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Abstract—This paper is an extension of [6]. Boolean function
bi-decomposition is ubiquitous in logic synthesis. It entails the
decomposition of a Boolean function using two-input simple
logic gates. Existing solutions for bi-decomposition are often
based on BDDs and, more recently, on Boolean Satisfiability.
In addition, the partition of the input set of variables is either
assumed, or heuristic solutions are considered for finding good
partitions. In contrast to earlier work, this paper proposes the
use of Quantified Boolean Formulas (QBF) for computing bi-
decompositions. These bi-decompositions are optimal in terms
of the achieved disjointness and balancedness of the input set
of variables. Experimental results, obtained on representative
benchmarks, demonstrate clear improvements in the qualityof
computed decompositions, but also the practical feasibility of
QBF-based bi-decomposition.

I. I NTRODUCTION

Boolean function decomposition is a fundamental tech-
nique in logic synthesis. Given a complex Boolean function
f(X), function decomposition consists of representingf(X)
as f(X) = h(g1(X), . . . , gm(X)), often with m < ||X ||,
such thath, g1, . . . , gm are simpler sub-functions. Boolean
function decomposition plays an important role in modern
Electronic Design Automation (EDA), including multi-level
logic synthesis and FPGA synthesis [15], [18], [24].

Bi-decomposition [4], [7], [9], [10], [16], [19], [21], [23],
[25], a special form (withm = 2) of functional decompo-
sition, is arguably the most widely used form of Boolean
function decomposition. Bi-decomposition consists of decom-
posing Boolean functionf(X) into the form of f(X) =
h(fA(XA, XC), fB(XB , XC)), under variable partitionX =
{XA|XB|XC} wherein fewer number of variables are required
in each sub-setXA, XB andXC .

The quality of Boolean function decomposition is often
related with the quality of variable partitions [7], [9], [16],
[17], as an optimal solution requires fewer input variablesand
simpler sub-functions.

Similar to recent work [7], [16], [17], this paper ad-
dresses tworelative metrics measuring the quality of bi-
decompositions, namelydisjointnessand balancedness. In
practice, disjointness is in general preferred [16], sinceit
reduces the number of shared input variables betweenfA and
fB. In turn, this often reduces complexity of the resulting
Boolean network.Absolutequality metrics are an alternative
to relative quality metrics, and include total variable count (Σ)
and maximum partition size (∆) [9]. Nevertheless, absolute
quality metrics scale worse with the number of inputs [9].

Decomposition of Boolean functions has been extensively
studied, and initial work can be traced back to 1950s [2], [11].
The very first algorithm for bi-decomposition was presented
for the AND case in [19]. The first solution for XOR case
was given in [22]. The general case of bi-decomposing of
boolean network was proposed in the work [25]. Traditional
approaches [5], [10], [15], [21], [24] use BDDs as the underly-
ing data structure. However, BDDs impose severe constraints
on the number of input variables circuits can have. It is
also generally accepted that BDDs do not scale for large
Boolean functions. As a result, recent work [7], [13], [16],
[17] proposed the use of Boolean Satisfiability (SAT) and
Minimally Unsatisfiable Subformulas (MUS) to manipulate
large Boolean functions. This resulted in significant perfor-
mance improvements. In addition, [7], [16] proposed heuristic
approaches for identifying variable partitions. Explicit(but
heuristically restricted) enumeration of variable partitions [13],
[16], [17] sometimes produces good solutions, corresponding
to adequate values of disjointness and balancedness. However,
it is in general difficult to guarantee the quality of variable
partitions, since the number of possible partitions grows expo-
nentially with the number of inputs. This prevents brute-force
search [16] in practice.

This paper addresses the problem of computing bi-
decompositions with optimum variable partitions. The opti-
mality of achieved variable partitions is measured in terms
of existing metrics, namely disjointness and balancedness.
The proposed solutions are based on novel QBF formulations
for the problem of Boolean function bi-decomposition sub-
ject to target metrics (e.g. disjointness, balancedness, etc.).
Besides the novel QBF formulations, the paper shows how
bi-decomposition can be computed withoptimumvalues for
the target metrics. Experimental results, obtained on well-
known benchmarks, demonstrate that QBF-based function
bi-decomposition performs comparably with recent heuristic
approaches [7], [13], [16], [17], while guaranteeing optimum
variable partitions.

