
Dynamically Reconfigurable Hybrid Cache:
An Energy-Efficient Last-Level Cache Design

Yu-Ting Chen, Jason Cong, Hui Huang, Bin Liu, Chunyue Liu, Miodrag Potkonjak, and Glenn Reinman
Computer Science Department, University of California, Los Angeles

Los Angeles, CA 90095, USA
Email: {ytchen, cong, huihuang, bliu, liucy, miodrag, reinman}@cs.ucla.edu

Abstract—The recent development of non-volatile memory (NVM),
such as spin-torque transfer magnetoresistive RAM (STT-RAM) and
phase-change RAM (PRAM), with the advantage of low leakage and
high density, provides an energy-efficient alternative to traditional SRAM
in cache systems. We propose a novel reconfigurable hybrid cache
architecture (RHC), in which NVM is incorporated in the last-level cache
together with SRAM. RHC can be reconfigured by powering on/off
SRAM/NVM arrays in a way-based manner. In this work, we discuss
both the architecture and circuit design issues for RHC. Furthermore,
we provide hardware-based mechanisms to dynamically reconfigure RHC
on-the-fly based on the cache demand. Experimental results on a wide
range of benchmarks show that the proposed RHC achieves an average
63%, 48% and 25% energy saving over non-reconfigurable SRAM-based
cache, non-reconfigurable hybrid cache, and reconfigurable SRAM-based
cache. RHC only introduces at most 4% performance overhead over non-
reconfigurable SRAM-based cache and non-reconfigurable hybrid cache.

I. INTRODUCTION

Traditional SRAM-based on-chip cache has become a bottleneck
for energy-efficient design due to its high leakage power. Designers
have turned their attention towards emerging non-volatile memories,
such as the spin-torque transfer magnetoresistive RAM (STT-RAM)
and phasechange RAM (PRAM), to build future memory systems.
Power, performance, and density characteristics of the new technolo-
gies differ dramatically compared to SRAM, and thus they enlarge
the landscape of memory design.

Table I shows a brief comparison of SRAM, STT-RAM, and
PRAM technologies. The exact access time and dynamic power
depend on the cache size and the peripheral circuit implementation.
In sum, SRAM suffers from the high leakage and low density while
providing great endurance; STT-RAM and PRAM provides high
density and low leakage at the cost of weak enduarance. Morevoer,
STT-RAM outperforms PRAM in terms of the access time and
dynamic power, while PRAM has higher density.

TABLE I
COMPARISON AMONG SRAM, STT-RAM, PRAM.

SRAM STT-RAM PRAM
Density 1X 4X 16X

Read time Very fast Fast Slow
Write time Very fast Slow Very slow
Read power Low Low Medium
Write power Low High High
Leak. power High Low Low
Endurance 1016 4×1012[1] 109

With desirable characteristics on leakage power and density, NVMs
have been explored as an efficient alternative for either SRAM or
DRAM in memory systems [2][3][4][5][6]. As can be seen in Table I,
compared to PRAM, STT-RAM has higher endurance (109 versus
4×1012 write cycles) [7][1]. Based on the write cycles, we use similar
endurance model proposed in [8] to calculate the lifetime of PRAM
and STT-RAM in a on-chip hybrid cache which consists of 1MB
SRAM and 3MB NVM. Table II demonstrates the lifetime of three

write-intensive workloads selected from medical imaging domain [9]
and PARSEC [10]. For a PRAM-based hybrid cache, the lifetime is
limited, which is from 4.70 to 196.12 days; but the STT-RAM-based
hybrid cache can last for more than tens of years. Thus, STT-RAM
is more suitable for on-chip last-level cache [2][3][4][5] design while
PRAM is promising as an alternative of DRAM in the main memory
design [6]. Therefore, in this paper, we will focus on a hybrid cache
architecture with STT-RAM as the NVM.

