
INSTITUT FÜR INFORMATIK

Compiling SyncCharts to Synchronous C

Claus Traulsen, Torsten Amende,
Reinhard von Hanxleden

Bericht Nr. 1006
Juli 2010

CHRISTIAN-ALBRECHTS-UNIVERSITÄT

ZU KIEL

Institut für Informatik der
Christian-Albrechts-Universität zu Kiel

Olshausenstr. 40
D – 24098 Kiel

Compiling SyncCharts to Synchronous C

Claus Traulsen, Torsten Amende, Reinhard von Hanxleden

Bericht Nr. 1006
Juli 2010

e-mail:
ctr@informatik.uni-kiel.de,

tam@informatik.uni-kiel.de,
rvh@informatik.uni-kiel.de

Technical Report

SyncCharts are a synchronous Statechart variant to model reactive systems with a
precise and deterministic semantics. The simulation and software synthesis for Sync-
Charts usually involve the compilation into Esterel, which is then further compiled into
C code. This can produce efficient code, but has two principal drawbacks: 1) the arbi-
trary control flow that can be expressed with SyncChart transitions cannot be mapped
directly to Esterel, and 2) it is very difficult to map the resulting C code back to the
original SyncChart.

This paper presents an alternative software synthesis approach for SyncCharts that
compiles SyncCharts directly into Synchronous C (SC). The compilation preserves the
structure of the original SyncChart, which is advantageous for validation and possibly
certification. The compilation assigns thread priorities according to the data dependen-
cies. It optimizes both the number of used threads as well as the maximal used priorities,
which corresponds to fast SC code with little memory requirements.

Contents

1 Introduction 1

2 Related Work 3

3 SyncCharts and Synchronous C 4
3.1 SyncCharts . 4
3.2 Synchronous C (SC) . 6

4 Compilation 9
4.1 Surface and depth . 10
4.2 Scheduling . 11
4.3 Optimizations . 14
4.4 Restrictions . 15

5 Experimental Results 17

6 Conclusion and Outlook 21

ii

List of Figures

1.1 Different compilation schemes from SyncCharts to C 2

3.1 Modified ABRO example . 5
3.2 SC thread operators . 7
3.3 SC signal operators and sequential control operators 8

4.1 General translation of a state . 9
4.2 The SurfDepth example with non-trivial surface and depth behavior. . . . 11
4.3 Computation of the priorities from the dependency tree 13
4.4 The Signal example . 14

5.1 Simulation of the grcbal3 example within KIELER 17
5.2 Validation of the compiler . 18
5.3 Alternative code synthesis paths . 18
5.4 Code comparison . 20

iii

1 Introduction

Reactive systems are systems that continuously interact with their environment. The
execution of these systems is determined by their internal state and external stimuli.
As a reaction, new stimuli and/or a new internal state are generated. The modeling of
these systems requires both concurrency and preemption in a deterministic fashion.

In particular for safety-critical systems, it is also important that the behavior cannot
only be understood by the programmer, but as well by experts in the application area,
without further knowledge in computer science. In order to achieve this, graphical nota-
tions such as Statecharts were developed. The Statecharts formalism extends the clas-
sical formalism of finite-state machines and state transition diagrams by incorporating
the notions of hierarchy, orthogonality, compound events, and a broadcast mechanism
for communication between concurrent components. Statecharts provide an effective
graphical notation, not only for the specification and design of reactive systems, but
also for the simulation of the modeled system behavior. Since the original Statecharts
proposal [7], numerous dialects of Statecharts have been developed [3] and Statecharts
have also been incorporated into the UML. Today, Statecharts are supported by several
commercial tools, e. g., Matlab/Simulink/Stateflow from The MathWorks, IBM Rational
Statemate [7] or IBM Rational Rose.

In this paper, we are particularly interested in the SyncCharts [2] dialect of State-
charts, also known as Safe State Machines (SSMs), which has a formal semantics grounded
in the synchronous model of computation and is hence particularly suited for safety-
critical applications [4]. A commercial tool that uses SyncCharts as design entry lan-
guage is Synfora’s Esterel Studio (E-Studio), which provides a range of synthesis options
for generating HDL (Verilog, VHDL) or C/SystemC. These synthesis paths involve the
Esterel language [6] as intermediate language, for which there is a range of compila-
tion approaches available [9]. However, the translation from SyncCharts to Esterel is
rather intricate, as the arbitrary control flow that can be expressed with state transi-
tions (SyncCharts) must be mapped to the structured control flow operations typical for
imperative programs, such as loops and conditionals (Esterel). Likewise, the translation
from Esterel to C can produce efficient code, but yet again we must perform a non-
trivial mapping, in this case from concurrent, preemptive code (Esterel) to sequential
code (C). Ultimately, the C code resulting from a SyncChart is very difficult to map
back to the original SyncChart, which makes it hard to validate and to possibly certify
the design. For reference, there is a DO-178B certified code generator for Esterel Tech-
nologies’ SCADE tool, which has a comparatively straightforward synthesis path from
dataflow equations to code.

In this paper, we propose a compilation from SyncCharts into SC Synchronous C
(SC) code. SC [15, 14], also known as SyncCharts in C, has been recently proposed

1

SyncChart

Esterel

C

KIELER

E-Studio / KIELER

KIELER

E-Studio/ CEC

Figure 1.1: Different compilation schemes from SyncCharts to C

as a means to embed synchronous reactive control flow directly in C. SC provides a
set of control and communication operators, which provide priority-based, deterministic
multi-threading and a signal-based broadcasting mechanism. These SC operators can
themselves be expressed in C, the freely available SC reference implementation1 imple-
ments all operators as C macros. Hence, an SC program can be directly compiled into
software with a standard C compiler. Unlike the traditional compilation from SyncCha-
rts to C via Esterel, our compilation preserves the connection between the generated
instructions and the original states and transitions is preserved. This makes the code
more readable, facilitates validation, and allows a direct back annotation. As the exper-
imental results indicate, the size and execution speed of the resulting executables are
competitive with existing approaches; in terms of code compactness, it even appears su-
perior. Compared to manually writing SC code, using SyncCharts as design entry point
for SC has the advantage that the SC generator presented here automatically determines
thread priorities and, if necessary, context switches that respect all data dependencies,
which may not be trivial for complex applications.

