
Extending the Lifetime of NAND Flash Memory by
Salvaging Bad Blocks

Chundong Wang and Weng-Fai Wong
School of Computing, National University of Singapore, Singapore

Email: {wangc, wongwf}@comp.nus.edu.sg

Abstract—Flash memory is widely utilized for secondary stor-
age today. However, its further use is hindered by the lifetime
issue, which is mainly impacted by wear leveling and bad block
management (BBM). Besides initial bad blocks resulting from
the manufacturing process, good blocks may eventually wear
out due to the limited write endurance of flash cells, even with
the best wear leveling strategy. Current BBM tracks both types
of bad blocks, and keeps them away from regular use. However,
when the amount of bad blocks exceeds a threshold, the entire
chip is rendered non-functional. In this paper, we reconsider
existing BBM, and propose a novel one that reuses worn-out
blocks, utilizing them in wear leveling. Experimental results show
that compared to a state-of-the-art wear leveling algorithm, our
design can reduce worn-out blocks by 46.5% on average with at
most 1.2% performance penalties.

I. INTRODUCTION

Flash memory is a ubiquitous non-volatile memory technol-

ogy nowadays. It is widely used for secondary storage in both

embedded devices and solid state drives (SSDs).

Flash memory has two types, namely NOR and NAND

flash, and currently the latter is the predominant form. NAND

flash can either be of single-level cell (SLC) or multi-level

cell (MLC) technology. MLC NAND flash can store more

than 1 bit in a cell. There are, however, a number of technical

challenges in deploying NAND flash. The first one is how to

manage flash blocks and pages. A block is the unit for erase

operation and a page is the unit for write and read operations.

A block has a fixed number of pages and a page cannot be

programmed unless the block it is in is erased first. Thus, data

in a page have to be updated out of place. Pages in a block

of SLC flash can often be randomly programmed while MLC

flash supports sequential programming only [7].

Another challenge is NAND flash’s limited write endurance.

As mentioned, a page cannot be programmed unless its block

is first erased. A program operation followed by an erase

operation constitutes a program/erase cycle. Typically NAND

flash can withstand 100,000 cycles for SLC type [12] or 10,000

for MLC type [7]. To maximize the lifespan, a technique

called wear leveling is usually employed to distribute erasures

as evenly as possible. It usually classifies data according

to their update frequency as hot or cold, which will affect

block allocation and data movements. However, unevenness is

inevitable even with the best wear leveling design, and some

blocks will still wear out eventually. Traditionally worn-out

blocks are discarded together with blocks that were defective

at the time of manufacture [8]. All bad blocks are marked

and tracked by the bad block management (BBM) module

of the flash translation layer (FTL), and made unavailable

from regular use. When the number of bad blocks reaches a

threshold defined by manufacturers, usually 2% [8], the entire

chip will be rendered defective.

In this paper, we reconsider the way to manage bad blocks

with wear leveling. The main contributions of this paper are:

• Many pages in a bad block may be functional. We

propose that worn-out blocks could be reused. This paper

presents the Bad Block Salvaging (BBS) scheme that

recycles and reuses worn-out blocks efficiently.

• A wear leveling algorithm that utilizes salvaged worn-
out blocks is proposed. In brief, our BBS creates a set of

salvaged blocks wear leveling will use to store cold data.

II. WEAR LEVELING OF FLASH

Flash resources are managed by an embedded software

called the flash translation layer. The FTL performs wear

leveling to evenly distribute program/erase cycles over all

blocks. A flash page can only be programmed (bits selectively

set to 0’s) and erased (all bits set to 1’s) for a limited number of

times. When a page is programmed, some bits will be flipped

from 1’s to 0’s. During an erasure, these same bits will be

flipped back to 1. If there is no wear leveling, one (or more)

cell that has endured too many bit flips will permanently fail.

This will cause the page and the block to fail. When too many

blocks fail, the entire chip will fail.

At runtime, cold data are preferably stored in heavily erased

blocks, i.e., old blocks, while hot data should be put in lightly

erased blocks, i.e., young blocks. Wear leveling schemes

usually have a block management module and a data swap

strategy. Blocks are organized into separate pools. Free blocks

can be allocated from the free block pool using FIFO or the

youngest block first [1]. Access frequencies of blocks with

valid data are tracked. A block with hot data will be swapped

with a block with cold data to “cool down” the former.