TABLE II
ENERGY OF 4MB RHC AND 2MB SRAM-BASED CACHE

Workloads registration segmentation fluidanimate
PRAM (days) 4.70 196.12 39.33

STT-RAM (years) 12.88 537.32 107.76

A common problem in the existing hybrid cache designs [2][3] is
the lack of adaptation to varied workloads. Previous studies show that
different applications may exhibit different characteristics [11]. For
example, if the targeted applicaiton streamly access its working set,
which is 10 MB, then a fixed hybrid cache design consisting of a 2MB
SRAM and 8MB NVM (as discussed in [3]) may become inefficient
in terms of both performance and energy compared to a 2MB SRAM-
only design. In the 2MB SRAM-only design, all data blocks are put
into the SRAM to achieve fast access. However, in the 2MB SRAM
with 8MB NVM design, the data blocks are distributed in both the
SRAM and NVM regions, while most blocks are located in the NVM
region. The cache miss rate is the same for the two architectures
due to streaming access pattern, but the performance degrades due
to the longer access latency of NVM. The energy consumption in
the hybrid design is larger since it consumes more leakage due to
longer runtime and additional leakage from NVM arrays. Also, the
higher dynamic write energy on NVM increases the total energy
consumption. Therefore, if we can provide configurability on the
hybrid cache design, it can be reconfigured to accommodate varied
workloads. In this example, the hybrid cache can be reconfigured into
2MB SRAM to achieve the best performance.

In this paper, we propose a novel reconfigurable hybrid cache de-
sign (RHC). Our design explores the use of NVM to partially replace
SRAM in the last-level cache to efficiently reduce leakage energy.
The proposed RHC design supports reconfigurable SRAM/NVM
size, with the capability of powering on/off SRAM and NVM
arrays in a way-based manner for better accommodation of memory
requirements from different workloads. Hardware-based mechanisms
are proposed to detect the cache demand for dynamic reconfiguration.
On average, RHC signfincantly saves 64%, 46% and 28% energy over
non-reconfigurable SRAM cache, non-reconfigurable hybrid cache
and reconfigurable SRAM cache, respectively. Meanwhile, only little
performance overhead (less than 4%) are introduced when compared
to non-reconfigurable SRAM cache and non-reconfigurable hybrid
cache.

978-3-9810801-8-6/DATE12/ c©2012 EDAA



II. RELATED WORK

Because of the desirable characteristics on leakage power and
density, NVMs have been intensively inversitaged recently as an
efficient alternative for either SRAM in the on-chip caches or DRAM
in the main memory [2][3][4][5][6]. In [2], STT-RAM and PRAM
are positioned into lower-level cache. Two types of hybrid cache
architectures are evaluated – inter-level and intra-level, in which
NVMs are utilized either as the entire L3 cache or the slow-accessed
region in L2 cache. In [3], 3D stacking STT-RAM is used to build a
hybrid cache system with SRAM. However, none of the prior works
have considered dynamic powering on/off SRAM and NVM arrays
to adapt to varied workloads.

Dynamic reconfigurable caches are invesigated for the pure SRAM
cache to either reduce the energy consumption through power gat-
ing [12][13][14][15][16], or provide dynamic flexible support of
software-managed memories to the core through cache line control
bit [17][18]. The key of these approaches is the dynamic assessment
of cache pressure. In [12], researchers use a single miss counter to
measure the demand of an instruction cache to perform reconfigura-
tion. Missing tags or victim tags are used in [13][14][18] to assess
the cache pressure. When a cache miss occurs, the tag of the victim
block will overwrite the LRU tag in the same set in victim tags and be
marked as MRU victim tag. If there is a cache miss and victim tags
hit, this indicates that a potential hit will occur if the requested block
is held in the cache. The authors in [15] use a time-based counter
for each cache block, which will be reset once there is a hit to that
block. Once the counter exceeds a given decaying period, the block
will be turned off to save leakage. However, none of the existing
dynamic reconfiguration schemes have considered hybrid memory
technologies.

To the best of our knowledge, this paper is the first work to explore
dynamic cache reconfiguration for hybrid memory technologies in
order to reduce the cache energy comsumption.

There are also works investigating the endurance reduction for
the NVMs. In [6][19], wear-leveling techniques are proposed for a
PRAM-based memory system to enhance the lifetime. Recent work
in [1] uses periodically set-remapping to distribute the writes among
sets in a STT-RAM cache. Another set of work migrates the write-
intensive cache blocks to other cache lines in the same/different cache
set or in the SRAM to reduce the average write frequency of the STT-
RAM (or PRAM) cache lines [8]. These works are orthogonal and
complementary to our proposed reconfigurable hybrid cache designs.

III. RECONFIGURABLE HYBRID CACHE DESIGN
In this section we discuss the RHC design in the following way.

First, we present the support of architecture and circuit design
for RHC with disparate SRAM and NVM technologies. Next, the
reconfigurability support for RHC is discussed. At last, the hardware-
based dynamic reconfiguration scheme is demonstrated.

