
jTLM: an Experimentation Framework for the Simulation
of Transaction-Level Models of Systems-on-Chip

Giovanni Funchal∗,† Matthieu Moy†

∗STMicroelectronics
12, rue Jules Horowitz
38019 Grenoble, France

first.last@st.com

†Verimag
2, avenue de Vignate
38610 Gières, France

first.last@imag.fr

Abstract

Virtual prototypes are simulators used in the
consumer electronics industry. Transaction-level
Modeling (TLM) is a widely used technique for
designing such virtual prototypes. In particular, they
allow for early development of embedded software.

The SystemC modeling language is the current
industry standard for developing virtual prototypes.
Our experience suggests that writing TLM models
exclusively in SystemC leads sometimes to confusion
between modeling concepts and their implementation,
and may be the root of some known bad practices.

This paper introduces jTLM, an experimentation
framework that allow us to study the extent to
which common modeling issues come from a more
fundamental constraint of the TLM approach. We
focus on a discussion of the two modes of simulation
scheduling: cooperative and preemptive. We con-
front the implications of these two modes on the way
of designing TLM models, the software bugs exposed
by the simulators and the performance.

1. Introduction

Today’s industry constantly faces the challenge of
staying competitive in spite of the complexity and
the time-to-market pressure of designing high-tech
consumer electronic devices. Most of the function-
ality of these devices is often grouped into a single
integrated circuit, which is then called a system-on-
chip (SoC).
Register-transfer level. RTL models are the
traditional entry point in the SoC design flow.
They specify precisely the hardware logic needed
for manufacturing the physical chip.

However, the design of SoCs is not limited to the
development of custom hardware: Software (drivers,
etc.) is also an important part of the system and
must be developed conjointly. The simulation of

RTL models is too slow for software development,
because they have too much detail (cycle-accuracy,
micro-architecture, etc.) [1]. On the other hand,
high-level simulators such as that included in the
iPhone SDK [2] are too coarse for low-level software
development.

An alternative consists of using a virtual prototype:
a model of the hardware specifically intended for
simulation and development of software before the
real, physical hardware is available.

Transaction-level modeling. TLM is a widely
used technique for designing virtual prototypes [3].
This approach tries to provide the “right” abstrac-
tion level in the sense of keeping just enough details
so as to maintain the behavior of the hardware as
perceived from a software programmer’s point-of-
view in what concerns the functionality. Thus, they
effectively address the aforementioned complexity
and time-to-market issues.

2. SystemC: the industry standard

SystemC [4] is the current industry standard
language for developing transaction-level models.
Strictly speaking, SystemC is a C++ library that
includes a simulation kernel and data-types specially
designed for describing hardware structures such as
wires and registers.

Time in SystemC. SystemC includes a notion
of simulated time that represents or approximates
the time by which actions happen on the concrete
system. Simulated time is completely disconnected
from the wall-clock time, i.e. the time taken by the
simulation when running on an ordinary computer.

Concurrency in SystemC. For describing con-
currency, SystemC includes a notion of process and
a cooperative, discrete-event simulation scheduler.
During simulation, each process is either running,
ready or waiting. At each step, the scheduler chooses

978-3-9810801-7-9/DATE11/ c©2011 EDAA

mailto:first.last@st.com
mailto:first.last@imag.fr


one process among those that are ready and puts it
to run. This process then either runs to completion
or calls at some point a primitive that yields control
back to the scheduler. In other words, the scheduler
is not able to preempt the running process. If the
process enters an infinite loop at some point, the
rest of the processes will starve. Therefore, the
overall progress of the simulation depends on global
cooperation.

3. Overview and contributions

It is very hard to actually distinguish the model-
ing concepts of the TLM approach from their imple-
mentation in the SystemC language. A contributing
factor to this issue is that SystemC was originally
designed for RTL modeling and has evolved to
support TLM. In the process, many primitives
designed for RTL modeling are now used for TLM
modeling. Our experience shows that this raises
many questions about the adequacy of such and such
primitive to accomplish common modeling needs.