The paper is organized as follows. Section II covers the
preliminaries. Section III reviews models for Boolean function
bi-decomposition. Section IV proposes the new QBF-based
models. Section V presents the experimental results. Finally,
section VI concludes the paper and outlines future work.
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II. PRELIMINARIES

Variables are represented by setX = {x1, x2, . . . , xn}. The
cardinality ofX is denoted as||X ||. A partition of a setX
into Xi ⊆ X for i = 1, . . . , k (with Xi

⋂

Xj = ∅, i 6= j and
⋃

iXi = X) is denoted by{X1|X2| . . . |Xk}. A Completely
Specified Function (CSF) is denoted byf : Bn → B. Similar
to the recent work [7], [16], this paper assumes CSFs.

A. Boolean Function Bi-Decomposition

Definition 1: Bi-decomposition [23] for Completely Spec-
ified Function (CSF)f(X) consists of decomposingf(X)
under variable partitionX = {XA|XB|XC}, into the form of
f(X) = fA(XA, XC) <OP> fB(XB, XC), where<OP> is
a binary operator, typicallyOR, AND or XOR.

This paper addressesOR, AND andXORbi-decomposition
because these three basic gates form other types of bi-
decomposition [16]. Bi-decomposition is termeddisjoint if
||XC || = 0. A partition of X is trivial if X = XA

⋃

XC

or X = XB

⋃

XC holds. Similar to earlier work [7], [16],
[17], this paper addresses non-trivial bi-decompositions.

B. Boolean Satisfiability

Boolean formulasφ andψ are defined over a finite set of
Boolean variablesX . Individual variables are represented by
lowercase lettersx, y, z, w and o, and subscripts may be
used (e.g.x1). The Boolean connectives considered will be¬,
→, ↔, ∧, ∨. When necessary, parentheses are used to enforce
precedence. A formula in Conjunctive Normal Form (CNF)F
is defined as a set of sets of literals defined onX , representing
a conjunction of disjunctions of literals. A literal is either a
variable or its complement. Each set of literals is referredto
as a clausec. Moreover, it is assumed that each clause is
non-tautological. Additional SAT definitions can be found in
standard references (e.g. [3]).

C. Quantified Boolean Formulas

Quantified Boolean Formulas (QBF) generalize Boolean
formulas by quantifying variables, either existentially (∃) or
universally (∀). Variables in a QBF being quantified are
referred to asboundvariables, whereas those not quantified are
referred to asfreevariables. Throughout this paper, all Boolean
variables in QBF are assumed to be quantified (bound). QBF
are assumed to be in theprenex form Q1p1 . . . Qnpn.φ,
with Qi ∈ {∃, ∀}, pi are distinct Boolean variables, andφ
is a propositional formula using only the variablespi and
the constants0 (false), 1 (true). For example, in a QBF
∃x, ∀z.f(x, y, z), x andz are bound variables andy is a free
variable, prefix is∃x, ∀z and matrix isf(x, y, z).

The problem of solving a QBF is referred to as quan-
tified satisfiability (QSAT). The general case of a QSAT
problem is PSPACE-complete [3], which is computationally
hard compared to Boolean SAT problems. Restrictions in the
number of quantifier alternations characterize the polynomial
hierarchy [3]. QBF formulas withk quantifier alternations, that
start with∃ are denoted QBFk,∃, whereas those that start with
∀ are denoted QBFk,∀. Formulas in QBFk,∃ areΣP

k -complete,
where formulas in QBFk,∀ areΠP

k -complete.

D. Quality Metrics

The quality of variable partitions mainly impacts the quality
of bi-decomposition [7], [9], [16], and indirectly impactsthe
decomposed network, e.g. delay, area and power consump-
tion [9]. Similar to [7], [16], [17], this paper measures the
quality of variable partitions through tworelative quality
metrics, namelydisjointnessand balancedness. Assume a
variable partition{XA|XB|XC} for f(X), whereXA, XB

andXC are the sets of the input variables to decomposition
functionsfA, fB and common tofA andfB, respectively.

Definition 2 (Disjointness):ǫD = ||XC ||
||X|| denotes the ratio

of the number of common variables to inputs. A value ofǫD
close to 0 is preferred, asǫD = 0 represents a disjoint bi-
decomposition.

Definition 3 (Balancedness):ǫB =

∣

∣||XA||−||XB||
∣

∣

||X|| denotes
the absolute size difference betweenXA andXB. ǫB = 0
represents a balanced variable partition.