A. Hybrid Cache Architecture
Figure 1 shows an overall diagram of RHC. In RHC the data array

is partitioned into SRAM and NVM at a cache-way granularity. One
concern of RHC design is that the access latency of a NVM cell is
longer than that of SRAM [2]. Considering a simple hybrid cache
design in which the tag and data arrays of each cache way are
implemented either with all SRAM cells or NVM cells, the cache
critical path in such a design will always be dominated by the longer
access latency to the NVM cache ways. To overcome this, RHC is
designed in the following way. First, the accesses to the tag array and
data array are conducted in a sequential style, which means the data
array will be accessed after the tag array. Such a serialized tag/data
array access has already been widely adopted in a modern low-level
large-scale cache for energy reduction. Second, the RHC tag array is
fully implemented with SRAM cells. In RHC, each tag entry contains

only four bytes, including the tag, coherence state bits, and the dirty
bits, etc., while each cache block in the data array contains 64 bytes.
Hence, the SRAM-based RHC tag array will not create a large energy
overhead.

The circuit design of RHC with STT-RAM as the NVM is as
follows. First, a STT-RAM cell has a bitline (BL) and a source-line
(SL) for its operation. This is similar to the bitlines (BL, BLB) used
in SRAM. Therefore, the organization of a STT-RAM data array is
almost the same as a SRAM data array. Second, the sense amplifiers
need to be modified due to the single-ended bitlines [4]. According
to a recent implementation [20] of a STT-RAM array, the reference
voltage is 1.2V, which is close to a SRAM-based design. Therefore,
additional pins for power supply may not be required, and the VPCX,
VREAD, and VWRITE can be removed to simplify circuit design.

Fig. 1. Reconfigurable hybrid cache (RHC) design

B. RHC Reconfiguration Design

The reconfiguration in RHC is realized by powering on/off SRAM
and NVM arrays arbitrarily in a way-based manner. From an ar-
chitectural point of view, the reconfiguration mechanism in RHC is
similar to the existing way-based reconfigurable SRAM cache [21].
Data access will not be directed to a disabled cache way, thus those
ways in the data array dissipate no dynamic power. Note that the
replacement decision logic within the cache controller must ensure
that no data will be allocated to a disabled cache way.

In Figure 2 we illustrate the power-gating design adopted in RHC.
A centralized power management unit (PMU) is introduced to send
sleep/wakeup signals to power on/off each SRAM or NVM way.
The power-gating circuits of each way in SRAM tag/data arrays are
implemented with NMOS sleep transistors to minimize the leakage.
In this design the stacking effect of three NMOS transistors from the
bitline to GND substantially reduces leakage [12]. Note that in RHC
the SRAM cells in the same cache way will be connected to a shared
virtual GND while the virtual GNDs among different cache ways are
disconnected. This can ensure that the behaviors of cache ways that
are powered-on will not be influenced by the powering-off process
in other ways.

For the peripheral circuits, such as row decoder, column decoders,
word drivers, and sense amplifiers, we use PMOS sleep transistors
to implement the power-gating design; this can provide better perfor-
mance of the peripheral circuits in the active mode [16]. Since the
NVM cell itself consumes little leakage, we do not introduce extra
power-gating circuits for the cells of NVM data arrays. To power
on/off a NVM cache way, PMU will send a sleep/wakeup control
signal to the peripheral circuits of the corresponding NVM way. The
design complexity of PMU is highly related to the adopted wakeup
scheme. In this work we assume a daisy-chain wakeup scheme for
each cache way [22]. For PMU, we use Synopsys SAED 90nm
technology, which is the most advanced process technology available,



to obtain the energy and delay number. A RTL-level description of
PMU is synthesized by Synopsys Design CompilerT M . The dynamic
energy is 0.0135pJ for one reconfiguration, while the leakage power
is 1.0378uA. The delay of PMU is 0.28ns. The overhead of PMU is
relatively small and thus can be neglected.

The overhead of the reconfiguration will be classified in the
following two categories. First, when a cache way is disabled, the
dirty blocks in that cache way need to be written back to lower-level
memory. This will introduce both performance and energy overhead.
Second, from a circuit-level perspective, the power-up process also
involves extra energy consumption. The reason for this is that the
accumulated charge during the standby mode in SRAM cells should
be discharged.