Previous works have identified some bad modeling
practices in TLM and partially linked them to the
usage of SystemC primitives. These include using
non-persistent events when the intent was to model
persistent events, having hard-coded fixed delays
when the intent was to model inaccurate timing [5]
or yielding at the wrong places [6].

To measure the extent to which the modeling
issues listed above come from SystemC or from a
more fundamental constraint of the TLM approach,
we have developed and performed some experiments
in a custom simulator built from scratch for this pur-
pose. This simulator should diverge from SystemC
as much as possible, in an attempt to identify new
primitives that best suit the programmers’ intents.
We call the resulting framework jTLM.

Two main differences between jTLM [7] and
SystemC are the handling concurrency and the
modeling of time. This paper presents jTLM with
an emphasis on the first: while SystemC is coop-
erative, jTLM proposes both a preemptive and a
cooperative execution modes. We show that this
feature allows writing more robust models, avoids
having to manually specify preemption points, and
allows to better exploit the parallelism of the host
machine.
Related works. The closest related work is ac-
tually SpecC, a dedicated language for high-level
modeling of SoCs. From the SpecC LRM [8] (2.4.2.i),
the scheduler is theoretically allowed to be either
preemptive or cooperative, but the reference imple-
mentation is cooperative. To our best knowledge,
they do not further discuss the effects of such kind
of choices from a modeling point of view, which is
the main focus of this paper.

Structure of the paper. Section 4 presents a
brief summary of the contributions of jTLM and
compares them to SystemC. Section 5 discusses the
implications of each of the choices we made in jTLM.

4. Summary of the contributions

• While the cooperative semantics of SystemC
are deeply rooted in the language, jTLM allows both
preemptive and cooperative execution. The user can
either choose one of the two modes, or alternatively
design the model so that it works in both, which
we strongly recommend.
• In cooperative simulators, preemption points

must be manually specified and, because context
switching is expensive, there is a tendency towards
having as few as possible. The preemptive mode of
jTLM provides an alternative, and we discuss its
implications in Section 5.2.
• The preemptive mode of jTLM places no ar-

tificial constraints on the parallelism of the model
being simulated. As a result, we are naturally able
of exploiting multiple physical processors if available
on the machine that hosts the simulation. In compar-
ison, previous attempts at automatic parallelization
of SystemC either introduce additional cooperation
points on communications [9], making them non-
conforming w.r.t. the standard (which we think
is unreasonable), or require heavyweight analysis
techniques [10].
• On the down side, the preemptive mode is

non-reproducible because it relies on the host OS
scheduler that we do not control. This is a significant
drawback with respect to the cooperative mode.
• Transaction-level models omit many micro-

architectural details for performance and lesser
modeling effort. This is transparent most of the
time, but some particularly nasty low-level software
bugs depend on these details. Cooperative models
are not able to detect such bugs without heavy
instrumentation (and the slowdown that goes with
it). The preemptive mode of jTLM can expose some
of them and we give the details in Section 5.3.

5. Discussion

5.1. jTLM from the user point of view

Simulated time in jTLM is, like in SystemC,
completely disconnected from wall-clock time. The
scheduler increments the simulated time in discrete
steps by keeping an agenda of deadlines.

Similarly to SystemC, jTLM includes the follow-
ing primitives: awaitTime pauses the caller for the
amount of simulated time specified as a parameter;
and awaitEvent pauses until another process calls
signalEvent on the same event.



jTLM’s signalEvent has slightly different seman-
tics than SystemC’s nearest equivalent: notify. In
jTLM, when a process wakes up from waiting an
event, it may immediately start execution. In Sys-
temC, the woken process will only be able to execute
after the current process reaches a preemption point
(call to wait or end of execution), creating an
implicit atomicity that some users may not even be
aware of. While the semantics of notify are useful
for encoding synchronous circuits and combinatory
feedback in RTL, it is arguable if this makes any
sense for TLM modeling. This became more of a
concern in the design of the preemptive mode of
jTLM where preemption points are not explicit and
an immediate awakening seems more intuitive.