In practice, disjointness is preferred since a lower value
represents a smaller number of shared input variables of
the resulting decomposed circuit that typically has smaller
area and power footprint. A lower balancedness typically
corresponds to smaller delay of the decomposed network.

This paper develops QBF models for achieving disjointness
and balancedness targets, or even the optimum solutions.

III. R ELATED WORK

Bi-Decompositions of Boolean functions are either based on
Binary Decision Diagrams (BDDs) or on Boolean Satisfiability
(SAT). This section briefly overviews earlier work.

A. BDD-Based Bi-Decomposition

BDDs are a canonical representation of Boolean functions,
and have been widely applied in function decomposition [5],
[10], [15], [21], [24]. Variants of BDDs have also been con-
sidered [9], targeting optimization of area [9], [21], delay [5],
[8]–[10], [21], and power consumption [9]. Algorithms based
on BDDs have several advantages, including flexible Boolean
function manipulation [21], [23], on-demand selection of vari-
able partitions [9], [14], and the ability to handle don’t-care
conditions [8], [21]. Algorithms based on BDDs also have
key drawbacks. BDD-based approaches are generally memory
intensive, sensitive to variable orders [9], restricted onthe
number of primary inputs [16], and on the number of variable
partitions considered.

B. SAT-Based and MUS-Based Bi-Decomposition

With the objective of target bi-decomposition of large
Boolean functions with a large number of inputs, and cor-
respondingly large number of variable partitions, recent work
proposed SAT-based bi-decomposition [16] and MUS-based
bi-decomposition [7], [16]. SAT-based OR, AND and XOR
bi-decompositions under known and unknown partition of
variables were proposed in [16]. For example, the widely used
OR bi-decomposition can be computed by SAT solving [16].
Given a non-trivial variable partitionX = {XA|XB|XC}, the
following result holds:



Proposition 1: [16] A completely specified functionf(X)
can be written asfA(XA, XC) ∨ fB(XB , XC) for some
functionsfA and fB if and only if the Boolean formula

f(XA, XB, XC)∧¬f(X ′
A, XB, XC)∧¬f(XA, X

′
B, XC) (1)

is unsatisfiable, where variable setY ′ is an instantiated
version of variable setY .

An instantiatedversion x′ of Boolean variablex can be
viewed as a new Boolean variablex′ that replacesx. This ap-
proach assumes that a variable partitionX = {XA|XB|XC}
is given. In practice, such variable partitions are generally
unknown and must be automatically derived. One possible
approach is to consider the following formulation [16]:

f(X) ∧ ¬f(X ′) ∧
∧

i

((xi ≡ x′i) ∨ αxi
)

∧¬f(X ′′) ∧
∧

i

((xi ≡ x′′i ) ∨ βxi
)

(2)

wherex′ ∈ X ′ andx′′ ∈ X ′′ are instantiated versions ofx ∈
X . αxi

andβxi
arecontrol variables for enumerating variable

partitions. By assigning different Boolean values toαxi
and

βxi
, some of the clauses((xi ≡ x′i)∨αxi

), ((xi ≡ x′′i )∨βxi
)

are relaxed. The resulting clauses(xi ≡ x′i) and (xi ≡ x′′i )
impose equivalence relations for each pair of variables in sets
X andX ′, and inX andX ′′, respectively.

The original work on SAT-based bi-decomposition [16]
proposed the use of interpolation for computing the target
functionsfA andfB. Given that our work focuses on improv-
ing the identification of variable partitions, interpolation can
also be used for computing functionsfA andfB. Similarly to
OR bi-decomposition, AND and XOR bi-decomposition can
be computed by using SAT. Due to space limitations, this
section omits the explanation of SAT-based AND and XOR
bi-decompositions (e.g. see [16]). The approaches proposed
in [16] are referred to asLJH in the remainder of the paper.

SAT-based bi-decomposition [7], [16] proposed a num-
ber of MUS-based techniques for computing good variables
partitions. These include plain MUS computation and, more
recently, group-oriented MUS computation. These approaches
can be viewed as practical engineering solutions for bi-
decomposition oflarge Boolean functions. Nevertheless, these
approaches are heuristic and provide no guarantees regarding
the quality of computed variable partitions.

IV. QBF-BASED BI-DECOMPOSITION

This section develops QBF models for computing Boolean
function bi-decomposition with optimum variable partitions.
The case for OR bi-decomposition is considered first. After-
ward, the paper summarizes AND and XOR bi-decomposition.