Fig. 2. Power-gating design for RHC

C. Dynamic Reconfiguration

In this section, we propose two hardware schemes to utilize the
reconfigurability provided by RHC. The main idea is to detect the
cache demand dynamically and thus RHC can be reconfigured in
a way-based manner to satisfy the demand. In the meantime, the
powered-off cache ways provide energy saving in leakage.

1) Way-Based Decay Scheme: The reconfiguration scheme in-
cludes two dynamic decisions: (1) when to power off a cache way
and (2) when to power on a cache way. To power off a cache way, we
utilize the cache decay idea [15], and introduce the novel way-based
decay counters, as shown in Figure 3. The main idea of cache decay
is to power off a cache block which is not accessed for a long time
period to save leakage. This time period is called the decay interval.
Cache decay is implemented by a local 2-bit saturating counter for
each block with a global counter. The local counter is incremented
when the global counter exceeds a certain number of clock cycles,
which is used to model the decay interval. The local counter is
reset to zero when there is an access on this block. Cache decay
is initially used to provide a self-guided block-based power-on/off
mechanism [15]. However, it is not feasible for PMU to arbitrate
reconfiguration in the block-based granularity due to the intolerable
circuit design complexity. Therefore, we use the way-based decay
counter to measure the number of decay blocks in that cache way
during a time period. The way-based decay counter increments by one
when any local 2-bit counter in that cache way saturates. Similarly,
when a local 2-bit counter is reset to zero, the corresponding way-
based decay counter decreases by one. If the value of a way-based
decay counter exceeds a given threshold in a given time period, such
as 90% (used in this work) of the blocks in that way, the whole cache
way will be powered off due to the low cache demand.

To detect the demand for powering on more cache ways, we keep
the whole tag array powered-on to record potential hits if those blocks
are in RHC. The potential hit counter increments by one when a hit
occurs on a tag entry whose corresponding data block is powered-
off. This is similar to the VTB counters used in [14][18]. The update
of the potential hit counter reuses the same tag array, which does
not create extra storage overhead. The replacement policy for the

tags of the powered-off blocks follows LRU policy. When the value
of potential hit counter is greater than a threshold, a cache way is
powered on to reduce cache misses. We denote this powering-on
threshold as T Hon. Note that the power-on/off decision is made for
every one-million cycles in this work. This time period is called
recon f iguration period. Both the way-based decay counters and the
potential hit counter are reset to zero after the decision is made.

Fig. 3. Counters for dynamic reconfiguration
2) Independent Potential Hit Counters Scheme: In this section,

we provide an improved strategy to for dynamic reconfiguration. In
the way-based decay scheme, a large number of cache ways can
be powered off simultaneously since each cache way is controlled
independently. However, we observed that this aggressive powering-
off scheme results in significant performance degradation due to the
increase of L2 cache misses especially when the decay interval is
small, such as one million cycles. Another potential problem is that a
single decay interval cannot accurately capture varied decay intervals
of all cache blocks, which also makes the way-based decay counter
ineffective. When the decay interval is too large, such as 100 millions
cycles, most of the blocks are accessed once during that interval.
The powering-off decisions are seldomly made and thus the energy
reduction is limited.

The improved scheme takes both of the hybrid nature of RHC
and the aggressive powering-off issue into consideration. Considering
the hybrid nature of RHC, it is beneficial to measure the cache
demand for the SRAM and STT-RAM array independently to better
accommodate the cache demand. Therefore, we use two potential hit
counters to measure the cache demand of the SRAM and STT-RAM
arrays independently.

The powering-off strategy is different from that of the way-
based decay scheme. Here, we use the same potential hit counter
to make the powering-off decision. We introduce another powering-
off threshold (T Ho f f ). When the value of the potential hit counter
is less than or equal to T Ho f f , a cache way can be powered off.
Based on the strategy, only one cache way can be powered off at a
time period, and this greatly reduces the chance of cache threshing.
However, according to our observation, this strategy still generates
considerable cache misses. To mitigate the aggressive powering-off
strategy, we further restrict the powering-off condition. When the
value of the potential hit counter reaches T Ho f f , we cannot power
of a cache way immediately. A cache way can only be powered off
until ten consecutive reconfiguration periods (ten-million cycles) are
waited. Note that T Hon is set to 50 and T Ho f f is set to 0 for both
SRAM and STT-RAM arrays for evaluation.

Furthermore, we consider the endurance of RHC when making
decisions of reconfiguration. We achieve this by randomly selecting
the cache way from all possible candidates. For example, when the
decision is to power off a cache way, we will randomly pick the
victim from all powered-on cache ways.