A short overview over the compilation paths is given in Fig. 1.1. Our compiler is part
of the KIELER (Kiel Integrated Environment for Layout Eclipse Rich-Client) tool2. We
compare our compilation to the compilation via E-Studio and to the original compilation
scheme from SyncCharts to Esterel, which is also implemented in KIELER. The Esterel
code can than be further compiled using the standard Esterel compiler from Inria3 or
the Columbia Esterel compiler Columbia Esterel Compiler (CEC)4.

In the next section we consider related work, followed by a closer look at SyncCharts
and Synchronous C in Sec. 3. In Sec. 4 we describe the compilation process and give
experimental results in Sec. 5. We conclude in Sec. 6.

1www.informatik.uni-kiel.de/rtsys/sc/
2www.informatik.uni-kiel.de/rtsys/kieler
3www-sop.inria.fr/esterel.org/files/
4www1.cs.columbia.edu/~sedwards/cec/

2

www.informatik.uni-kiel.de/rtsys/sc/
www.informatik.uni-kiel.de/rtsys/kieler
www-sop.inria.fr/esterel.org/files/
www1.cs.columbia.edu/~sedwards/cec/

2 Related Work

While Statecharts are an appealing language to describe reactive behaviors, the genera-
tion of efficient code is not trivial. Three different methods of compiling Statecharts can
be distinguished: 1) compilation into an object oriented language using the state pat-
tern [1], 2) dynamic simulation [16], and 3) flattening into finite state machines. Since
flattening can suffer from state explosion, often a combination of flattening and dynamic
simulation is used. Executing SyncCharts with SC, proposed here, can be classified as
a simulation based approach, where SC defines a simulator. However, the compilation
from SyncCharts to SC is independent of the implementation of SC, which could also
be implemented by a virtual machine or a hardware extension to a general purpose
processor.

A translation from SyncCharts to Esterel was proposed by André [2] together with
the initial definition of SyncCharts and their semantics. This transformation, with
additional unpublished optimizations, is implemented in E-Studio.

Our work is related to the extension of Esterel with GOTO by Tardieu and Ed-
wards [13]. Since they extend the language, they have to consider all possible usages
of GOTO, e. g., jumping from one thread into another. Our approach could be directly
used to generate efficient extended Esterel (including GOTO) from SyncCharts, since
the structure of the SyncChart will always generate valid GOTOs.

Considering a non-synchronous language like plain C as alternative synthesis target,
the direct generation of C code from SyncCharts might also be more efficient than the
path via Esterel. This approach is taken by the SCC compiler1. However, it appears
that the compiler generates circuit code in the spirit of Esterel and does not directly
reflect the structure of the source SyncChart.2 Our compilation is also closely related to
the compilation from SyncCharts to KEP assembler [12]. However, the abortion scheme
for the KEP is different, resulting in a different scheme for the priority assignment.
Furthermore, for the compilation to Kiel Esterel Processor (KEP) assembler, we need
to extract all complex expressions for triggers, while we can use the full power of C to
express expressions within SC.

1julien.boucaron.free.fr/wordpress/?page_id=6
2Unfortunately, there does not appear to be documentation available on this compiler—we have con-

tacted the author about further information.

3

julien.boucaron.free.fr/wordpress/?page_id=6

3 SyncCharts and Synchronous C

SyncCharts are a Statechart dialect with a synchronous semantics that strictly conforms
to the Esterel semantics. Synchronous C is an extension of C that has been developed
with the SyncCharts/Esterel model of computation in mind, while staying in the realm
of sequential C. Both are explained in more detail in the following sections.

3.1 SyncCharts

A procedural definition of SyncCharts is given by André [2]. The basic object in Sync-
Charts is a reactive cell, which is a state with its outgoing transitions. Reactive cells
are combined to state-transition graphs, which we will also refer to as state regions. A
macro-state consists of one or more state-transition graphs. Fig. 3.1a shows the ABRO
SyncChart, the “hello world” of synchronous programs that demonstrated deterministic
concurrency, preemption, and signal-based communication. To illustrate signal depen-
dencies, this version has been slightly modified from the original ABRO, including an
emission of B on the transition from wA to dA.

States can also have internal actions: on entry, on exit and on inside. SyncCharts
inherit the concept of signals and valued signals from Esterel. Hence a transition trigger
can consist of an event, which tests for presence and absence of values, and a conditional,
which may compare numerical values. Signals are by default absent, a signal is present
if it is either an input signal that is set to present by the environment or if it is emitted
in the current tick. The signal status and value of the previous tick can be accessed via
the pre keyword. For valued signals a combine function can be given which combines
multiple emissions of the signal within one tick, which provides determinism even if a
signal is emitted multiple times with different values within one tick. Since the semantics
assumes that all emits are executed at the same time and hence does not specify an
order of execution of the signal emissions, the combine function must be commutative
and associative. If no combine function is given, it is assumed that only one emit can
occur at the same time. In contrast to the presence status of signal, the value of a signal
is preserved over tick boundaries; a signal keeps its value until another emit occurs in a
later tick.