A. OR Bi-Decomposition

Observe that, as described above, assignments to theαxi

and βxi
variables specify the setsXA, XB andXC . A key

observation is that formulation (2) above provides the basis for
a natural (albeit incomplete) QBF formulation. Formulation (2)
essentially quantifies existentially theαxi

and βxi
variables

and, by requiring unsatisfiability, quantifies theX,X ′, X ′′

variables universally. This results in the following QBF for-
mulation:

∃αxi
,βxi

, ∀X,X′,X′′ .¬[f(X) ∧ ¬f(X ′) ∧
∧

i

((xi ≡ x′i) ∨ αxi
)

∧¬f(X ′′) ∧
∧

i

((xi ≡ x′′i ) ∨ βxi
)]

(3)

This QBF formulation has a few important drawbacks: (i) the
solution can be a trivial partition; and (ii) the quality of a
non-trivial partition can be arbitrary. As a result, the ability to
control the quality of the computed variable partition, requires
extending (3) as follows:

∃αxi
,βxi

, ∀X,X′,X′′ .¬[f(X) ∧ ¬f(X ′) ∧
∧

i

((xi ≡ x′i) ∨ αxi
)

∧¬f(X ′′) ∧
∧

i

((xi ≡ x′′i ) ∨ βxi
)]

∧fN (αX , βX) ∧ fT (αX , βX)
(4)

where fN (αX , βX) requires a non-trivial variable partition,
and fT (αX , βX) requires the computed variable partition to
respect target metrics, e.g. disjointness or balancedness.

1) Ensuring Non-trivial Partitions:Filtering of trivial par-
titions is achieved through constraints added tofN(αX , βX).
A trivial partition of X is such that eitherX = XA

⋃

XC

or X = XB

⋃

XC holds. In other words, anon-trivial
partition is such thatXA 6= ∅ ∧ XB 6= ∅. This condition is
expressed with cardinality constraintsAtLeast1(

⋃

x∈X αx)∧
AtLeast1(

⋃

x∈X βx).
2) Targeting Disjointness:Constraints on variablesαxi

and
βxi

serve to require target values of disjointness. Observe that
in model (4), the assignment(αx, βx) = (0, 0) denotes that
x ∈ XC . Improvements in disjointness consists of reducing
the size ofXC . This is achieved by computing variable
partitions with a sufficiently small number of pairs(αx, βx)
with (αx, βx) = (0, 0). For a target level of disjointnessǫ,
with 0 ≤ ǫ < 1, let k ∈ N, k = ⌊||X || · ǫ⌋. Hence, the target
constraintfT (αX , βX) is defined as follows:

(
∑

x∈X

αx · βx) ≤ k (5)

Clearly, k is discrete and finite, and so the optimum value
can be computed by iteratively solving QBF (4) for different
values ofk.

Moreover, observe that Boolean function bi-decomposition
exhibits key symmetry properties. For example, setsXA and
XB are indistinguishable, and so the optimum solution is
obtained even if constraint||XA|| ≥ ||XB|| is included in the
problem formulation. This constraint can either be added to
fN(αX , βX) or to fT (αX , βX). In practice, this optimization
reduces substantially the search space of the resulting QBF.



3) Targeting Balancedness:Similarly to the approach for
disjointness, constraints on variablesαxi

andβxi
serve to re-

quire target values of balancedness. Balancedness is improved
if the difference between the number of variablesx in set
XA, i.e. (αx, βx) = (1, 0), and the number of variablesx in
setXB, i.e. (αx, βx) = (0, 1) is minimized. For a target level
of balancednessǫ, with 0 ≤ ǫ < 1, let k ∈ N, k = ⌊||X || · ǫ⌋.
Hence, the target constraintfT (αX , βX) is defined as follows:

0 ≤ (
∑

x∈X

αx · βx −
∑

x∈X

αx · βx) ≤ k (6)

Observe that, as before, the optimum value ofk can be
searched for, by iteratively solving the QBF (4) for different
values ofk. In addition, note that, in this case, the symmetry
betweenXA andXB is automatically removed, by requiring
||XA|| ≥ ||XB||.

4) Integrating Disjointness & Balancedness:In practical
settings, it is often the case that the objective is to achieve
some simultaneous level of disjointness and balancedness.