IV. EVALUATION METHODOLOGY

A. Performance and Energy Models
We evaluate the proposed RHC design on a simulation platform

built upon Simics [23] with GEMS [24]. Table III shows the pa-
rameters used in our model. The value K represents the number of



cache ways that are powered on in a specific L2 cache configuration,
which also equals the amount of “active” cache associativity. Notice
that the configuration of the processor core, L1 caches, and main
memory remains the same through all simulations.

TABLE III
SIMULATION PARAMETERS

single-thread workload multi-thread workload
#Core 1 4
Core Sun UltraSPARC-III Cu processor core, 4GHz

L1 Cache 32KB per core for I/D caches
4-way, 64-byte block, 1-cycle latency

L2 Cache RHC: 1MB SRAM + 3MB STT-RAM
SRAM-based: 2MB
K-way (K≤16), 64-byte block

L2 Cache SRAM: 10 cycles
Access Lat. STT-RAM read: 11 cycles

STT-RAM write: 30 cycles
Main Memory 4GB, 320-cycle access latency

For the energy of the memory technologies, we use the ITRS 32nm
process model. The SRAM and STT-RAM energy/latency numbers
used in our simulations are obtained from CACTI 6.5 [25] and
the data scaled from [4], respectively. The energy numbers of a
4MB RHC and 2MB SRAM-based cache are listed in Table IV,
where Active and Standby correspond to the power-on and power-
off state. The standby leakage is estimated according to the ratio
of active/standby leakage presented in [12]. This can be achieved
through a careful power-gating design.

TABLE IV
ENERGY OF 4MB RHC AND 2MB SRAM-BASED CACHE

L2 Cache Tech. Dyn. energy Active Standby
Design per acc. (nJ) leak.(mW) leak.(mW)

4MB RHC SRAM 0.137 431.30 14.38
STT- Read: 0.278 116.92 3.897
RAM Write: 0.765

2MB SRAM 0.288 711.29 23.71

B. Benchmarks

Our testbenchs consist of 16 benchmark applications, which have
been carefully chosen to represent memory intensive algorithms
in the fields of data processing, massive communication, scientific
computation and medical applications. The applications include seven
memory-intensive applications from SPEC2006 [26], four applica-
tions from PARSEC [10], and five applications from the medical
imaging domain [9].

TABLE V
WORKLOADS

Benchmark Applications
SPEC2006 bzip2, mcf, soplex, libquantum,

h264ref, lbm, astar
PARSEC(simmedium) blackscholes, swaptions, fluidanimate,

bodytrack
Med. Imaging rician-denoise, gaussian-deblure, registration,

segmentation, compressive sensing

C. Reference Designs

To evaluate the effectiveness of RHC, we compare RHC with a
traditional SRAM-based cache under the same area basis. RHC is set
to 4MB, which is composed of 1MB SRAM and 3MB STT-RAM,
while the SRAM-based cache is set to 2MB. This setting reflects the
fact that STT-RAM is about four times denser than that of SRAM.

The area of the data arrays in 4MB RHC is about 0.875X that of the
2MB SRAM-based cache.

The associativity of both the 4MB RHC and 2MB SRAM-based
cache are both 16-way. This setting provides the same reconfig-
urability on RHC and SRAM-based cache. RHC has four SRAM
ways and 12 STT-RAM ways, while the SRAM-based cache has
16 SRAM ways. Both can be reconfigured from one cache way to
16 cache ways. To evaluate the effectiveness of RHC, we compare
the performance and energy of RHC with three reference points:
(1) SC: non-reconfigurable 2MB SRAM-based cache; (2) HC: non-
reconfigurable 4MB hybrid cache (4-way SRAM + 12-way STT-
RAM); and (3) RSC: reconfigurable 2MB SRAM-based cache. Note
that the evaluation in Section V-A and Section V-C utilizes the scheme
introduced in Section III-C2 for both RHC and RSC while RSC uses
a single potential hit counter.

