An Architecture-Level Approach for Mitigating the

Impact of Process Variations on Extensible Proassso

Mehdi Kamat, Ali Afzali-Kusha!, Saeed SafdriMassoud Pedram
School of Electrical and Computer Engineering, @nsity of Tehran
2Department of Electrical Engineering-Systems, Ursitg of Southern California

{mehdikamal, afzali, saeed}@ut.ac.ir, pedram@usc.ed

Abstract— In this paper, we present an architecture-level
approach to mitigate the impact of process variatins on
extended instruction set architectures (ISAs).The proposed
architecture adds one extra cycle to execute customstructions

(Cls) that violate the maximum allowed propagationdelay due to
the process variations. Using this method, the pamaetric yield of

manufactured chips will greatly improve. The cost$ an increase
in the cycle latency of some of the Cls, and hence, slight
performance degradation for the extensible processo
architectures. To minimize the performance penalty of the

proposed approach, we introduce a new merit functio for

selecting the Cls during the selection phase of tHSA extension
design flow. To evaluate the efficacy of the newlsetion method,
we compare the extended ISAs obtained by this metHowith

those selected based on the worst-case delay. Siatidn results
reveal that a speedup improvement of about 18% maybe

obtained by the proposed selection method. Also, bysing the
proposed merit function, the proposed architecturecan improve
the speedup about 20.7%.

| INTRODUCTION Cl Identification ~——p

' Prune based on
Embedded processors are used in many platformsasichll S'mga”‘y
phones, digital cameras, network routers, and rong <1 Selection Generate Conflict
devices. The major issues in embedded systems are == Graph
computational speed, power consumption, and system in:gn \ [
flexibility. There are two approaches to implementigital =/

embedded system. The first is Application Spedifiegrated

The ISA extension flow starts by extracting the &atow
Graph (DFG) of the hotspot parts (which are thesparwhich
most of the execution time belongs) of the applcatNext,
all the subgraphs (Cls) that meet the predefinausteaints,
such as, convexity, propagation delay, and /O, exteacted
from DFG of hotspot parts. The last phase of thed$tension
flow is the selection phase. In the selection phtsebest Cls
are chosen from the candidate set. The Cls aretsdlbased
on the merit value which in most cases is the aelispeedup
when the Cls are used. Figure 1 depicts the ddisign

DFG of the
Application

L
v

!

Circuits (ASIC) where both high speed and low power

dissipation may be achieved with a penalty of higthesign
cost and lower flexibility. The other design apmioég General
Purpose Processor (GPP) where the speed is |dveepower
consumption is higher, and the flexibility is higltwmpared to
the ASIC approach. The third method for realizimgbedded
systems is Application Specific Instruction-set ¢&gsors
(ASIP). The speed, power, and flexibility of thispaoach is
between the ASIC and GPP solutions[1].

In the ASIP approach, the GPP instruction set tereled
through ASIC design based on the application sjpefeitures.
The augmented instructions are determined such tinat
desired speed, power, and cost requirements diketul The
main idea behind using ASIP is to run the hotsotspof an
application using custom instructions (Cls) and atfeer parts
of the application on the ALU of the processdil] The
extended ISA is contained in Custom Functional YGIEU)
which executes instructions in parallel with thelALThe Cls

Figure 1. ISA extension design flow.

In conventional (deterministic) design flows, theminal
gate parameters are used during the design oflligyistems.
In sub-100nm technologies, however, complexities the
manufacturing of the transistors with very smaflesi have
caused significant variations in transistor parame{such as
threshold voltage and effective channel length)ictvtin turn
has led to uncertainties in the delay and poweswaption of
the circuits/gates [3]. This uncertainties calmegarameters in
the fabricated chip to be different (less or mdrejn those
specified in design time. In the deterministic |®&tension
approach, the worst-case or nominal delay of thenifives
(e.g., AND, ADD, SHIFT) are used to extract thetaty of the
identified Cls during the design time. Due to the-t-die or

enhance the processor speed by reducing the nuwmiber within-die variations, the CI latency would be difént from

instructions as well as the accesses to the cautheemister
file. In addition, they lower the power consumption

978-3-9810801-8-6/DATE12/©2012 EDAA

the one considered in the design time. If we debigsed on
the worst-case delay, the process variation may haste

impact on the critical paths of the design. Usinig ipproach,
we however lose the speedup of the extended 1$A0d the

other hand, when the extended ISA is generateddbaiseghe
nominal delay, the performance vyield of the extehd8A

would be much less than one. This originates frioenfact that
the CI propagation delay becomes greater than tbek c
period, and hence, the CI could not complete itcetion in

one clock cycle. Hence, due to delay uncertainfythe

performance vyield of the extended ISA is smallantione,
some of the manufactured extended ISA chips witl work

properly.