Definition 4 (Cost of Disjointness and Balancedness):
The cost of Disjointness and Balancedness is the arithmetic
sum of weighted Disjointness and weighted Balancedness,
which is expressed as the following cost function:

∑

̟D ·Disjointness+̟B · Balancedness (7)

where̟D (̟D ∈ [0, 1]) and̟B (̟B ∈ [0, 1]) are weights
for Disjointness and Balancedness, respectively.

Observe that cost function (7) can be simplified if disjoint-
ness and balancedness are equally preferred, i.e.̟D = ̟B =
1. Moreover, if ||XA|| is assumed to be no less than||XB||,
then the cardinality constraint can be simplified as follows.

0 ≤ (
∑

x∈X

αx · βx +
∑

x∈X

αx · βx −
∑

x∈X

αx · βx) ≤ k (8)

wherek ∈ N, k = ⌊||X || · ǫ⌋.
5) Practical Implementation:In practice, the use of the

2QBF formula (4) is not straightforward because it requires
auxiliary variables to encode it into CNF, as required by
most QBF solvers. These auxiliary variables are existentially
quantified in the innermost level of the QBF prefix and
consequently result in a 3QCNF formula.

Consider a 2QBF formula∃Z , ∀X .φ, whereφ is not in CNF.
As indicated above, convertingφ to CNF requires additional
variables, which results in a 3QCNF formula. Instead of using
a solver for QBF formulas with three levels of quantifiers, a
different approach is used, which has been recently suggested
in [12]. Consider the negation of∃Z , ∀X .φ, i.e. ∀Z , ∃X .¬φ.
Observe that if∃Z , ∀X .φ is valid, then∀Z , ∃X .¬φ cannot be
valid. Thus, if the QBF solver provides acounterexamplefor
why ∀Z , ∃X .¬φ cannot be satisfied, it represents a model of
∃Z , ∀X .φ. For QBF (4), the model represents the intended
variable partition. As a result, the 2QBF formula to be used
becomes:

∀αxi
,βxi

, ∃X,X′,X′′ .[f(X) ∧ ¬f(X ′) ∧
∧

i

((xi ≡ x′i) ∨ αxi
)

∧¬f(X ′′) ∧
∧

i

((xi ≡ x′′i ) ∨ βxi
)]

∨¬fN (αX , βX) ∨ ¬fT (αX , βX)
(9)

6) Finding the Optimum: This section summarizes the
approaches that can be used for computing the optimum
disjointness or balancedness. An initial upper bound, on both
disjointness and balancedness, can be obtained with the group-
oriented MUS-based model [7]. Alternatively, the upper bound
can be set to 1. Three strategies have been studied for
computing the optimum disjointness and balancedness values.

Monotonically Increasing (MI) denotes iteratively increas-
ing the value ofk. Monotonically Decreasing (MD) denotes
iteratively decreasing the value ofk. Finally, dichotomic
divide-and-conquer denotes binary search (Bin). In our experi-
ments, the best results for disjointness were obtained using the
sequence: MD→ Bin → MI, where the number of iterations
for each is heuristically chosen. For balancedness the best
results for balancedness were obtained with MI.

B. AND/XOR Bi-Decomposition

AND bi-decomposition is the dual of OR bi-decomposition
and can be converted from the construction of OR bi-
decomposition [7], [16], [21]. The proposed QBF model (9)
is able to decompose¬f into fA ∨ fB. By negating both
sides, f is decomposed into¬fA ∧ ¬fB [16]. QBF-based
XOR bi-decomposition is similar to OR bi-decomposition [7],
[16] and can be explained with an analogous derivation of
the model (9). The full derivation of QBF-based AND/XOR
bi-decomposition is omitted due to lack of space.

V. EXPERIMENTAL RESULTS

The tool, STEP — Satisfiability-based funcTion dEcom-
Position, implements the techniques proposed by this paper.
STEP is implemented in C++, compiled with GCC, and uses
ABC [1] for underlying circuit manipulation. The off-the-shelf
2QBF solver AReQS [12] and MUS solver MUSer [20] were
used for QBF solving and MUS-based pre-processing of QBF
searching bounds, respectively. The proposed QBF models
for targeting solelydisjointness, solely balancedness, and
integrated disjointness and balancedness (with cost function
‘1∗disjointness+ 1∗balancedness‘) were used for computing
theoptimumsolutions; these are termedSTEP-QD, STEP-QB
andSTEP-QDB, respectively. The toolBi-dec implements OR
bi-decomposition ofLJH model1 [16]. STEP-MG represents
group-oriented MUS-based bi-decomposition [7].