A characteristic of SyncCharts are the different forms of preemption, expressed by dif-
ferent state transition types. Weak and strong abortion transitions as well as suspension
can be applied to macrostates. A macrostate can either be left by an abortion, which
has an explicit trigger, or by a normal termination, which is taken if the macrostate
enters a terminal state. Analogously to Esterel, all transitions can either be immediate

4

(a) Original SyncChart

1 int tick () {
2 TICKSTART(4);

3 ABO:

4 FORK(wAB, 1);

5 FORKE(ABO main);

6 wAB:

7 FORK(wA, 3);

8 FORK(wB, 2);

9 FORKE(wAB main);

10 wA:

11 PAUSE;

12 if (PRESENT(sig A)) {
13 EMIT(sig B);

14 TERM;

15 }
16 GOTO(wA);

17 wB:

18 PAUSE;

19 if (PRESENT(sig B))

20 TERM;

21 GOTO(wB);

22 wAB main:

23 JOINELSE(wAB Join);

24 EMIT(sig O);

25 GOTO(ABO done);

26 wAB Join:

27 GOTO(wAB main);

28 ABO done:

29 HALT;

30 ABO main:

31 PAUSE;

32 if (PRESENT(sig R)) {
33 ABORT;

34 GOTO(ABO);

35 }
36 GOTO(ABO main);

37

38 TICKEND;

39 }

(b) Synthesized SC tick function

Figure 3.1: The modified ABRO example: wait concurrently for the inputs A and B, if
both have occurred, emit output O; the behavior is reset by the input R.

5

or delayed, where a delayed transitions is only taken if the source state was already
active at the start of a tick. In contrast, immediate transitions may be taken as soon as
the state becomes active; this enables the activation and deactivation of a state multiple
times within one tick. Delayed transitions can also be count delayed, i. e., the trigger
must have been evaluated to true for a specific number of times, before the transition
is enabled. When a state has more than one outgoing transition, a unique transition
number is assigned to each of them, where lower numbers indicate higher priority. (It
would be natural to refer to these numbers as “transition priorities,” but this could be
confused with the priorities used by SC, hence we will stick to “transition numbers”).
Weak abortions must have higher transition numbers than strong abortions, and if a
normal termination exists, it always has the highest transition number.

In the example in Fig. 3.1a, initially the states wA and wB are active, in regions R0
and R1. When the input A occurs, the transition to dA is taken and B is emitted. Since
B is present, the transition from wB to dB is taken. Now both regions are in a final state
and the normal termination to done is taken, emitting the output O. Note that all this
happens within one tick.

3.2 Synchronous C (SC)

Synchronous C (SC) [15, 14] is an extension of C to allow concurrency and preemption in
a deterministic way, adhering the synchronous hypothesis. SC was designed to express
the behavior described by a SyncChart directly in C in a concise and readable fashion.
Figs. 3.2 and 3.3 provide a short overview of the SC instructions that are generated by
our compiler.

SC extends C by a light-weight, priority based thread model. Each thread has a
program counter and an id, which also serves as its priority. (The original SC proposal
distinguished thread ids and priorities, but for simplification of the programming model,
these have been unified since.) The scheduler/dispatcher will always choose the active
thread with the highest priority. A thread can either be enabled, i. e. it should be
executed in the current tick, or disabled. Furthermore, an enabled thread can be either
inactive, i. e., it was already executed in the current tick, or active if it still needs to be
executed in the current tick. A scheduler selects the next thread to execute based on
the current priorities. The scheduler is called by any instruction that either changes the
priority or the status of a thread. The status of all enabled threads is set to active at
the start of a tick. PAUSE and HALT are tick delimiting instructions, which stop the
execution of the executed thread for the current tick by setting its status to inactive.

The FORK statement initializes a new thread. A sequence of FORK’s is concluded
with a FORKE, which activates all threads that were initialized by the preceding FORK
statements and sets the continuation of the current thread. As the priorities of the
threads are also used as unique identifier, a new thread might never be initialized with
the same priority as an already active thread. The priority of the currently executed
thread can be changed by the PRIO instruction. Again the set priority may not be used

6

Operands Notes

TICKSTART∗(p) Start (initial) tick, assign priority p to the Main thread.

TICKEND Finalize tick, return 1 iff there is still an enabled thread.

PAUSE∗+ Deactivate current thread for this tick.

HALT∗+ Shorthand for l: PAUSE; GOTO(l).

TERM∗ Terminate current thread.

ABORT Abort descendant threads.

SUSPEND∗(cond) Suspend (pause) thread and its descendants if cond holds.

SUSPENDG∗(l) Suspend (pause) thread and its descendants, continue at l.

FORK(l, p) Create a thread with start address l and priority p.

FORKE∗(l) Finalize FORK, resume at l.

JOINELSE∗+(lelse) If descendant threads have terminated normally, proceed; else
pause, jump to lelse.

JOIN∗+ Shorthand for lelse: JOINELSE(lelse).

PRIO∗+(p) Set current thread priority to p.

PPAUSE∗+(p) Shorthand for PRIO(p); PAUSE.

GOTO(l) Jump to label l.

Figure 3.2: SC thread operators—tick delimiters, fork/join, priority handling, and abor-
tion and suspension. Operators marked with an asterisk∗ may call the thread
dispatcher, i. e., can result in a thread context switch. Operators marked with
a plus+ automatically generate continuation labels (visible in the program
after macro expansion and in execution traces).

by any active thread.
In addition to providing operators for reactive control flow, SC extends C by a signal-

based communication mechanism that allows to broadcast information within and across
threads. SC signals behave like signals in SyncCharts or Esterel. They are per default
absent and only present if they are emitted in the current tick. SC itself does not
distinguish between input, output and local signals. A signal can be emitted by the
EMIT statement or reset by the SIGNAL statement, used to reinitialize a local signal.
Valued signals can be emitted using special variants of EMIT that specify the type of
the emitted value and, optionally, a combine function. For example, EMITINT(S) emits
a valued signal S with an integer value, without a combine function.

Note that as a consequence of embedding SC in (sequential) C, SC trivially provides
a deterministic order of execution of all statements within one tick. This differs from
SyncCharts or Esterel, where all statements within a tick are considered to occur simulta-
neously. This determinism of SC provides some additional flexibility for signal handling
compared to classical synchronous languages. For example, if multiple EMITINT(S) are
executed within a tick, the result in SC is still well-defined, namely the last emitted
value. Alternatively, one might decide to still forbid these cases, and to either statically
(conservatively) analyze whether they might occur or to detect these situations at run
time. More fundamentally, one might also relax the synchrony hypothesis with respect

7

Operands Notes

SIGNAL(S) Initialize a local signal S.

EMIT(S) Emit signal S.