Chang et al. [1] surveyed existing wear leveling schemes,

and proposed a dual-pool algorithm, which partitions blocks

with valid data into a hot pool and a cold pool that are pri-

oritized by their erase counts. Blocks may exchange data and

move to opposite pools on occasions. Lazy wear leveling [3]

was a recently proposed scheme. In its design, when a block D
with dirty data, is to be erased, its erase count will be checked.

If it is higher than the average by a threshold, after erasing

978-3-9810801-8-6/DATE12/ c©2012 EDAA



D, the FTL will find a data block with cold data, say C, and

transfer C’s data to D. C will be free then.

Although wear leveling is used, pages in some blocks may

still wear out. The BBM module of the FTL will handle such

blocks. If the proportion of bad blocks exceeds a predefined

limit, the flash chip will be rendered defective.

III. BAD BLOCK MANAGEMENT

A bad block is one that has permanently faulty cells. Initial
bad blocks are defective even at manufacture time. They are

marked and recorded in a Bad Block Table (BBT) [8]. Over

time, blocks that become defective due to excessive use, i.e.,

the worn-out bad blocks, will also be recorded in the BBT.

A. Traditional Management of Bad Blocks

Bad blocks first need to be identified. The checking and

marking operations are performed by the BBM module in the

FTL. A NAND flash page has two parts, namely the data area
and the spare area. The former is used for data, and the latter

can store useful information. Once a bad block is identified,

a special marker will be placed in the spare area.

A startup scan upon bad block markers can be conducted at

boot-up, and the BBT will be reconstructed. Besides marking,

BBM also needs to perform necessary data movements. When

a block is found to be worn out, all its valid data have to be

moved to a free block. In addition, data intended to be written

to this bad block must also be redirected.

Once created, the BBT may be saved to the flash it-

self [8] [2] so that on rebooting, it can be directly loaded

into FTL. This will be faster than scanning spare areas across

the chip. Note that worn-out blocks are treated in the same

way as initial bad blocks, and will not be used any further.

B. Reusing Bad Blocks

When the proportion of bad blocks reaches a limit, typically

2% [8], the entire chip is rendered non-functional. This is a

large number given today’s flash chip capacity. Since a block

may contain multiple pages [12], discarding an entire block

due to the permanent failure1 of a bit in a page is wasteful.

Let us revisit the issue of worn-out blocks due to excessive

program/erase flips. The unit of write (a page) is different from

that of erasure (a block). It is very likely that some pages

may be reprogrammed much more than others in a block.

Moreover, the failure of a page does not affect data in other

pages in the same block [8]. This means that good pages are

still functional even if a page in the block has permanently

failed. If we could reuse such good pages, the utilization of

blocks would be improved.

The challenge is how to reuse good pages effectively.

Since initial bad blocks are marked at the block level by

manufacturers, what pages are bad in a block cannot be exactly

known. Hence, this paper will focus on worn-out blocks.

Should their information be made available, however, initial

1Transient failures can be corrected by error correcting codes (ECC) stored
in the spare area.

bad blocks may also be used in our scheme. This is decided

by the nature and extent of failures.

As far as we know, this paper is the first attempt to reuse

bad blocks. Chang et al. [5] also claimed to “recycle” blocks.

However, what they did is propose an algorithm to avoid

erroneously identifying a good block to be bad. Bauer et al. [4]

gave a method to isolate bad blocks at the circuit level. It

aimed to localize the effect of a defective cell, and ensure

other blocks would not be affected. In their schemes, bad

blocks were not reused. Next we will present a new scheme

called Bad Block Salvaging that manages and reuses blocks

that actually contain defective cells.

IV. SALVAGING BAD BLOCKS

The idea of salvaging bad cells in SRAM cache has been

investigated in [9]. Essentially, if defects are localized, it is

possible to reuse good cells in a block to “patch” defective

ones in others. Note that flash differs significantly from

SRAM. Other than the general idea, our BBS scheme shares

nothing in common with the SRAM cache salvage scheme.