V. RESULTS

A. Effectiveness of RHC
Figure 4 shows the comparison results of L2 cache miss rate.

Compared to the baseline SC, HC consistently has lower miss rate
(39% on average) because of the 2X larger cache capacity provided
by the STT-RAM. But this consistent miss rate improvment is realized
at the cost of more energy consumption, which will be discussed later.
On the other hand, since RSC dynamically powers off the cache ways
- although this is done based on the cache pressure - the reduced cache
capacity consistently impairs the cache performance (77% more cache
misses), especially when the dynamic reconfiguration scheme can
not accurately capture the cache behaviour, This can be observed in
bzip2 and libquantum. Compared to the baseline SC, the miss rate of
RHC has two situations: 1) for the cases where the applications have
relatively large working set (such as bzip2, deblure and compressive
sensing), RHC can achieve considerable miss rate reduction of 52%
on average; 2) for the cases where the applications have relatively
small working set which can be hold for a 2MB L2 cache, RHC will
gradully power off half of the cache capacity. But during this process,
some of the cache blocks with long reuse distance will be evicted
which results in slightly higher miss rate. In sum, RHC incurs 33%
more cache misses compared to SC.

Figure 5 shows the comparison results of system performance in
terms of runtime of the application on the system. These results are
normalized to that of the baseline SC scheme. The runtime difference
of the four design schemes mainly comes from the difference of the
L2 cache miss rate. Compared to the baseline SC. HC consistently
has better performance (0% to 36% less runtime) because of its
consistently smaller miss rate, while RSC consistenly has worse
performance (0% to 9% more runtime) due to its consistently larger
miss rate. For the cases where RHC can achieves considerable L2
miss rate reduction, it also improves the performance (1% to 34%
less runtime) over SC. For the other cases, RHC incurs a slighly
performance overhead (0% to 4% worse runtime).

As it comes to energy, the power of the dynamic reconfiguration
begins to show gain. Figure 5 shows the comparison results of
memory subsystem energy, The energy data is broken down into
the L1 cache dynamic/leakage energy, the L2 cache SRAM/STT-
RAM dynamic/leakage energy for detail illustration of the energy
distribution. These results are normalized to that of the baseline
SC scheme. As can be seen that, the SRAM leakage dominates the
memory subsystem energy in the 32nm technology. Compared to the
baseline SC, HC reduces energy by 24% to 53% (30% on average),
because the STT-RAM array consume less leakage. In addition, HC
consistently reduces the runtime, which reduces the SRAM leakage.
By dynamically powering off the cache ways based on cache pressure,
RSC can also reduce the energy by 7% to 88% (51% on average). In
cases of bzip2, deblure and compressive sensing where the powering-
on time of the remaining cache ways incurs a energy overhead which



Fig. 4. Comparison results of L2 cache miss rate

Fig. 5. Comparison results of runtime

Fig. 6. Comparison results of memory subsystem energy

Fig. 7. Comparison results of ED product

almost catches up with the reduction of the leakage in the powering-
off cache ways, the energy reduction RSC has an energy overhead
is much smaller than the other cases. By dynamically powering
off the cache ways and maintaining the system performance, RHC
achieves the least energy among all the design schemes since RHC
inherits both advantages of the low leakage NVM array and dynamic
reconfiguration to save leakage. It reduces energy by 63%, 48%, 25%
compared to baseline SC, RSC and HC, respectively.

To better illustrate the gain over other design schemes in terms of
both energy and runtime, we use the metrics of energy-delay product
(ED) to make the comparison, where the delay means the runtime.
Figure 7 shows the comparison results of this metric over the four
design schemes. All results are normailzed to that of the baseline
SC. As can be seen that, the prospoed RHC achieves the best among
all the design schemes. On average, RHC improves the ED by 64%,
46%, and 28% compared to SC, HC and RSC, repspectively.

B. Comparison of Two Dynamic Schemes

For the way-based decay scheme, we evaluate on three different
decay intervals (1M, 10M, and 50M cycles). When the decay in-
terval is larger, more cache ways are powered-on to maintain the
performance. The largest interval we used is 50M cycles since the
simulation results remains the same even when we enlarge the decay

interval. IPHC stands for the scheme using independent potential
hit counters. Figure V-B shows the comparison results of runtime
and energy. The results are normalized to the baseline HC. The
most critical disadvantage of the way-based decay scheme comes
from the significant performance degradation, as shown in Figure
8(a). When the decay interval is set to 1M cycles, the performance
degradation are from 2% to 131% compared to HC. Even when
the decay interval is set to 50M cycles, swaptions still suffers from
27% performance degradation. In constrast, IPHC can provide stable
performance within 4% degradation compared to HC among all
workloads.