SUSTAIN∗+(S) Shorthand for l: EMIT(S); PAUSE; GOTO(l).

PRESENT(S) True iff S is present.

AWAIT∗+(S) Shorthand for lelse: PAUSE; PRESENT(s, lelse).

AWAITI∗+(S) Shorthand for GOTO(l); lelse: PAUSE; l: PRESENT(s,
lelse).

EMITINT(S, val) Emit valued signal S, of type integer, with value val.

VAL(S) Retrieve value of signal S.

PRESENTPRE(S, lelse) True iff S was present in previous tick. If S is a signal
local to thread t, consider last preceding tick in which t
was active, i. e., not suspended.

VALPRE(S) Retrieve value of signal S at previous tick.

Figure 3.3: SC signal operators (pure signals, valued signals, and accesses to the previous
tick). See Fig. 3.2 on the asterisk∗ and plus+annotations.

to signal presence, and might allow to determine a signal to be absent and then to emit
it within the same tick. This would mean to allow absence and presence of a signal
within the same tick, but the result would still be deterministic. However, we here still
take the conservative stance that signals should be emitted before they are tested. The
SC implementation monitors adherence to this rule at run time, and raises an error if
a signal that has been determined absent is emitted within the same tick. (This error
checking can be disabled if one wants to use the more liberal interpretation outlined
earlier.)

With both SyncCharts and Esterel one might write self-contradicting, i. e. non-
constructive, programs, for which no execution schedule can be found. Such programs
should be rejected by a compiler for SyncCharts or Esterel. In SC, this situation is
somewhat different; on the one hand, the execution schedule is always implied by the
sequential nature of C, but on the other hand it is easily possible to write programs that
violate the synchrony hypothesis with respect to signal statuses, as discussed above. To
help the programmer, run-time-checks are activated per default to check, as mentioned
above, that a signal which status was already read is never emitted later within a tick.
There are other consistency checks as well, e. g., checking that the priority of a thread
is never set to the same value as an already existing priority. For our compilation from
SyncCharts to SC, the compiler requires that the SyncChart can be statically scheduled,
and hence rejects non-constructive programs; also, the priority assignment algorithm en-
sures that priorities are unique at run time. One may still perform the aforementioned
consistency checks at run time, but they should never be triggered by the synthesized
code.

8

4 Compilation

Since the instructions of SC were developed to express SyncCharts naturally in C, the
compilation of SyncCharts into SC is much simpler than the general compilation of
SyncCharts into plain C. The main difficulty is to schedule the different threads according
to their data-dependencies, which is done by computing a priority for each transition.
Apart from this global priority assignment, the compilation is purely structural.

Each state is transferred into a PAUSE or HALT statement, according to its outgoing
transitions. A new thread is generated for each parallel region in the original SyncChart,
as well as for each macro state, where the outgoing transitions are checked conceptually
in parallel to the content of the state.

The general translation of a state with its outgoing transitions can be seen in Fig. 4.1.
Note that it might be necessary to duplicate immediate transitions; however, in most
cases this can be avoided, as discussed in the next section. While inner actions are
executed in the current thread, regions that are contained in the state are executed in
separate threads.

The translation of a transition consists of the following sequence. 1) Check the tran-
sition’s trigger predicate; if this evaluates to true: 2) execute the effects specified in the
transition label, such as a signal emission, followed by 3) an ABORT if the source state
is a macro state and hence has descendant threads that need to be terminated, 4) set
the priority to the priority of the target state and 5) a GOTO to jump to the target
state.

(a) General form of a state. Strong aborts have a red
circle at the source of the transition arrow, normal
terminations are indicated by a green triangle. The
transition number is indicated by the tail label.

1 Label:

2 [immediate Strong Transitions]

3 [onEntry Actions]

4 [immediate Weak Transitions]

5 Label intern :

6 PAUSE

7 [all Strong Transitions]

8 [onInside Actions]

9 PRIO ([weak])

10 [all Weak Transitions]

11 [Normal Termination]

12 PRIO ([strong])

13 GOTO(Label intern)

(b) Code Template

Figure 4.1: General translation of a state

9

Beside being immediate and delayed, transitions in SyncCharts can also have count
delays: a transition can wait for the n-th tick in which its trigger is evaluated to true.
While this cannot be directly expressed in SC, it can be implemented using an additional
variable to count the occurrence. When the state is entered, the variable is initialized
with the delay of the transitions. Whenever the trigger of the transition evaluates to
true, the variable is decremented and the transition is taken as soon as zero is reached.

A common problem of the code generation from SyncCharts to Esterel and to KEP
assembler is to make sure that a normal termination is not taken in case an weak abortion
is also triggered in the same tick. This is not a problem for the SC code generation,
where a normal termination is handled exactly like a weak abortion with the special
trigger JOIN.

The translation of a region consists of the code for all states, in any order. The
only requirement is that the initial state must be the first state. The ordering of the
other states is still relevant for the performance, since a transition from one state to the
following state can be performed without an additional GOTO instruction, therefore we
order the states by a depth first search.

4.1 Surface and depth

In SyncCharts, as well as in Esterel, one distinguishes immediate transitions, which
can potentially be taken in the same tick as their source state is entered, and delayed
transitions, which will only become enabled from the next tick onwards. Transitions are
by default delayed; immediate transition triggers are indicated by a #-mark, see also
Fig. 4.2.

One also distinguishes the surface of a statement, which is the code that can be
executed in the tick in which the state is entered and which includes only the immediate
transitions and on-entry actions, and the depth of a statement, which is the code that can
be executed if the state is already active in the start of the tick; this includes immediate
as well as delayed transitions and inner actions.

In Esterel, the distinction between surface and depth was introduced to solve schizophre-
nia problems due to multiple executions of the same code within one tick [11]. However,
this is not an issue for the code generation to SC, since it allows the reinitialization of
local signals within a tick.