In this paper, we propose an architecture whiclesgjitwo
cycles to the Cls which cannot complete their eienun one
cycle due to the delay variation. In this techniquadter
fetching such a CI, the pipeline will be stalled foycing the
processor controller to allow some Cls to execuntiio clock
cycles. This is performed using the extra hardveatéed for
the extended ISA. Due to these extra cycles, treedyp
achieved through using the extended ISA is lowerEd.
minimize the impact of the extra cycles on the ailfepeedup,
the selection of the Cls should be performed bysating
this reduction as a selection parameter. This ifopred by
using a merit function which includes this parameide rest
of the paper is organized as follows. Section i¢fbr reviews
the related works while the proposed architectund the
design flow idea are described in Section Ill. Experimental
setup and the results are discussed in SectionFially,
Section V concludes the paper.

Il RELATED WORK

In this section, we review some of the works relate the
techniques which have been proposed to lessembacis of
the process variation on the processors as wedbawe prior
works on ISA extensionn [5], two compile time techniques
were proposed to handle non-uniform latency of edéht
integer functional units (IFUs) in VLIW processois. the
proposed approach, the highly affected IFUs araedroff
whenever the processor does not require them forimg an

time stealing is proposed. In addition to the tibwrowing
techniques discussed in [7] and [8], a method widightrols
the clock speed in multi-issue processors is sugdea[10].
The method categorized the runtime of the prograntwio
different phases, Low-ILP (Instruction Level Pashfim)
phases, and High-ILP phases. In each phase, theciropthe
process variation is lowered by changing the ckyu&ed.

In the field of ISA extension, many techniques haeen
proposed. These include the techniques for inargasie
quality of the selected Cls as well as decreasiegtintime of
the algorithms for the CI identification (see, e.d]). The
proposed methods were all based on the deternainisti
approach. Inf4], a statistical design flow for the ISA extensio
was proposed. The proposed design flow used thistital
approach in the both identification and selectibages where
the performance yield was defined as a new constiaithe
ISA extension flow.

The prior work focused on the processors multi-ycl
pipeline stages and also out-of-order processnrenibedded
applications, for the extensible processors, theoriter
architecture is the more common. In this paper,assume
that the baseline processor is an in-order procesdue
proposed architecture and the desigethod may be used for
out-of-order processors as well. In the next sectime
describe our proposed architecture for reducing prozess
variation impact. Also, the merit function whichused in the
selection phase is discussed.

In this section, we describe the proposed technidhieh is
based on the fact that the worst-case delays ofCilseare
smaller than two clock periods. Thus, by adding emé&ra
cycle to Cls, we are able to complete the executiithout
worrying about the process variations. Next we «descthe
technique in more details.

In the presence of the process variations, thegeldys are
defined by PDFs (probability density functions).eDto the
statistical nature of the path delays, the timirtieal circuit

PROPOSEDARCHITECTURE

application and turned on when required. An architecturaloutputs in some manufactured chips will meet thredgfined

technique (Trifecta) to mitigate the timing vardats in critical
pipeline stages is proposed[B]. In the proposed technique,
the inputs that make the critical path delay exctedone-
cycle delay are detected (circuit level speculdtiamd let the
path to complete its operation in two-cycles.