Concurrency in jTLM. In the preemptive mode
of jTLM, we do not distinguish between preemptive
multitasking and multiprocessing. Processes run
each on a different Java thread, managed by the host
computer scheduler. Therefore, processes can be run
on multiple physical processors if the machine that
hosts the simulation supports it.

However, jTLM allows parallel execution only
when actions are simultaneous in simulated time. To
illustrate this, consider the example in Figure 1(a)
showing the traces of a cooperative simulation with
three processes: B and C execute at simulated time
5 (gray rectangle), but the simulation is cooperative:
C runs first in wall-clock time (black rectangle), then
B takes over. The task A waits until time 10 before
executing.

Figure 1(b) shows the preemptive simulation
of the same processes in a machine with several
processors, allowing B and C to be effectively
executed in parallel. However, this is not the case
for A which happens at a different simulated time.

5.2. Granularity and its implications

We define granularity as the amount of code
between two preemption points. In a cooperative
model, a too fine granularity (i.e. placing preemption
points after each transaction) will seriously slow
down the simulation because of the context switches
and may even break the model.

On the other hand, a too coarse granularity may
cause unexpected behavior, e.g. missing interrupts.

Figure 1. Time and concurrency in jTLM

It may also break the model if processes starve for
shared resources. Furthermore, no safe automatic
method is known to us for determining the optimal
preemption points [11] in a cooperative simulation.
Users are therefore currently obliged to manually
place preemption points in an attempt to keep the
model at an appropriate granularity.

In contrast, a preemptive simulation scheduler
lifts the burden of manually specifying preemption
points. In this case, the user is required to replace
any implicit granularity supposition by an explicit
lock. For instance, RMWs cannot anymore be
modeled as a read followed by a write and must use
some other mechanism that guarantees atomicity
w.r.t. other transfers on the same bus. On the bad
side, hardware engineers may not be used to the
subtleties of writing parallel code, and indeed one
may argue that preemption has no meaning in the
model of a hardware block.

Nevertheless, we expect that the number of sec-
tions of code that must be protected in a preemptive
simulation will be small compared to the number of
preemption points that should be manually added to
obtain a relatively faithful cooperative simulation.

5.3. Observable behavior: exposing bugs

There are several techniques to integrate software
within a virtual prototype: Instruction Set Simu-
lators (ISS) read instructions one-by-one from the
binary code (compiled to the target processor) and
simulate their execution. Variants may use dynamic
translation [12] techniques. Native wrappers may
either wrap the source directly into the virtual
prototype, link with a binary compiled into native
code [3], or use virtual machines [13].

They all have in common the fact that they
redirect reads and writes from the software onto
a bus, omitting many micro-architectural details
(i.e. caches, fifos and pipelines) for performance and
lesser modeling effort. As a result, virtual prototypes
may be unable to expose some particularly nasty
low-level software bugs, such as race conditions,
that depend on these details. A race condition is
when two non-atomic accesses to the same memory
location happen concurrently, and at least one of
them is a write. In this case, the contents of the
memory location may become corrupted with an
unexpected value (this bug could be fixed by using
a lock to protect the memory location).

Pipelines, for instance, can reorder accesses pro-
ducing race conditions which would not be observ-
able by a typical transaction-level model, unless the
model is changed to take the pipeline into account.
Such heavy changes would demand a lot of effort
and slow the simulation considerably.



In the preemptive mode of jTLM, processes are
naturally exposed to some reorderings because they
rely on the Java threads, whose exact semantics is
given in the Java Memory Model [14]. If reads and
writes to the memory are modeled as simple array
manipulations, simultaneous accesses will effectively
expose race conditions. Hence, they can then be
detected by techniques such as stress testing or
model checking.

However, it may be the case that the concrete
system allows different reorderings than those of
jTLM. If it allows more reorderings, the preemptive
mode of jTLM may still miss some bugs; If, however,
the concrete system allows less reorderings than
jTLM, the user will need to add synchronization to
protect against undesired behavior.

Example. Consider a system executing the follow-
ing two loops in parallel (initially, x=y=0):

for(i=0; i<N; ++i) {.
.
. x++;.
.
. y++;

}

for(i=0; i<N; ++i) {.
.
. int l y = y;.
.
. int l x = x;.
.
. if(l x < l y).
.
.