It appears that in most cases code can be structured such that there is no need for
code duplication between surface and depth. However, this cannot always be avoided.
Consider the SurfDepth example in Fig. 4.2a. The transitions from S0 to S1 can be
ordered such that the priorities implied by transition numbers can be honored (test A0
before B0) as well as the immediate (B0)/non-immediate (A0) distinction. However,
this is not possible with the transitions from S1 to S2. The only immediate transition,
triggered by B1, has a transition number between the two other, delayed transitions.
Hence we must duplicate the test for B1, once at the surface label S1surf, once in the
depth code starting at S1depth.

10

(a) SyncChart

1 S0: if (PRESENT(sig B0)) {
2 EMIT(sig V0);

3 GOTO(S1);

4 }
5 S0 intern :

6 PAUSE;

7 if (PRESENT(sig A0)) {
8 EMIT(sig U0);

9 GOTO(S1);

10 }
11 if (PRESENT(sig B0)) {
12 EMIT(sig V0);

13 GOTO(S1);

14 }
15 GOTO(S0 intern);

(b) Näıve tick function for S0

1 S0: if (PRESENT(sig B0)) {
2 EMIT(sig V0);

3 GOTO(S1);

4 }
5 S0 intern :

6 PAUSE;

7 if (PRESENT(sig A0)) {
8 EMIT(sig U0);

9 GOTO(S1);

10 }
11 GOTO(S0);

12 S1:

13 if (PRESENT(sig B1)) {
14 EMIT(sig V1);

15 GOTO(S2);

16 }
17 S1 intern :

18 PAUSE;

19 if (PRESENT(sig A1)) {
20 EMIT(sig U1);

21 GOTO(S2);

22 }
23 if (PRESENT(sig B1)) {
24 EMIT(sig V1);

25 GOTO(S2);

26 }
27 if (PRESENT(sig C1)) {
28 EMIT(sig W1);

29 GOTO(S2);

30 }
31 GOTO(S1 intern);

(c) Optimized tick function for S0 and S1

Figure 4.2: The SurfDepth example with non-trivial surface and depth behavior.

Fig. 4.2b shows the generated code when strictly applying the template from Fig. 4.1.
Each immediate transition occurs twice in the code. However, we can avoiding the
duplication of the immediate transitions by jumping back to the surface code, i. e.,
replacing lines 11–15 in Fig. 4.2b by GOTO(S0)11, see also Fig. 4.2c. In general, this can
be done if a state has no entry action and all immediate transitions have lower priority
(i. e., higher transition numbers) than delayed transitions.

4.2 Scheduling

The scheduling assigns priorities to code blocks, in order to meet all dependencies be-
tween threads. There are three different sources for constraints that must be met by the
priorities.

11

1) Hierarchy: For a macrostate, all outgoing strong aborts need to be checked before
the content of the state is executed, and all weak abortions must be checked after the
execution. Therefore we need at least two priorities for each macrostate with both strong
and weak outgoing transitions.
2) Transition Order: The outgoing transitions must be handled according to the

priorities indicated by their transition numbers. Following the rules laid down by Sync-
Charts, we assume that strong abortions have higher priorities than weak abortions and
that a normal termination has lowest priority if one exists. However, there are no re-
quirements with respect to immediate and delayed transitions, hence we might need to
duplicate the code for immediate transitions. In most cases, the transition order can
be handled by ordering the code that checks the triggers accordingly. However, since a
thread can only lower its priority within a tick, the dependencies of transitions with low
priority affect also the execution priority of all transitions with higher priority for the
same state.
3) Data dependencies: We also need the priorities to assure that all possible writ-

ers of a signal are executed before its possible readers. Note that not only the directly
outgoing transitions of a state must be considered, but all transitions that are imme-
diately reachable, either through immediate abortions or normal terminations. Data
dependencies are also the only source of non-constructiveness [5]; for a non-constructive
SyncChart no possible schedule can be found, hence the compiler will reject the Sync-
Chart. Due to the data dependencies, it might be necessary to change the priority
between two transitions.

Remember that within a tick a thread can only lower its own priority, but for the next
tick it can also raise its priority. Hence, we also must consider control flow dependencies,
which require that a state must have a priority equal to or lower than all states from
which it can be reached via immediate transitions. An important design choice for the
compiler is the granularity of the priority computation. The most detailed granularity
would be to compute a priority for each SC instruction; however, this is not necessary,
since the priority will never change inside an action, for example. It is sufficient to
compute a priority for each state and transition.

Consider the modified ABRO in Fig. 3.1. This example includes all discussed depen-
dencies. For example state wB is hierarchically dependent of state ABO and state wAB,
and its transition is signal dependent of state wA. Furthermore we have control flow
dependencies, e. g., between wA and wB. With this information we can create a depen-
dency tree, which includes all dependencies of a given SyncChart. For each hierarchical
state we compute two priorities for checking strong and weak transitions.

Fig. 4.3a represents the resulting dependency tree of the modified ABRO example.
The priorities for strong and weak transitions are indicated with subscripts S and W .
Black continuous lines represent hierarchical dependencies, blue dashed lines are control
flow dependencies, and red dotted lines are signal dependencies. Because the dependency
tree is acyclic, we can perform a topological sort to order the resulting threads in the
SC code.

The resulting order need not be unique, any topological sort yields an adequate priority

12

ABROW

wABW

dB wB

ABOW ABOS

dA wA

wABS

done

ABROS

(a) Dependency tree of the modified ABRO ex-
ample

Thread Prio. Opt.

ABRO 10 4

wAB 4 1

wB 8 3

wA 6 2

(b) Thread priorities resulting from topological
order, and after compaction (optimization)
done by the compiler

Figure 4.3: Computation of the priorities from the dependency tree

assignment. For our example a possible order could be the following:

ABROW 7−→ ABOW 7−→ done 7−→ wABW 7−→ dB 7−→ wB

7−→ dA 7−→ wA 7−→ wABS 7−→ ABOS 7−→ ABROS

As we can see, all inner states of the hierarchical state wAB are between wABW and
wABS. Thus the thread priorities of the two threads inside this states are greater than
wAB when weak abortions are checked and smaller than wAB when strong abortions
are checked. Furthermore the thread waiting for B gets a lower priority than the thread
waiting for A because of the topological sorting above. Hence the producer thread for
signal B executes before its consumer.