In [7], a technique to tackle the performance reductio
the presence of process variation for out-of-opgtecessors is
presented. In this technique, the instructionsethasn their
dependency on each other, categorized in two grolps
instruction which no instruction depends on itsutgsare
executed on a long-latency unit. On the other hdrahother
instruction depends on its result, this instructsmould be
executed in a short-latency unit. [B1, two fine-grained post-
fabrication techniques are proposed to mitigate tiheng
fluctuation. The voltage interpolation and varialggpeline
latency are the two methods proposed in this pdpef9],
first, the process variation impacts on the propagalelay of
the pipeline stages are investigated. Then, anitacttral
technique to decrease the impacts of the timingtultion on
the performance of pipelined processors based encycle

maximum propagation delay threshold while the atheil
violate the delay. Let us define the timing-critioatputs as the
outputs that may violate the maximum delay thresht the
design time, using the process variation modelimdj @so the
statistical static timing analysis (SSTA), theicat outputs of
each ClI can be identified. Hence, to check whathewot these
critical outputs indeed violate the clock periodey must be
tested after the chip is manufactured. This tegteisormed
during the chip test phase where the CI propagatelay is
evaluated to determine the Cls whose worst-cade greltys
are greater than one clock period.

More precisely, if the process variation modelingd a
SSTA are used, the Cls may be selected based wnbrest-
case delay (u4®. In this situation where no selected ClI
violates the maximum clock period, and hence, ttepgsed
architecture is not needed to be used in the dkiens
processor. This approach, however, may not leadato
considerable speed enhancement due to very limitetber of
Cls which may be selected. In the approach sugdéstéhis
work, the critical paths are specified in the designe and

only these outputs are tested in the test phasethanuse of
this modeling is in the merit function that is ugsedminimize
the speedup reduction due to the extra clock aatied to the
Cls whose worst-case path delay plus some margittigeflop
clock to output delay and setup time can be latgan the
specified clock period. Each ClI may have severgabutubits
(i.e., 32-bit). Among them, only those bits that an the
critical paths should be considered in the tessph&o, the set
of critical outputs of a Cl is defined as

(VOutputs € CI,3k; >0 =y, + k;o; >Mpp} (1)

where andc; are mean and sigma values of theoutput,
MPD denotesMaximum Propagation Delay, and k; is a
positive real number.

Now, we explain our proposed architecture that atids
additional clock cycles for the Cls that requiresrth In
addition, we describe the merit function that iediso lower
the speedup degradation due to addition of theaeshvck
cycle. Figure 2 shows the proposed architecturenvitie used
with a five-stage pipelined processor.
architecture consists of two main parts, whichtheecontroller
and the checker. The checker is used to deteqirtgagation
delay violation of those CI outputs that have besported as
the timing-critical outputs during the design tim€&hese
outputs are tested by injecting proper test vectionsng the
test time. If an output violates the maximum pragiamn delay,
the CI corresponding to this output is added toak4up table
(LUT) in the controller part.

Pipeline
Controller

Inst.
Cache

Stall Command

Output

CI Controller
Selector

s

Update LUT

Figure 2. A five stage pipelined extensible process enhaced with
proposed architecture.

During the test time, the test vectors are injedted the
CFU. The test vectors, which are extracted usiegéebt delay
method [11], are applied through the processotruingon
issue unit. To test the CI outputs, the specifit #ector should
be written to the register file. We needinstructions to load
the test vector whema is equal to the number ofput ports of
the CI that is under the test. After loading thst teector, by
fetching a Cl, the corresponding test vector idiadgo the CI.
Finally, the output of the Cl must be checked. fieak the ClI
output, a new instruction that compares the ouiguthe
execution stage with a known (expected) value efsghecified
register is defined. If the CI output is not eqt@lthis value,
the op-code of the Cl is added to the LUT insidedbntroller.
If the CI under the test contains more than onguiuport,
each output must be checked separately. If anlyesfet outputs

fails to match the expected value, the ClI's op-cadlé be
added to the LUT.

During the test time, based on the op-codes ofCGle
which need two cycles to complete their executibase, the
contents of the LUT are updated. Therefore, inapglication
runtime, when each instruction is fetched, the rodler unit
checks the instruction op-code in the LUT. For apycode
present in the LUT, the controller sends a sigmalthe
processor controller to stall the pipeline for arleck cycle,
thereby allowing the CI instruction to complete ésecution
phase without any timing violations. During theraxtycle, we
must ensure that the inputs of the CFU are prederve
Therefore, the pipeline controller must also freeai@es of the
input registers of the CFU during the extra cycle.