.

.

. error();
}

This system behaves correctly under interleaving
semantics (i.e. adding any number of preemption
points between actions), but is still incorrect, since
writes to x and y outside a synchronized statement
can be re-ordered by the Java compiler or the
underlying hardware of the host machine. Here
again, the bug can be exhibited in the preemptive
mode of jTLM, but not by a cooperative simulation.

6. Conclusion

We have presented jTLM in this paper as a
custom simulator that provides an interesting new
way to manage the description and the simulation
of concurrency by identifying new primitives that
best suit the programmer’s intents.

jTLM innovates, providing both a cooperative
and a preemptive mode. While the cooperative
mode is good for reproducibility and ease of mod-
eling of hardware blocks, it requires the manual
identification of preemption points and places re-
strictions that severely compromise attempts at
parallelization. On the other hand, the preemptive
mode inherently supports parallel simulation but
places an important burden on engineers that write
hardware models. This is mostly because they need
to understand and use synchronization mechanisms.
In addition, while writing cooperative models is
easier, composing them is harder because of implicit
suppositions usually placed on the scheduling.

From the research point of view, a great advantage
of jTLM is its simplicity. The complete scheduler
implementation including the two modes is just
∼500 lines of code, making jTLM an ideal experi-
mentation framework. Also, as it is a very thin layer
on top of the JVM, standard tools like thread-aware
debuggers and the Java PathFinder work with jTLM
just like with plain Java.

We have made a number of important conclusions
during our experiments. and jTLM has provided us
some insight about problems that cannot be easily
exposed or understood in a cooperative scheduler. In
particular, we expect that the modeling of atomic
primitives and the placement of yielding calls in
jTLM will help our future work understanding
how these primitives could better be used, bringing
benefits to SystemC in the long run.

References

[1] M. Moy, “Techniques and tools for the verification
of systems-on-a-chip at the transaction level,” Ph.D.
dissertation, INP Grenoble, December 2005.

[2] iPhone SDK, Apple, April 2010. [Online]. Available:
http://developer.apple.com/iphone/

[3] F. Ghenassia, Transaction-Level Modeling with
SystemC: TLM Concepts and Applications for
Embedded Systems. Springer, 2006.

[4] IEEE 1666-2005 Standard SystemC Language Ref-
erence Manual, IEEE Standards Association, 2006.

[5] C. Helmstetter, F. Maraninchi, and L. Maillet-
Contoz, “Test coverage for loose timing annota-
tions,” in FMICS/PDMC, 2006, pp. 100–115.

[6] J. Cornet, F. Maraninchi, and L. Maillet-Contoz,
“A method for the efficient development of timed
and untimed transaction-level models of systems-
on-chip,” in DATE, March 2008, pp. 9–14.

[7] G. Funchal and M. Moy, “jTLM: an experimenta-
tion framework for the simulation of transaction-
level models of systems-on-chip,” Verimag, Tech.
Rep. TR-2010-17, 2010.

[8] R. Dömer, A. Gerstlauer, and D. Gajski, SpecC
Language Reference Manual 2.0, 2002.

[9] B. Chopard, P. Combes, and J. Zory, “A conserva-
tive approach to SystemC parallelization,” ICCS
2006, pp. 653–660, 2006.

[10] Y. Bouzouzou, “Accélération des simulations
de systèmes-sur-puce au niveau transactionnel,”
Diplôme de Recherche Technologique, Université
Joseph Fourier, 2007.

[11] J. Cornet, “Separation of functional and non-
functional aspects in transactional level models of
systems-on-chip,”Ph.D. dissertation, INP Grenoble,
April 2008.

[12] F. Bellard, “QEMU, a fast and portable dynamic
translator,” in Proc. of the Usenix ATC, 2005, pp.
41–41.

[13] J. Dike, User mode linux. Prentice Hall, 2006.

[14] S. Microsystems, JSR 133: Java Memory Model and
Thread Specification, 2004.

http://developer.apple.com/iphone/