For the generated SC-code, shown in Fig. 3.1b, this results in the priority assignment
in Fig. 4.3b, directly transcribed from the topological order above. Note that to simplify
the reading, we polished the generated code by introducing and renaming labels.

This static assignment of thread priorities is insufficient if signal dependencies reverse
between two threads during one tick. Fig. 4.4a shows a simple SyncChart where the
threads communicate back and forth within one tick, hence we need to change the
priority after the initialization. From its dependency tree (Fig. 4.4b), a topological sort
yields the following order:

SignalW 7→ S5 7→ S4 7→ S2 7→ S1 7→ S3 7→ SignalS

The resulting thread priorities are 1 for the Signal (main) thread and 4 respectively 5
for the two concurrent threads corresponding to regions R1 and R2. Without changing
the priority of the threads, the R2 thread would start with S3, emit a, recognize signal
b as absent and finish in state S4 for this tick. After this, thread R1 would start with
S1, recognize a as present, emit b and finish in state S2. This execution violates the
SyncCharts semantics, as b was tested (and determined absent) before it was emitted.

13

(a) Instantaneous com-
munication between
threads

S2

S1

S3

S4

S5

SignalW SignalS

(b) Generated dependency tree

1 int tick () {
2 TICKSTART(1);

3

4 L Signal :

5 FORK(L Signal R2 S3,5);

6 FORK(L Signal R1 S1,4);

7 FORKE(L Signal main);

8

9 L Signal R2 S3:

10 PAUSE;

11 EMIT(sig a);

12 PRIO(2);

13 GOTO(L Signal R2 S4);

14 PRIO(5);

15

16 L Signal R2 S4:

17 if (PRESENT(sig b)) {
18 GOTO(L Signal R2 S5);

19 }

(c) Generated SC code

Figure 4.4: The Signal example illustrating alternating signal dependencies between re-
gions R1 and R2

To alleviate this, we need to change the execution context from the R2 thread to the
R1 thread during this tick, which is done by lowering the priority of R2 below that of
R1. Line 12 in the code snippet in Fig. 4.4c contains the PRIO operation executed by
the R2 thread to lower its own thread priority and to defer control to the concurrent R1
thread. The priority of this assignment is directly derived from the topological order.
To lower the own priority it is necessary that the taken transition has at least one signal-
dependent state in a concurrent thread. To initiate the context switch, the R2 thread
must lower its priority from S3’s priority (5) to S4’s priority, which the compiler sets
equal to S5’s priority (2) after recognizing that no further intervening context switch is
necessary. At the end of generated code for a state with a priority change we restore the
former priority. In the example, this is the PRIO(5) statement in line 14, which turns
out to be dead code and could be eliminated in a subsequent optimization.

4.3 Optimizations

As mentioned before, our compilation scheme is structural. However, we apply some
optimizations in order to generated faster and more compact code. There are three
objectives for optimization.
Dynamic priority changes: To implement abortions, threads must keep track of

their descendants, via their thread ids. Hence changing the priority of a thread, done
by the PRIO operator, requires a fair bit of internal book keeping (see the SC imple-
mentation for details). As a consequence, PRIO is the most expensive instruction in
SC, both in terms of execution time and (if inlined) code size. To reduce the number

14

of generated PRIO instructions, we try to avoid changing priorities for states without
signal dependencies.
Threads: Each thread is associated with some state, such as its list of descendant

threads; furthermore, the run time of some operations (notably PRIO, and possibly also
the dispatcher) depends on the maximal thread id. Hence the performance and resource
requirements of the generated SC code depends on the maximal number of threads. We
need one thread for each region, both for macro-states and for parallel regions. We
perform some simple optimizations, e. g., states without outgoing transitions do not
require an extra thread. It is common in SyncCharts to have hierarchical states without
outgoing transitions, in this case no extra thread is needed. Further threads could be
saved by a static analysis which merges concurrent regions into one thread, e. g., if they
are executed in lock step.
Code size: We want to express the behavior with as few instructions as possible.

The code size is already positively effected by the optimizations mentioned before, in
particular by the removing of PRIO instructions. Furthermore, in many realistic exam-
ples surface and depth can be folded to avoid code duplication. We generate one code
block whenever the priority of all immediate transitions is higher than the priority of all
delayed transitions.

4.4 Restrictions

Our compilation cannot handle all SyncCharts. Some requirements, like enforcing that
strong abortions have higher priorities than weak abortions, are no problem in practice
and also applied by other modeling tools like Esterel Studio. Valued signals are cur-
rently restricted to simple types (integers, floats, booleans); more complex types, such
as strings, should be straightforward to implement. Similarly, suspension is currently
not implemented as it seems to be rarely used in practice, but should be not difficult to
add; SC already provides a SUSPEND operator for this.

Less trivial to add would be on exit actions, which break the normal flow of control.
An on exit action is executed whenever the state it is associated with is left, regardless
how. In particular the state could be left by a strong abort on any outer hierarchy
level, but the on exit action still needs to be executed. Note that on exit actions are
not handled by the original transformation for SyncCharts to Esterel. For the current
implementation of on exit actions in Esterel Studio, Esterel itself was augmented by a
finalize statement, which has the same semantics as on exit. While this simplifies the
translation to Esterel, it makes the translation from Esterel into C code much harder.
We propose to handle on exit action by a pre-processing step, where each SyncChart
that contains on exit action is transformed into an equivalent SyncChart without on exit
actions. This can be done by adding the on exit action to each transition that may force
the state to leave. In practice, the on exit action most often contains a single call to
an host function in order to release some reserved resource. We need some additional
bookkeeping to check whether the state was really active when the transitions is taken,
and that the on exit action is only executed once. To support on exit actions, SC already

15

provides the ISAT(id, l) operator that tests whether thread id is at label l.
There are also some corner cases where the semantics of SyncCharts are not clearly

defined, e. g., whether on entry actions are executed when a state is left immediate by a
strong abort. There are two views for actions, either they are really part of the state, or
they are just an abbreviation for adding the action to all incoming transitions. In such
cases, we refer to E-Studio as a reference implementation for SyncCharts and mimic its
behavior. Hence, in the above case, the action is not executed.