The proposed architecture alleviates the problem of
manufacturing-induced process variations (e.gyw ® L
variability effects). It, however, adds one extyale degrading
the overall speedup of the extensible processolower this
speed deterioration, we suggest a new merit fumdto the
selection phase. In the conventional approaches, ntierit
function is defined based on the speedup of the The

The proposespeedup of a Cl is defined as

Cl;.S = #Iteration

X (#Cli.SW —10;. Penalty @

. (Cll-. CriticalPathDelay)
cet Clock Period

whereCl;.S is thespeedup of thei™ CI (Cl;) which is equal to
the number of clock cycles saved at the runtimethof
application when th&l; is used. Here l#eration denotes the
execution frequency of the basic block to which belongs,
#Cl;.SW denotes the number of clocks that the Cl needsrio
by the base processor, an@;.Penalty is the number of extra
accesses to the register file for reading data fomvriting
data in (when the number of the CI I/O ports is enttran the
number of the register file read/write ports). Beeond term in
the above equation is the number of clocks needwd f
executingCl; on the CFU (we assume Cls can be multi-cycle
as well as single cycle instructions.) In this fia,
Cl,.Critical PathDelay denotes the propagation delay of the CI
critical path andClock Period is the desired clock period for
the extended processor. For the sake of simplfbity without
loss of generality), we assume Cls are selectednwtheir
nominal delay is less than tt@ock Period, and hence, the

.y (Clj.CriticalPathDelay .
ceil . term is equal to one. Also, we
Clock Period

assume, the Cls I/O ports are equal to the R/Wspafrtthe
register file, and thugp;. Penalty is equal to zero. Hence, the
speedup of a Cl may be calculated as

CIl;.S = #Iteration x (#CI;.SW — #CI;.Clock) (3)

where#Cl;.Clock is the number of clocks that the Cl needs to
complete its execution. The value#gl;.Clock is one unless,
due to the process variatio@];.CriticalPathDelay is greater
than theMPD, in which case it will be set to two. When

#CI.SW of a Cl is two and the Cl executes in two cyclbs,
Cl.Sbecomes zero indicating that there will not be amgtime

By using the SSTA method proposed in [15], theoo&ral
delay form of the primitives were calculated. Aletprimitive

speedup by using this Cl. As the number of these Cldelay models were gathered in a library that wasdus the

increases, the overall speedup of the extensibteessor

design flow to perform SSTA on Cls. Also, for theke of

reduces. WhewCl.SW is larger than two, there is still some simplicity without loss of generality, we assumduhttthere

speedup even if the CI requires one extra cyclé.ukelefine
the parameteCl.SW_Impact as

(#CI,.SW — 2)

ClL,.SW_I t = ———=
i SV Mpac (#CI.SW - 1)

4

The value of this parameter changes between 0 (WGEBW
is two) and 1 (wher#Cl.SW is infinity). Larger values mean
smaller undesirable impacts of the extra cycle.ddeue to
the delay variation, it is better to use the Clghwihe

were only the random variations bf; and Vy,. We assumed
the variation for both V, and Lg were equal to
6Vinrdn Vin0=6Lett rna/Letto= 10%, where th®y, o andLgo are the
mean values of the threshold voltage, and the tefeechannel
length of the transistors. The variations were igppto the
HSPICE model of the primitive gate in the 45nm texbgy.
Finally, to evaluate the proposed architecture, veee
invoked C# to model the architecture. Using the vabo
statistical parameters, the speedups of one thdusanples of
the 5-stage MIPS processor shown in Figure 2 wbtaired.
For each sample, based on the PDF (nhormal distiiijubf the

SW Impact values close to one. To increase the chance df!S: random delay values were assigned to the tugfteach

selecting these Cls, we propose a merit functicinee as
follows

If (CI.PY=1)
Cl;.Merit=CI;.S
else
If (Cl;.SW_Impact = 0)
else
Cl;.Merit = Cl;.Sx (1+a x Cl;.SW_Impact)

©®)

whereCl;.PY is the performance yield of th& Cl anda is the
weight of CI;.SW_Impact in the merit value. The merit value is
equal to the conventional merit value when the qrerhnce
yield of the Cl is equal to 1. When the performayiedd is less
than 1, if theCl;.SW_Impact is equal to zero, the merit value
will become zero; else, the conventional merit galill be
scaled by (1 4 x CI;.SW_Impact). Note that, in this approach,
we need to model the process variation in the desjgle to
extract the performance yield of the Cls.

V.