Figure 8(b) shows the comparison of energy. IPHC can achieve
better or at least similar energy reduction compared to the cases of
10M and 50M decay intervals. Therefore, IPHC can further provide
energy saving when maintaining similar performance compared to the
50M decay interval case. When the decay interval is set to 1M cycles,
the way-based decay scheme achieves much better energy saving
on bzip2, segmentation, and comp.sensing. However, bzip2 and
comp.sensing suffer from 122% and 24.2% performance overhead
compared to IPHC. In summary, IPHC provides consistent perfor-
mance compared to baseline HC while providing considerable energy
saving. Way-based decay scheme suffers from potential performance
degradation problem and the choice of a suitable decay interval varies



from workloads.

(a) Runtime

(b) Energy consumption

Fig. 8. Comparison of runtime, energy, on two dynamic schemes

C. Endurance Analysis
Table VI shows the endurance comparison between HC and RHC.

The lifetime calculation is based on the method from [8] and the write
cycles is 4×1012 [1]. RHC can achieve from 1.08X to 3.53X lifetime
enhancement from most of the workloads through random selection
of powered-on/off ways except bzip2, soplex, segmentation, and
swaptions. For bzip2 and segmentation, the lifetimes of our scheme
are still in a reasonable range. Therefore, our reconfigurable scheme
can achieve reasonable lifetime compared to HC even when available
cache ways are limited due to reconfiguration. However, we observe
the non-uniform distribution of write accesses as mentioned in the
previous work [8][1]. Therefore, a suitable wear-leveling technique
is still required to achieve better endurance.

TABLE VI
ENDURANCE COMPARISON 4MB NON-RECONFIGURABLE HYBRID CACHE

(HC) AND 4MB RHC (UNIT: YEAR)

Workloads HC RHC Workloads HC RHC
bzip2 299.92 200.24 g.-deblure 76.68 116.36
mcf 8.40 29.68 registration 12.88 30.68

soplex 4.64 4.6 segmentation 537.32 256.4
libquantum 2.82 4.2 comp. sensing 3.28 3.56

h264ref 22.76 41.88 blackscholes 3.144 5.44
lbm 228.96 253 swaptions 7.36 3.4
astar 16.00 30.08 fluidanimate 107.76 118.56

r.-denoise 53.44 118.8 bodytrack 9.76 10.28

VI. CONCLUSIONS

We propose an energy-efficient last-level cache design – reconfig-
urable hybrid cache (RHC). In RHC different memory technologies
(SRAM and NVM) are unified at the same cache level to form a
hybrid design, and power gating circuitry is introduced to allow
adaptive powering on/off of SRAM/NVM sub-arrays at way level.
With the proposed dynamic reconfiguration mechanism, RHC can
provide 64%, 46% and 28% energy-delay product gains over non-
reconfigurable SRAM-based cache, non-reconfigurable hybrid cache
and reconfigurable SRAM-based cache, respectively. In the mean-
time, RHC can maintain the lifetime compared to the baseline, non-
reconfigurable cache.

VII. ACKNOWLEDGEMENTS

This work is partially supported by the SRC Contract 2009-
TJ-1984, and the Center for Domain Specific Computing (NSF
Expedition in Computing Award CCF-0926127).

REFERENCES

[1] Y. Chen, W.-F. Wong, H. Li, and C.-K. Koh, “Processor caches built
using multi-level spin-transfer torque ram cells,” in Proc. ISLPED 2011,
2011, pp. 73–78.

[2] X. Wu, J. Li, L. Zhang, E. Speight, R. Rajamony, and Y. Xie, “Hybrid
Cache Architecture with Disparate Memory Technologies,” in Proc.
ISCA, 2009, pp. 34–45.

[3] G. Sun, X. Dong, Y. Xie, J. Li, and Y. Chen, “A Novel Architecture of
the 3D Stacked MRAM L2 Cache for CMPs,” in Proc. HPCA, 2008,
pp. 239–249.

[4] X. Dong, X. Wu, G. Sun, Y. Xie, H. Li, and Y. Chen, “Circuit and
Microarchitecture Evaluation of 3D Stacking Magnetic RAM (MRAM)
as a Universal Memory Replacement,” in Proc. DAC, 2008, pp. 554–559.

[5] M. Rasquinha, D. Choudhary, S. Chatterjee, S. Mukhopadhyay, and
S. Yalamanchili, “An Energy Efficient Cache Design Using Spin Torque
Transfer (STT) RAM,” in Proc. ISLPED, 2010, pp. 389–394.

