree representation with SIBs for nodes,

1500M -

jil = = = N 1000M + — — — — Bl EB

W SIB Overhead

Overall Access Time
2
4

CUC overhead

500M

Instrument Data

oM oM 0

F H HO C F H HO C F H HO C

(a) P22810 (b) Mergel2 (c) S100

Fig. 4. OAT of the designs when accessed using concurrent schedule

where leaf nodes are instrument SIBs, associated with the
corresponding instrument) for which PACT has endeavored
to achieve a low instrument access time while attempting to
keep the number of doorway SIBs low. When the concurrent
scheduling type is given as input, PACT performs Algorithm C.
In Section VII this is called the C approach. Otherwise, if
the schedule type is sequential, PACT performs Algorithm HO
which leads to an initial P1687 network (approach H) and a
final network (approach HO). Besides the C, H and HO ap-
proaches from PACT we define the F approach representing the
flat architecture, for comparison. Although some of the above-
mentioned approaches are optimized for a certain schedule, all
four approaches are used in all of the experiments presented
in Section VII, again for comparison.

In experiments with PACT, as input a set of instruments is
required. We have, without loss of generality, chosen to view
the cores of the ITC’02 [8] Benchmark SOCs as instruments.
These can represent many types of instruments because of
the variety in the length of shift-registers and the number of
accesses found among the instruments. Consequently, in the
context of the experiments, the instruments are cores and the
shift-register of an instrument is the core-chain for each core.
In this case the instrument data consist of test stimuli (applied
as inputs) and test responses (captured as outputs), and an
access is application of one test pattern. Because of how access
is defined in Section III test application time is identical to
overall access time. Since in the context of P1687, all data are
transported through a single wire, the internal scan-chains and
boundary cells corresponding to the core inputs and outputs
are concatenated to form a core-chain. The length of a core-
chain is calculated as described in [6]. Besides the ITC’02
Benchmarks, we experimented with two SOCs, Mergel2 and
S100. Merge12 is the full set of instruments from all 12 SOCs
available in the ITC’02 Benchmark Set. Mergel2 has 167
instruments and is investigated to evaluate PACT for a large
set of instruments. S100 contains 100 instruments, each with
a 10-bit shift-register and each requiring one access. S100 is
investigated to consider a circuit with many simple instruments
which require few accesses and have short shift-registers. For
space reasons, this paper only reports results on the ITC’02
benchmark P22810, Mergel2 and S100.

To evaluate the P1687 networks that resulted from the
experiments, we report SIB programming overhead and CUC
overhead, as well as OAT. Besides reporting OAT, Section VII
gives the average access time which is the OAT divided by the
total number of accesses, and the average number of SIBs on
the scan-path, which is the total SIB programming overhead
divided by the number of accesses.

10M - 25000 -

1500M
8M

20000 -
1000M

oM A—— 15000 mSB Overhead

PIVIES == BN W= W 10000 - CUC overhead

500M

Overall Access Time

™M 5000 - Instrument Data

oM - . oM += = = 8 0 T =TT
F H HO C F H HO C FH HO C
(a) P22810 (b) Mergel2 (c) S100
Fig. 5. OAT of the designs when accessed using sequential schedule

VII. EXPERIMENTAL RESULTS

Fig. 4 and Fig. 5 show overall access time (OAT) for P22810,
Mergel2 and S100 for the concurrent and sequential access
schedules, respectively. The bars show the fractions of OAT
that correspond to transport of instrument data, transport of
SIB control bits (SIB programming overhead) and performing
CUC (CUC overhead). The results are presented in detail
in Table I. For each SOC, Column 1 shows the number of
instruments (cores) and Column 2 presents the amount of
instrument data for each SOC. Column 3 indicates the design
approach considered on each row and Column 4 indicates
the number of doorway SIBs in the resulting design. For all
four approaches, the number of instrument SIBs is equal to
the number of instruments and not included in Table I. The
instrument data is calculated as 3~ | L; - (W; + 1), where N
is the number of instruments. W; and L; are the number of
accesses and the length of the shift-register for instrument i,
respectively. Columns 5-9 and Columns 10-14 show results for
schedules of the sequential and concurrent types respectively.
Within both blocks, CUC overhead and SIB programming
overhead are presented along with OAT. Furthermore, Column
7 and Column 12 show the average number of SIBs on the
scan-path considering all accesses (see Section VI). Similarly,
Column 9 and Column 14 show the average instrument access
time (see Section VI).