A. Experimental Setup

The extracting ISA design flow was implemented Hiy €#
language. To assess the efficacy of the design tloavcustom
instructions of a bunch of benchmarks were exttacliéhe
selected benchmarks includetP-Sec and MD5 from
PacketBench [12]lms and adpcm from SNU-RT benchmark
suits [13], andG271 Decode and bitcounter from MiBench
[14]. Using GCC (GNU Complier Collection), the DF&xd
the hotspot of these applications were generatddezhto the
ISA extension design flow. The implemented desigw fwas
adapted from [4]. The candidate Cls were idemtifimsed on
the exact method proposed in [1] with the numbef@ ports
and maximum propagation delay as the constraimisidered
in this phase. In the selection phase, we usedgteedy
approach to select the best Cls.

RESULTS ANDDISCUSSION

Cl. For the delays which were greater thanNMiRD, two clock
cycles were used for the Cl execution.

In the rest of this section, two different speedgre
reported. One is the design time speedup whictesepts the
speedup of the extended ISA when all Cls executméclock
cycle. This means that the CI delays in none of the
manufactured chips were larger than MED. The second is
the speedup of the extensible processor which anescthe
speedup of the Cl when the impacts of the procagation on
their delays are considered. This means that songel&ys in
the manufactured chips were larger thaniD, and hence,
the corresponding Cls execute in two clock cycles.

B. Results

To study the speedup of the extensible processog tise
proposed architecture, we extracted the extendéduigler
three different cases. In the first case (“1”), thexformance
yields of the extracted Cls were assumed to be 100%his
case, the Cls were selected based on the worstdedag In
the second case (“0.8"), the performance yield wamt was
considered and the selection algorithm was foroesklect Cls
while the performance yield of the CFU was grettian 80%.
This meant

V Selected Cls, 1_[Cl;.PY =2 0.8 (6)

Note that in this case the probability of a CI tkatlates
the MPD is equal to 0.2, while this probability in firsage is
zero. In the last case (“NC”) where the performayietd was
not considered in the selection process, the Cle welected
based on their nominal delay. In this case, siheepbssibility
of violating the delay constraint by the processatin is not
considered in the CI selection process, the chahe®lating
the MPD by the selected Cls is larger than the other tases
leading to a smaller performance vyield for thisecas

Figure 3 depicts the CFU speedup reported in thsigde
time. The results show in all cases the highestdige belongs
to the “NC” case while the worst-case design (¢a%ehas the

We used the canonical form to model the delayjowest speedup. Also, in all the cases, exceptRofec and

variation[15]. To model the canonical delay forfrtlee gates,
we used the HSPICE model of gates in a 45nm teobpfil6].

Ims, the speedup is higher for lower performance gisltiere
there are more options for selecting Cls. Thisuie tb the fact

that the delay variation is either not considetbd (NC” case)
or partially tolerated (the “0.8” case). A&*_Sec andIms, since
decreasing the performance yield does not chang&d=rably
the extended ISA, the CFU speedup is remained zippately

function (Equation (5)). Additionally, the Cls weextracted
without considering the performance yield (“NC”)rfthis

study. The results show that, in all the casessgigedups are
increased when the proposed merit function iszetili The

constant. comparison between the speedups of the conventiamdl
proposed merit function shows that the maximum owpment

is for the MD5 benchmark which is about 4.3%, while the
minimum is for theG721decode which is about 0.4%. On
average, the speedup increase is about 2.18%.l\inké
comparison of this results with the worst-casegtegkigure 4)
indicates that the highest gain belongs toNtig5 benchmark
(~47.84% improvement), and the lowest one beloodke!P-
Sec (~5.55% reduction). Also, the average improvemeas
about 20.66%.

2.5

bitcounter ~ G721decode IP-Sec Ims

adpcm

MD5

Figure 3. The speedup of the extended ISA reportead the design time.

B Min B Max

The speedups of the extensible processors under tr ,
predefined three cases are presented in FigureFgure 4(a),
in each case, the minimum and maximum of the eiikns 151
processor speedups are reported. When the Cls setreted
based on their worst-case delay, the delay flucmdiad no
effect on the CFU, and hence, the speedup of ttensikle 05 -
processor was constant. In the other cases, thedgpewas
different from one chip (sample) to other one.