16

5 Experimental Results

The compiler from SyncCharts to SC is part of the KIELER tool. When the user
generates SC code for a SyncChart A, three files are generated: 1) A.c contains the
definition of the tick function, 2) A.h contains the declaration of the functions from A.c,
as well as the declaration of the signal types, and 3) A data.c contains a simple main
function to call the tick function. This function can be used for performance evaluation.

The compiler is also used for simulation, as shown in Fig. 5.1. In the simulation mode,
the code is augmented with additional information for the active state and the active
transitions, and a file is generated with wrapper functions that communicate with the

Figure 5.1: Simulation of the grcbal3 example within KIELER, using the generated SC
code.

17

execution engine using JSON1 strings. The generated tick function and the wrapper are
then compiled in the background and the generated executable is started, communicating
with KIELER via standard input/output.

SyncChart Esterel

SC

Out-Trace Ref-Trace

KIELER

E-Studio
KIELER

E-Studio

Figure 5.2: Validation of the compiler

For the validation of the compiler we compare the generated code to the behavior of
SyncCharts in E-Studio. Fig. 5 gives an overview of the validation process. We have
to two start points: 1) A set of SyncCharts modeled in KIELER and in Esterel Studio.
2) Another set of SyncCharts synthesized from Esterel programs [10]. In both cases
we use Esterel Studio to generate reference traces. Inputs of these traces are executed
by the generated SC code and the outputs are compared. The outputs match for all
given traces. Note that the generated code contains some additional instructions for the
exchange with KIELER.

E-StudioKIELER

A.scgA.kixs

A.strl

A-strl.c A-vm.c A-sc.c A data.c A-estudio.c

A-strl A-vm A-sc A-estudio

V5 CEC

Figure 5.3: Alternative code synthesis paths

For the performance evaluation, we compile the SC code without the code for the

1www.json.org

18

www.json.org

communication, implementing the reactive interface defined for Esterel [9]. Hence we
can use the same wrapper to run the Esterel code and the generated SC code. First we
compare our generated code to the hand-written code from the SC report [15]. These
are small examples suited to show the full range of SC language features. While we
do not really expect an improvement over the handwritten code, it shows how close the
generated code can get to the optimal code. We also applied the compiler to medium size
SyncCharts where manually writing the SC code is not practical, in particular because
the data-dependencies are more complex and hence the priority assignment is hard to
get correct for a human programmer. The Cabin and ReflexGame charts are taken from
the Esterel Studio examples, while the ReactorControl and tcint debug32 examples were
Esterel programs which were transformed into SyncCharts.

We also compiled the SyncCharts to Esterel and then further to C code, using two
different approaches: 1) The standard esterel V5 compiler, where the generated code
simulates an equivalent circuit. 2) The CEC to compile code for a virtual machine.
This was not always applicable, because the CEC cannot handle Esterel’s pre operator
and the virtual machine is limited to 255 signals, which is easily reached, since the
compilation to Esterel introduces one signal for each state. Both compilations depend
on the Esterel code that is generated for the SyncCharts in KIELER. We also modeled
the examples in Esterel Studio to compare to its optimized compilation to Esterel, and
compiled the generated Esterel code within Esterel-Studio to C using the fast graph code
[9] approach. All code is linked to the same data file which contains the main function
to set the inputs and measure the execution time. For the example SyncCharts from
the SC introduction, we also compared the results to the manually written code.

All programs are executed for 1 million ticks with random, but identical, input traces,
and the execution time for each tick in clock cycles is measured. As a consistency check,
we also compare how often each output signal is emitted. Beside the execution time, also
the code size itself is a relevant factor for embedded software. Therefore we measured
both the size of the generated and linked object code as well as the lines of code (loc)
of the generated c code. For SC, the loc count gives an estimation of the code size if
it where executed on a virtual machine or a processor with an adapted instruction set.
We also measure the size of the generated executable after linking. All compilations of
C code are performed using the gcc with default optimizations (O2). All experiments
were performed on an Intel Xeon running with 3 GHz and 6 MB cache.

The results of the comparison are shown in Fig. 5.4. In general, the performance
of the generated code (sc) is almost as good as for the manually written code (man-
ual). However, the generated code is significantly larger. This is primarily due to code
duplications that could be avoided, i. e., by folding surface and depth.

Compared to the compilation via Esterel, the compilation via SC is both faster and
smaller than using the Esterel V5 compiler (strl). However, it must be noticed that
the generated Esterel code is not optimized. Such optimizations are performed by the
Esterel Studio compiler, which outperforms our compiler. In particular, the compiler
performs a static analysis of the possible behavior of a SyncChart. Still, the size of the
generated code is similar for most examples. For all examples that contain numerical

19

abro

filteredsr

grcbal3

primeFactor

reincarnation

shifter3

Cabin

ReactorControl

ReflexGame

tcint_debug32

0 500 1000 1500 2000

clock cycles

(a) Reaction time

abro

filteredsr

grcbal3

primeFactor

reincarnation

shifter3

Cabin

ReactorControl

ReflexGame

tcint_debug32

0 200 400 600 800 1000

lines of code

(b) Size of generated C code

abro

filteredsr

grcbal3

primeFactor

reincarnation

shifter3

Cabin

ReactorControl

ReflexGame

tcint_debug32

0 5 10 15 20 25 30

 estudio
 strl
 sc
 manual

KBytes

(c) Size of executable

Figure 5.4: Comparison between code generated by Esterel Studio via Esterel (estudio),
code generated by KIELER via Esterel and the Esterel V5 compiler (strl),
SC code generated by KIELER using the approach presented here (sc), and
manually written SC code (manual).

computations, the code generated by Esterel Studio must be linked to an additional
library, which significantly increases the size of the executables.