The primary aim of PACT is to reduce instrument access
time by reducing SIB programming overhead compared to
the flat architecture. Such reduction can be seen in Fig. 4
and Fig. 5. From Table I it can be seen that, the impact of
instrument data on OAT remains constant for different P1687
networks (the results of the F, H, HO and C approaches) and
different access schedule types. In contrast, Fig. 4 and Fig. 5
show that SIB programming overhead and CUC overhead
vary with both network and schedule type. The variation in
SIB programming overhead is considerable and is the main
parameter that can be adjusted to reduce OAT, while CUC
overhead varies only slightly, which is why PACT is developed
to reduce SIB programming overhead.

For P22810 and Mergel2, it can be seen that the resulting
networks corresponding to H, HO and C result in similar OAT.
In such cases, the secondary aim of PACT, to keep the number
of SIBs low without increasing OAT, is considered in Column
4 of Table I. In the context of the primary and secondary aims,
the following shows that PACT operates correctly. Fig. 4 shows
that for the concurrent schedule type, the C approach result in
the lowest OAT. Therefore, PACT correctly recommends the
C approach when instructed to optimize for the concurrent

TABLE I

P1687 Sequential Schedule Concurrent Schedule

SOoC Instrument Design # Doorway cuc SIB Prog. Overhead Access Time cuc SIB Prog. Overhead Access Time
Data Approach SIBs Overhead Total \ Average Total \ Average Overhead Total \ Average Total \ Average
F 0 125210 701176 28.00 8998433 359.35 61630 345128 13.78 8578805 342.59
P22810 8172047 H 26 125340 133734 5.34 8431121 336.69 61630 57526 2.30 8291203 331.10
(28 cores) HO 15 125285 131715 5.26 8429047 336.61 61630 62741 2.50 8296418 331.31
C 17 125295 148635 5.93 8445977 337.28 61630 46886 1.87 8280563 330.68
F 0 11427410 381675494 167.00 1498818950 655.80 9572175 319710645 139.89 1434998866 627.88
Mergel2 1105716046 H 165 11428235 7253344 3.17 1124397625 491.97 9572175 4772942 2.09 1120061163 490.08
(167 cores) HO 94 11427860 7225621 3.16 1124369527 491.96 9572175 4836595 2,12 1120124816 490.10
C 101 11427915 10521078 4.60 1127665039 493.40 9572175 4520598 1.98 1119808819 489.97
F 0 1005 20100 100.50 23105 11552 15 300 1.50 2315 11.57
S100 2000 H 98 1495 3834 19.17 7329 36.64 45 784 3.92 2829 14.14
(100 cores) HO 21 1175 3083 15.41 6258 31.29 30 447 2.23 2477 12.38
C 0 1005 20100 100.50 23105 115.52 15 300 1.50 2315 11.57

schedule. Similarly, Fig. 5 for the sequential schedule, shows
that the HO approach leads to the lowest OAT. It should be
noted, that while the H approach achieves a reasonably low
OAT, it results in a higher number of doorway SIBs than the
HO approach (Table I). When the H and C approaches are
comparable to the HO approach in terms of OAT, HO results
in a lower number of doorway SIBs. Therefore, PACT correctly
recommends the HO approach when instructed to optimize for
the sequential schedule.

For P22810, it can be seen that PACT reduces OAT by a
small fraction compared to the result of the flat architecture,
at the cost of 15 and 17 additional SIBs (see HO and C for
P22810 in Table I). A more considerable reduction (25% of
OAT and 25% of average access time for sequential schedules)
is seen for circuit Mergel2, where the reduction is achieved at
the cost of 94 additional SIBs (see HO for Merge12 in Table I).
More dramatic reduction in OAT is achieved for S100. From
the results for the three SOCs it can be seen that the benefit of
applying PACT to a circuit depends on the set of instruments
in the SOC. In this context, PACT is useful for evaluating a
SOC in terms of the size of the possible reduction in OAT.