Speedup
-

1 08 NC
adpem

1 08 NC 1 08 NC 1 08 NC 1 08 NC 1
bitcounter - G721decode - IP-Sec Ims
Performance Yield

@

08 NC
The results show that the highest maximum speedup i DS
achieved when the Cls are selected based on thmalodelay
(the “NC” case). Additionally, for all the benchrkar except
for IP-Sec, the highest minimum speedup belongs to the “NC”
case. These results of Figure 4(a) suggest thahost cases,
the higher design time speedups of lower performayield 22
cases (the “NC” and “0.8” cases) are not completalycelled
out by theMPD violations of some selected Cls in these cases 2 "
To show this more clearly, Figure 4(b) shows thiféeténce
between the design time speedup and the externsibdessor
average and minimum speedups. Note that for thedsg, the _
design time and extensible processor speedupseaaime. In e & @ g E
all the cases, except for tH®-sec benchmark, the higher 2 &
reduction (indicated by the dashed line) belongth“NC” S S ——— e — =
case. However, the average speedup of the extensittessor

for this case is still higher due to the larger iglestime
speedup. For the case of teSec benchmark, the design time
speedups of the extended ISA were almost the sarak the
two cases of “0.8” and “NC” (see Figure 3). Whea tlesign (b)

was performed for the “NC” case, the number of gath Figure 4. a) Minimum ar_]d maximum average s_peedupsfahe gxten_ded
violating theMPD increased (from 105 in the “0.8” case to 111'SA when enhancgd with the proposed architecture.)b Design time
in the “NC” case). The increase reduced the avespgedup. speedup vs. extensible processor speedup

A similar argument is applied when comparing theesaof
“0.8” and “1". As the results of Figure 3 and Figure 4(a) show,
in the case of thems benchmark, the speedups for the cases o

Design Time

~

Speedup

H
-

m
o

C

adpem(1)
adpem(0.8)
adpcm(NC]
bitcounter(1]
bitcounter(0.8]
bitcounter(NC
G721decode(1)
G721decode(0.8
G721decode(NC]
IP-Sec(0.8)
IP-Sec(NC
Ims(NC)

MD5(1)
MD5(0.8)
MD5(NC)

M Conventional (Min) M Proposed (Min) Conventional (AVG) M Proposed (AVG)

2.5

“0.8” and “NC” were similar. The reason was that game Cls 2
were chosen in the selection phase. Finally, noa figures 215
predict a higher speedup of 18% (11.8%) in the cds&IC” H
(“0.8") compared to the design based on the wasedaelay ot
(“1")_ 0.5

As mentioned before, to improve the efficacy of the 0
proposed architecture, we have offered a new mamittion.
Figure 5 shows the minimum and the average speedder
two different merit functions. In the first casdetCls are
extracted based on the conventional merit funatibite in the
second case they are extracted based on the pdopweset

bitcounter G721decode IP-Sec Ims MD5

adpcm

Figure 5. The ability of the proposed merit functio in increasing the
speedup of the extended ISA enhanced with the proped architecture.

One solution to mitigate the process variation @ffe to
increase the clock period [10]. Similarly, one talke the same
measure in the case of the extensible processoirschgasing
the clock period to the maximum worst-case delaythaf
selected Cls. We have compared the speedups & thvas
techniques in Figure 6, where ALM and CPM standstlie
proposed Architecture Level Method and increasirigckC
Period Method, respectively. Note that, in the A(®PM), we
used proposed (conventional) merit function in ct@e phase.
The results show that, in all the cases, excegiifoounter and
IP-Sec, the proposed method outperforms the CPM. FotRhe
Sec case, the CPM method is better than the propostiomh
in this paper. However, ihitcounter, the results show that in
more than 95% of the extensible processors, the@oged
method provides more speedup in comparison to Bid.C

B ALM(min) ™ CPM ALM(AVG)

G721decode

IP-Sec Ims

bitcounter
Figure 6. Speedup comparison between the ALM and Q® methods.