In terms of salvaging, bad blocks can be classified into three

categories according to their degrees of wear. Blocks that are

the least worn-out form the backing blocks. They have the most

good pages to support other worn-out blocks. The second class

is the discarded blocks, whose proportion of bad pages exceeds

a certain discard threshold, δ. Discarded blocks are not worth

salvaging. The third class is the salvaged blocks. These have

a sufficient number of good pages to make it worthwhile for

repair. In essence, good pages from the backing blocks will

be used to stand in for bad pages in the salvaged blocks.

In BBS, all bad blocks are recorded in the Bad Block List
(BBL). We also need another mapping table, the Salvaging
Mapping Table (SMT), to track the mapping between backing

and salvaged blocks. With BBS, if a write or read request

refers to a faulty page, the FTL must redirect the request to

its backing page using the SMT. The maximum size of SMT

occurs when both the backing and salvaged blocks are just

below δ, giving rise to a one-to-one mapping. If there are

N blocks with M pages in a block, the maximum number of

entries in SMT will be α/2·N ·M/2, where α is the percentage

of bad blocks. A 4 Gb chip with 4096 blocks, each with 64

pages, each page being 2KB [12] will have a maximum of

2621 entries in the SMT if α = 4%. If an entry has 7 bytes

(4 for two blocks, 2 for two pages and 1 for status), the SMT

will merely take up about 18KB, i.e., 9 pages, at most. We

can store the SMT in flash and cache parts of it on demand

in RAM like DFTL scheme [6].

BBS is activated when worn-out blocks appear. By scanning

the BBL, the least worn-out block will be selected as the initial

backing block. Pages from the backing block will be used to

repair other worn-out blocks. If good pages in the backing

block are sufficient for salvaging, these pages will be used.

The SMT will be updated accordingly. When good pages in

the backing block are used up or not enough, the BBL will

be scanned again for another backing block. Fig. 1 shows the

scheme at work. B1 is picked to be a backing block. The SMT



Free

Free
Free

Free
Free

Free

Free
Redirect

Free
Free

Free

Free Redirect

Free

Free

Free
Free

Free

B1 B2 B3 B4 B3 B4Fn

B1
Free

Free
Free

B2
Free

Free
Free

B4
…

Free

Free
Free

Bad Block List

Backing block

B1

B1

B1

Status

Salvage Mapping Table

0 B2 1 Valid

Free Block Pool

B3

B4 0

Free
Free

1

Backing page Salvaged page

2

3

Move when 
salvaged

Free

Free
Free

Free

Free
Free

“repair”

“repair”

Backing block

Salvaged blocks

Free
Free
Free

Free

F0
Free
Free
Free

Free

F1

…

Salvaged block

Fig. 1. The proposed BBS scheme at work

reflects the mappings between B1 and B2, B3 and B4. Note

that the salvaged page of B2 is in use.

Salvaged blocks can be reclaimed like good blocks. If all

salvaged blocks associated to a backing block are reclaimed, it

will be reclaimed. All of them will be returned to the BBL for

future salvaging if they have not reached δ to be discarded.

V. WEAR LEVELING WITH BBS

Salvaged blocks if used like normal ones risk being dam-

aged soon. Note that blocks with cold data are less likely

to be erased. Wear leveling usually swaps these cold data

out, and utilizes the occupied young block to store hot data.

Salvaged blocks are well suited for these swapped-out cold

data. They ensure that salvaged blocks will not undergo too

many erasures. On the other hand, good blocks still have better

endurance than salvaged ones, and they are more suitable for

holding hot data. We shall now describe how we propose to

do wear leveling in the presence of salvaged blocks.

A. A Wear Leveling Algorithm with BBS

The key ideas of our wear leveling algorithm that is cog-

nizant of salvaged blocks are as follows:

• Upon the allocation request for free block, the one that

has the smallest erase count will be selected, namely the

“youngest block first” policy [1].

• Data that have been in the valid block pool for a long

time without updates will be considered to be cold, and

they will be moved to a free salvaged block.

• If cold data are found but no salvaged block is available,

a free normal block will be allocated instead. The free

block should be an elder one in the free block pool.