For Mergel2, the SIB programming overhead ratio is very
large for the F approach and becomes significantly smaller
for all other approaches which have hierarchical architecture.
This can be explained by the fact that Mergel2 contains an
instrument with W = 1914433. Considering a flat architecture
with all 167 cores, this instrument causes a SIB programming
overhead of 167 x 1914433 = 319710311 clock cycles. This
alone, constitutes 84% of the SIB programming overhead for
the F approach. The number of SIBs on the scan-path to this
instrument is 167 whereas the same number for the H, HO and
C approaches is 2, which is reflected by the large reduction
in average SIB programming overhead shown in Table I. The
drastic amounts of SIB programming overhead for circuit S100
and the sequential schedule (Fig. 5) is due to the fact that
the instrument shift-registers are short compared to the scan-
path length, especially for the F and C designs in which each
instrument has 100 SIBs on its scan-path. However, in Table I,
the average SIB programming overhead is 100.50 (and not 100)
because this number includes the overhead invested in opening
the first SIB (see Section V). For the concurrent schedule type,
the average SIB programming overhead is less because it is
amortized over more than one instrument.

From the above, it is seen that PACT can reduce instrument
access time and keep the cost in terms of additional doorway
SIBs low, which is a contribution to the development of

design automation tools for circuits incorporating P1687. For
all of the experiments, including those with >100 instruments,
PACT produced the recommended P1687 network within <10
seconds, on a 1.83 GHz Intel® Core™?2 Duo based computer
with 3 GB of RAM.

VIII. CONCLUSION

IEEE P1687 standard proposal aims at standardizing the
access to the on-chip test, debug and monitoring logic (called
instruments) through JTAG TAP. To construct the access net-
work, P1687 proposes a component called SIB to be used to
connect to instruments or other SIBs. By using SIBs, it is
possible to design a multitude of access networks for the same
set of instruments. This paper contributes to the development of
EDA tools by presenting algorithms for the automated design
of optimized P1687 networks. The algorithms are implemented
in a tool called PACT (P1687 Automatic Construction Tool).
Given a set of instruments and an access schedule which can be
either sequential or concurrent, PACT designs a P1687 network
which is optimized with respect to instrument access time while
the cost in terms of number of SIBs is kept low. It was shown
that reducing control data overhead (for programming SIBs)
is the key to reduce the overall access time. Therefore, this
paper focused on reduction of SIB programming overhead. To
this end, hierarchical structures, that provide a shorter scan-path
for the instruments which are more frequently accessed, proved
effective. PACT is employed in experiments on industrial SOCs
and two designs with >100 instruments. The results showed
that in a matter of seconds PACT helped reduce access time
by up to 25%, compared with straight-forward single-level
structures without hierarchy for the same set of instruments.

REFERENCES

[1] 2010. Available:

(2]

UTAG, “ITAG - IEEE P1687,
http://grouper.ieee.org/groups/1687

J. Rearick, B. Eklow, K. Posse, A. Crouch, and B. Bennetts, “IITAG
(Internal JTAG): A Step Toward a DFT Standard,” in Proc. ITC, 2005.
L.-T. Wang et al., “Turbo1500: Toward Core-Based Design for Test and
Diagnosis Using the IEEE 1500 Standard,” in Proc. ITC, 2008, pp. 1-9.
M. Higgins, C. MacNamee, and B. Mullane, “SoCECT: System on Chip
Embedded Core Test,” in Proc. DDECS, 2008, pp. 326-331.

J. Rearick and A. Volz, “A Case Study of Using IEEE P1687 (IJITAG) for
High-Speed Serial I/O Characterization and Testing,” in Proc. ITC, 2006,
pp. 1-8.

F. Ghani Zadegan, U. Ingelsson, G. Carlsson, and E. Larsson, “Test Time
Analysis for IEEE P1687,” in Proc. ATS, 2010.

R. P. Grimaldi, Discrete and Combinatorial Mathematics.
Education, 2004, ch. 12, pp. 609-614.

E. J. Marinissen, V. Iyengar, and K. Chakrabarty, “A set of benchmarks
for modular testing of SOCs,” in Proc. ITC, 2002, pp. 519-528.

[Online].

[3]
(4]
(51

(6]
(7]

Pearson

(8]