V. CONCULUSION

In this paper, we proposed an architecture levehatkto
reduce the process variation impact on extensitbegssors.
The proposed architecture concentrated on the Clesav
latencies were greater than the clock period ofetktensible
processor. It forced the pipeline processor taHese Cls to
use one more clock cycle for their execution. Ia thethod, by
running an initialization procedure, these Clsdach chip are
determined only one time before its first use.his procedure,
the op-code of the Cls are stored in a look-upetablring the
runtime, the system checks the op-codes and lete g6 them
to be executed with one extra cycle. The resultsvstinat the
speedup of this method is 18% greater than th#teodesign
based on the worst-case delay. Additionally, torowp the
ability of the proposed architecture, we modifietie t
conventional merit function which was used in tlesign flow
of the ISA extension. In the modified merit functiadhe Cls
which adding one more clock cycle to their exeagio
decrease the performance yield less were selettedresults

showed that using both proposed architecture andit me

function at the same time improved the speedup taB@d%
in comparison to the worst-case approach. Finalye

compared the efficacy of the proposed techniqué ttiat of
the technique where the clock period is increaséé. results
showed that the proposed technique reached a lspiéedup
for most of the benchmarks with an average impreranof

about 9.3%.

REFERENCE

[1] C. Galluzi, and K. Bertels, “The Instruction-setténsion Proble: A
Survey,” in ACM Transaction on Reconfigurable Technology and
Systems, vol. 4, no. 2, pp. 18-1:18-28, May, 2011.

[2] L. Pozzi, K. Atasu, and P. lenne, “Exact and Apjprate Algorithms
for the Extension of Embedded Processor Instruc8ets,”in |IEEE
Transaction on CAD, vol. 25, no. 7, pp. 1209-1229, July 2006.

[3] Y. Xie and Y. Chen, “Statistical High-Level Syntiesinder Process
Variability,” in IEEE Transaction Design and Test Computers, vol. 26,
pp.78-87, 2009.

[4] M. Kamal, A. Afazli-Kusha, and M. Pedram, "Timingakiation-Aware
Custom Instruction Extension Technique, Hroceedings of the Design,
Automation and Test in Europe (Date), 2011, pp. 1517-1520.

[51 N. V. Mujadiya, “Instruction scheduling for VLIW pcessors under
variation scenario,” irProceedings of the 9th international conference
on Systems, architectures, modeling and simulation (SAMOS), 2009, pp.
33-40.

[6] P. Ndai, N. Rafique, M. Thottethodi, and S. Gho8hrifecta: a
nonspeculative scheme to exploit common, data-digensubcritical
paths,” in|EEE Transactions on Very Large Scale Integration (VLS)
Systems, vol. 18, pp. 53-65, 2009.

[7] T. Sato and S. Watanabe, “Uncriticality-directedestuling for tackling
variation and power challenges,” Proceeding of 10th international
Symposium on Quality Electronic Design (ISQED), 2009, pp. 820-825.

[8] X. Liang, G.Y. Wei, and D. Brooks, “Revival: A vation-tolerant
architecture using voltage interpolation and vdealmtency,” in
Proceeding of 35th International Symposium on Computer Architecture
(ISCA-35), 2008, pp. 191-202.

[9] A. Tiwari, S.R. Sarangi, and J. Torrellas, “ReCygpeline adaptation

to tolerate process variation,” iRroceedings of the 34th annual

International Symposium on Computer Architecture (1SCA), 2007, pp.

323-334.

E. Chun, Z. chishti, and T.N. Vijaykumar, “Shapési Dynamically
changing pipeline width and speed to address psoeasations,” in
Proceedings of 41st IEEE/ACM International Symposium on
Microarchitecture, 2008, pp. 411-422.

M. L. Bushnell and V. D. AgrawaEssentials of electronic testing for
digital, memory, and mixed-signal VLS circuits: Springer Netherlands,
2000.

R. Ramaswamy and T. Wolf, “PacketBench: A tool feorkload
characterization of network processingy'Proc. of | EEE International

Workshop on Workload Characterization, October 2003, pp. 42-50.
SNU-RT Real Time Benchmarks.[Online]. Available:
http://archi.snu.ac. kr/realtime/benchmark/.

M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. Msthky T. Mudge,
and R. B. Brown, “MiBench: A free, commercially repentative
embedded benchmark suite,”Pnoceedings of Inernational. workshop

on workload characterization, 2001, pp. 3-14.

R. Chen and H. Zhou, “Fast estimation of timingldidounds for
process variations,” inlEEE Transactions on Very Large Scale
Integration (VLSl) Systems, vol. 16, pp. 241-248, 2008.

[16] FreePDK, AFree OpenAccess 45nm PDK and Cell Libréoy

university, http:// www.eda.ncsu.edu.

[10]

(11]

[12]

[13]

(14]

[15]