For the first item, temporal locality indicates newly written

data are likely to be updated soon, so the youngest block will

be allocated for them. To conduct the latter two items, we can

order block with valid data and free blocks according to last

data-updating time and erase counts, respectively. The latter

two move cold data to salvaged blocks, or good blocks that

have been heavily erased. The second idea suggests moving

cold data to a salvaged block first. This policy avoid filling

good blocks with cold data where possible.

The procedure of wear leveling is shown in Algorithm 1. We

use a relative measure for the age of blocks by comparison

to their average erase count. This ensures that the evenness

of wear is assessed over all blocks at any point in time.

Particularly, the FTL checks a small portion (ω at line 4) of

valid blocks for efficiency. The procedure of wear leveling is

called upon the completion of each write request like dual-pool

algorithm [1].

B. Alternative Approach with BBS

There is another way to utilize salvaged blocks. Instead of

completely replacing the current wear leveling scheme, we can

just add a module to it to identify cold data and move them

to salvaged blocks on occasions. This is easier to implement,

and its overhead will be smaller. Our experimental results show

that this approach can also be quite effective.

Algorithm 1: Wear Leveling Procedure with BBS

1 begin
2 cnt := 0, flag := FALSE;
3 blk pt := GetValidPoolHead (void);
4 while (cnt < valid blk quantity · ω) do
5 if (GetErsCnt(blk pt) < avg erase cnt

2
)) then

6 if (HasColdData(blk pt) == TRUE) then
7 flag := TRUE, cold blk := blk pt;
8 break;
9 cnt++, blk pt := GetNextVldBlk (blk pt);

10 if (flag == FALSE) then
11 return;
12 logical blk := GetLogicalBlkNum (cold blk);
13 if (IsSalBlkSetEmpty (void) == TRUE) then
14 free blk := AllocOldFreeBlk (void);
15 MoveValidData (cold blk, free blk, FREE);
16 UpdateMapTab (logical blk, free blk, FREE);
17 else
18 sal blk := AllocSalvagedBlk (void);
19 MoveValidData (cold blk, sal blk, SAL);
20 UpdateMapTab (logical blk, sal blk, SAL);
21 Reclaim (cold blk);
22 return;

VI. EXPERIMENTS

To evaluate our proposal, we implemented the BBS-based

FTL in FlashSim simulator [6] for SLC NAND flash. The

mapping scheme is FAST [10]. Our compiler was GNU GCC

4.6 in Linux. All parameters of the simulated flash memory,

like latencies of write and erasure, were obtained from [12].

For our experiments, we have used three families of disk

traces from [13], [14] and [11]. We believe these traces are

representative of various workloads.

To see blocks wearing out, we reduced the endurance limit

to be from tens to dozens instead of using normal 100,000

cycles [12]. The simulated flash chip was configured to have

no initial bad blocks but a number of worn-out blocks whose

percentage is 0.5% of all. Moreover, when BBS is introduced

to reuse bad blocks, the original upper bound of the proportion

of bad blocks was increased from 2% [8] to 4%.

Four sets of results are presented here. baseline is a

configuration that has no wear leveling or BBS. lazy employs

lazy wear leveling [3]. aug also uses lazy wear leveling, but it



TABLE I
WORN-OUT BLOCKS AT RUNTIME

trace baseline lazy aug bbs

SPC1 0 70 64 0
SPC2 0 183 75 0
TPC-C 95 95 80 64
MSR-hm 0 1034 607 212 411
MSR-mds 0 16 8 3 3
MSR-prxy 0 761 300 273 149
MSR-rsrch 0 36 26 22 12
MSR-stg 0 0 14 9 0
MSR-ts 0 573 412 369 275
MSR-web 0 22 17 19 12

TOTAL 2537 1732 1126 926

0.94

0.95

0.96

0.97

0.98

0.99

1

1.01

1.02
lazy aug BBS

Normalized
Elapsed Time

Trace

Fig. 2. Elapsed time of lazy, aug and BBS

includes the alternative approach to utilize salvaged blocks for

cold data. BBS uses our wear leveling algorithm with BBS.

For aug and BBS, δ and ω were set to be 50% and 0.1% by

default, respectively; the impact of them would not be shown

for space limitation.