[6] B. Lee, E. Ipek, O. Mutlu, and D. Burger, “Architecting Phase Change
Memory as a Scalable DRAM Alternative,” in Proc. ISCA, 2009, pp.
2–13.

[7] International Technology Roadmap for Semiconductors (ITRS) Website,
http://www.itrs.net/Links/2009ITRS/Home2009.htm.

[8] A. Jadidi, M. Arjomand, and H. Sarbazi-Azad, “High-endurance and
performance-efficient design of hybrid cache architectures through adap-
tive line replacement,” in Proc. ISLPED, 2011, pp. 79–84.

[9] A. Bui, K.Cheng, J. Cong, L. Vese, Y. Wang, B. Yuan, and Y. Zou,
“Platform Characterization for Domain-Specific Computing,” in Proc.
ASPDAC, 2012.

[10] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC Benchmark
Suite: Characterization and Architectural Implications,” in Proc. PACT,
2008, pp. 72–81.

[11] P. Ranganathan, S. Adve, and N. P. Jouppi, “Reconfigurable Caches and
their Application to Media Processing,” in Proc. ISCA, 2000, pp. 214–
224.

[12] M. Powell, S. Yang, B. Falsafi, K. Roy, and T. N. Vijaykumar, “Gated-
Vdd: A Circuit Technique to Reduce Leakage in Deep-Submicron Cache
Memories,” in Proc. ISLPED, 2000, pp. 90–95.

[13] M. Zhang and K. Asanovic, “Fine-grain CAM-tag cache resizing using
miss tags,” in Proc. ISLPED, 2002, pp. 130–135.

[14] H. Zhou, M. C. Toburen, E. Rotenberg, and T. M. Conte, “Adaptive mode
control: A static-power-efficient cache design,” ACM Trans. Embed.
Comput. Syst., pp. 347–372.

[15] S. Kaxiras, Z. Hu, and M. Martonosi, “Cache Decay: Exploiting Gen-
erational Behavior to Reduce Cache Leakage Power,” in Proc. ISCA,
2001, pp. 240–251.

[16] J. Chang, M. Huang, J. Shoemaker, J. Benoit, S.-L. Chen, W. Chen,
S. Chiu, R. Ganesan, G. Leong, V. Lukka, S. Rusu, and D. Srivastava,
“The 65-nm 16-MB Shared On-Die L3 Cache for the Dual-Core Intel
Xeon Processor 7100 Series,” in JSSC, 2007, pp. 846–852.

[17] D. Chiou, P. Jain, L. Rudolph, and S. Devadas, “Application-
specific Memory Management for Embedded Systems Using Software-
Controlled Caches,” in Proc. DAC, 2000, pp. 416–419.

[18] J. Cong, K. Gururaj, H. Hunag, C. Liu, G. Reinman, and Y. Zou, “An
Energy-Efficient Adaptive Hybrid Cache,” in Proc. ISLPED, 2011, pp.
67–72.

[19] M. Qureshi, M. Franceschini, L. A. Lastras-Montaño, and J. Karidis,
“Morphable Memory System: A Robust Architecture for Exploiting
Multi-Level Phase Change Memories,” in Proc. ISCA, 2010, pp. 153–
162.

[20] K. Tsuchida and et al., “A 64Mb MRAM with Clamped-Reference and
Adequate-Reference Schemes,” in Proc. ISSCC, 2010, pp. 258–259.

[21] D. H. Albonesi, “Selective Cache Ways: On-Demand Cache Resource
Allocation,” in Proc. MICRO, 1999, pp. 248–259.

[22] K. Shi and D. Howard, “Challenges in Sleep Transistor Design and
Implementation in Low-Power Designs,” in Proc. DAC, 2006, pp. 113–
116.

[23] P. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg,
J. Hogberg, F. Larsson, A. Moestedt, and B. Werner, “Simics: A Full
System Simulation Platform,” in IEEE Computer, 2002, pp. 50–58.

[24] M. Martin, D. Sorin, B. Beckmann, M. Marty, M. Xu, A. Alameldeen,
K. Moore, M. Hill, and D. Wood, “Multifacet’s General Execution-
Driven Multiprocessor Simulator(GEMS) Toolset,” in Computer Archi-
tecture News, 2005, pp. 92–99.

[25] CACTI 6.5, http://www.hpl.hp.com/research/cacti/.
[26] SPEC Benchmark, http://www.spec.org/cpu2006, 2006.