20

6 Conclusion and Outlook

We presented a compilation from SyncCharts into Synchronous C (SC). Since SC can
directly express the control flow of SyncCharts, the code generation allows easy trace-
ability between the source code and the generated code. The compiler is implemented
in the KIELER tool and also used for simulation of SyncCharts within the tool.

The first results for small and medium-sized examples show that the generated code
has almost the same performance as code generated via Esterel. This is encouraging and
even somewhat surprising, as the underlying execution approach is basically a simula-
tion, following directly the SyncChart structure, rather than the extensive compile-time
analysis and optimization performed by the Esterel-based synthesis approach. Com-
pared to the existing compilation approaches for SyncCharts, we consider the synthesis
path via SC as rather straightforward and light-weight. This also refers to the imple-
mentation effort, which was only a couple of man months both for the SyncCharts-to-SC
compiler presented here and for SC itself.

In principle this compilation approach should scale well to larger applications, both
in terms of performance and code size, and thus be superior e. g. to the circuit-based
or automata-based compilation approaches; however, this yet has to be validated. In
particular, it remains to be seen (and is likely to be application specific) how frequent
and expensive dynamic priority changes are in larger applications.

There is still room for improvement of the priority assignments, since the compiler
might assign a priority to a state but in a later stage realize that the priority is not
needed at all, in this case the priority is not used. Other optimizations would also be
worth considering, such as dead-code elimination.

Due to the close relationship between SyncCharts and SC, all computations within
the compiler are performed directly on the SyncChart and a derived dependency tree.
However, an intermediate structure which more closely resembles the control flow of SC,
in the spirit of the concurrent KEP assembler graph [8], might allow a more fine grained
optimization of the generated code.

We are currently also investigating the multi-core distribution of SC code, which
might improve performance for larger applications; the question is how much thread
synchronization requirements will offset performance improvements from parallelization.

21

Bibliography

[1] J. Ali and J. Tanaka. Converting Statecharts into Java code. In Proceedings of the
Fourth World Conference on Integrated Design and Process Technology (IDPT ’99),
Dallas, Texas, June 2000. Society for Design and Process Science (SDPS).

[2] C. André. Semantics of SyncCharts. Technical Report ISRN I3S/RR–2003–24–FR,
I3S Laboratory, Sophia-Antipolis, France, April 2003.

[3] M. v. d. Beeck. A comparison of Statecharts variants. In H. Langmaack, W. P.
de Roever, and J. Vytopil, editors, Formal Techniques in Real-Time and Fault-
Tolerant Systems, volume 863 of LNCS, pages 128–148. Springer-Verlag, 1994.

[4] A. Benveniste, P. Caspi, S. A. Edwards, N. Halbwachs, P. L. Guernic, and R. de Si-
mone. The Synchronous Languages Twelve Years Later. In Proceedings of the
IEEE, Special Issue on Embedded Systems, volume 91, pages 64–83, Jan. 2003.

[5] G. Berry. The Constructive Semantics of Pure Esterel. Draft Book, 1999. ftp:

//ftp-sop.inria.fr/esterel/pub/papers/constructiveness3.ps.

[6] G. Berry and G. Gonthier. The Esterel synchronous programming language: Design,
semantics, implementation. Science of Computer Programming, 19(2):87–152, 1992.

[7] D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi, R. Sherman, A. Shtull-
Trauring, and M. Trakhtenbrot. Statemate: A working environment for the devel-
opment of complex reactive systems. IEEE Transactions on Software Engineering,
16(4):403–414, Apr. 1990.

[8] X. Li and R. von Hanxleden. Multi-threaded reactive programming—the Kiel Es-
terel Processor. IEEE Transactions on Computers, accepted 2010.

[9] D. Potop-Butucaru, S. A. Edwards, and G. Berry. Compiling Esterel. Springer,
May 2007.

[10] S. Prochnow, C. Traulsen, and R. von Hanxleden. Synthesizing Safe State Ma-
chines from Esterel. In Proceedings of ACM SIGPLAN/SIGBED Conference on
Languages, Compilers, and Tools for Embedded Systems (LCTES’06), Ottawa,
Canada, June 2006.

[11] K. Schneider and M. Wenz. A new method for compiling schizophrenic synchronous
programs. In International Conference on Compilers, Architecture, and Synthesis
for Embedded Systems (CASES), pages 49–58, Atlanta, Georgia, USA, Nov. 2001.
ACM.

22

ftp://ftp-sop.inria.fr/esterel/pub/papers/constructiveness3.ps
ftp://ftp-sop.inria.fr/esterel/pub/papers/constructiveness3.ps

[12] F. Starke, C. Traulsen, and R. von Hanxleden. Executing Safe State Machines on
a reactive processor. Technical Report 0907, Christian-Albrechts-Universität Kiel,
Department of Computer Science, Kiel, Germany, Mar. 2009.

[13] O. Tardieu and S. A. Edwards. Instanteneous transitions in esterel. In Proceedings
of Model Driven High-Level Programming of Embedded Systems (SLA++P’07),
Braga, Portugal, Mar. 2007.

[14] R. von Hanxleden. SyncCharts in C. Technical Report 0910, Christian-Albrechts-
Universität Kiel, Department of Computer Science, May 2009.

[15] R. von Hanxleden. SyncCharts in C—A Proposal for Light-Weight, Deterministic
Concurrency. In Proceedings of the International Conference on Embedded Software
(EMSOFT’09), Grenoble, France, Oct. 2009.

[16] A. Wasowski. On efficient program synthesis from Statecharts. In Proceedings
of the 2003 ACM SIGPLAN Conference on Language, Compilers, and Tools for
Embedded Systems (LCTES’03), volume 38, issue 7, June 2003. ACM SIGPLAN
Notices.

23

	Introduction
	Related Work
	SyncCharts and Synchronous C
	SyncCharts
	Synchronous C (SC)

	Compilation
	Surface and depth
	Scheduling
	Optimizations
	Restrictions

	Experimental Results
	Conclusion and Outlook