Table I shows the number of worn-out blocks caused at

runtime. For aug and BBS, all worn-out blocks that are in

salvaging or discarded are counted. This measure for BBS is

reduced by 46.5% compared to lazy. Fig. 2 is the elapsed

time to finish each trace with four configurations, normalized

against that of baseline. The introduction of wear leveling

will definitely bring in performance overheads. From Fig. 2,

we can see that BBS has comparable overheads to lazy, at

most 1.2% more than the latter at MSR-web 0.

0.95

0.96

0.97

0.98

0.99

1

1.01

1.02

1.03
lazy aug BBS

Trace

Normalized Average 
Erase Count 

Fig. 3. Average erase count of lazy, aug and BBS

The effect of wear leveling is presented in Fig. 3 and

Fig. 4. Fig. 3 shows the average erase count of all blocks

with four algorithms, normalized against that of baseline.

Fig. 4 shows standard deviations of erase counts. Wear leveling

has to move data with more erasures to evenly distribute

program/erase flips, as can be seen in Fig. 3. The wear

0.6

0.7

0.8

0.9

1

1.1

lazy aug BBS

Normalized
Standard Deviation

Trace

Fig. 4. Standard deviation of lazy, aug and BBS

evenness is evident from the standard deviation in Fig. 4. For

similar average erase counts, the smaller the standard deviation

is, the better the evenness is. Obviously BBS is better than

lazy at every trace in Fig. 4 with smaller standard deviation.
The effect of aug is also evident. aug can outperform

lazy significantly and is even better than BBS at MSR-hm 0.

Hence, aug is a good alternative choice on wear leveling.

VII. CONCLUSION

In this paper, we revisited bad block management and
wear leveling in NAND flash. We proposed a design that
reuses worn-out blocks to prolong the lifespan of flash chips.
Specifically, worn-out blocks are salvaged by using good pages
in some blocks to stand in for bad pages in other blocks.
The salvaged blocks are then used for cold data in wear
leveling. Experiments showed that, compared to a state-of-the-
art wear leveling scheme, our design can reduce the number of
worn-out blocks by 46.5% on average with 1.2% performance
penalties at most. As for future work, we plan to investigate
how the algorithm can adapt to workloads at runtime.

REFERENCES

[1] L.-P. Chang. On efficient wear leveling for large-scale flash-memory
storage systems. In SAC ’07, 2007.

[2] K. P. Garvin et al. Method and system for managing bad areas in flash
memory, 2001.

[3] L.P. Chang et. al. A low-cost wear-leveling algorithm for block-mapping
solid-state disks. In LCTES ’11.

[4] Mark E. Bauer et al. Method and circuitry for usage of partially
functional nonvolatile memory, October 1998.

[5] R. C. Chang et al. Unusable block management within a non-volatile
memory system, 2004.

[6] A. Gupta, Y. Kim, and B. Urgaonkar. DFTL: a flash translation
layer employing demand-based selective caching of page-level address
mappings. In ASPLOS ’09.

[7] Y. Hu and D. Moore. MLC vs. SLC NAND flash in embedded systems.
Technical report, September 2009.

[8] Micron Technology Inc. Bad block management in NAND flash
memories. Technical report, July 2010.

[9] C.-K. Koh, W.-F. Wong, Y. Chen, and H. Li. The salvage cache: a fault-
tolerant cache architecture for next-generation memory technologies. In
ICCD’09.

[10] S.-W. Lee, D.-J. Park, T.-S. Chung, D.-H. Lee, S. Park, and H.-J. Song.
A log buffer-based flash translation layer using fully-associative sector
translation. ACM Trans. Embed. Comput. Syst., 6(3):18, 2007.

[11] D. Narayanan, A. Donnelly, and A. Rowstron. Write off-loading:
Practical power management for enterprise storage. Trans. Storage,
4:10:1–10:23, November 2008.

[12] Numonyx. 4-Gbit, 8-Gbit, 2112-byte/1056-word page, multiplane archi-
tecture, 1.8 V or 3 V, SLC NAND flash memories. Technical report,
February 2010.

[13] Storage Performance Council. SPC traces. http://traces.cs.umass.edu/,
December 2009.

[14] BYU trace distribution center. TPC-C database benchmark traces.
http://tds.cs.byu.edu/tds/, 2001.