Given a circuit, each Boolean function of Primary Output
(PO) is decomposed into smaller sub-functions using the pro-
posed and the earlier models. Each PO is internally represented
by And-Inverter Graph (AIG) within ABC [1]. Theoriginal

1Unfortunately, AND and XOR bi-decompositions of LJH model is un-
available in toolBi-dec. No result of LJH AND, XOR could be shown here.



TABLE I
COMPARISON OF QUALITY METRICS BETWEENOR MODELS

Circuit
Circuit Statistics

OR LJH [16] vs. STEP-{QD,QB,QDB} OR STEP-MG [7] vs. STEP-{QD,QB,QDB}
Disjointness Balancedness Disjointss+Balancedness Disjointness Balancedness Disjointness+Balancedness

#In #InM #Out
STEP-QD Both two are STEP-QB Both two are STEP-QDB Both two are STEP-QD Both two are STEP-QB Both two are STEP-QDB Both two are
better (%) equal (%) better (%) equal (%) better (%) equal (%) better (%) equal (%) better (%) equal (%) better (%) equal (%)

C7552 207 194 108 30.00 70.00 50.00 50.00 0.00 100.00 0.00 100.00 35.29 64.71 16.67 83.33
s15850.1 611 183 684 0.00 100.00 7.69 92.31 7.69 92.31 16.61 83.39 52.10 47.90 14.09 85.91
s38584.1 1464 147 1730 18.60 81.40 70.15 29.85 41.76 58.24 23.14 76.86 84.54 15.46 41.12 58.88
C2670 233 119 140 8.33 91.67 48.72 51.28 11.54 88.46 22.22 77.78 76.92 23.08 42.31 57.69
i10 257 108 224 17.57 82.43 73.23 26.77 18.92 81.08 50.51 49.49 84.87 15.13 21.62 78.38
s38417 1664 99 1742 12.28 87.72 52.65 47.35 6.45 93.55 20.62 79.38 60.94 39.06 4.94 95.06
s9234.1 247 83 250 11.58 88.42 60.78 39.22 8.11 91.89 14.15 85.85 71.30 28.70 18.60 81.40
rot 135 63 107 4.17 95.83 72.92 27.08 8.33 91.67 33.87 66.13 87.10 12.90 30.56 69.44
s5378 199 60 213 10.38 89.62 82.24 17.76 5.00 95.00 17.27 82.73 90.09 9.91 15.00 85.00
s1423 91 59 79 3.85 96.15 42.31 57.69 5.00 95.00 21.21 78.79 51.61 48.39 0.00 100.00
pair 173 53 137 26.60 73.40 82.46 17.54 38.10 61.90 17.02 82.98 96.49 3.51 23.81 76.19
C880 60 45 26 33.33 66.67 81.25 18.75 0.00 100.00 0.00 100.00 87.50 12.50 14.29 85.71
clma 415 42 115 0.00 100.00 37.50 62.50 0.00 100.00 45.45 54.55 76.32 23.68 50.00 50.00
ITC b07 49 42 57 7.69 92.31 84.62 15.38 0.00 100.00 27.78 72.22 94.44 5.56 0.00 100.00
ITC b12 125 37 127 0.00 100.00 12.66 87.34 0.00 100.00 0.00 100.00 13.92 86.08 0.00 100.00
sbc 68 35 84 17.65 82.35 88.24 11.76 21.05 78.95 40.68 59.32 86.89 13.11 36.84 63.16
mm9a 39 31 36 30.00 70.00 38.10 61.90 0.00 100.00 0.00 100.00 64.29 35.71 0.00 100.00
mm9b 38 31 35 11.11 88.89 42.11 57.89 0.00 100.00 8.00 92.00 65.38 34.62 0.00 100.00

circuits were used and sequential circuits were converted into
combinational circuits using ABC [1] command‘comb‘.

This section compares experimental results on the quality
and performance of Boolean function bi-decomposition be-
tween different tools, namelyBi-dec (with its best quality
mode, using command‘bi dec [circuit.blif] or 0 1‘), STEP-
MG (fastest mode ofSTEP) and STEP-{QD,QB,QDB}.
The experiments were performed on a Linux server with
an Intel Xeon X3470 2.93GHz processor and 6GB RAM.
Experimental data were obtained on industrial benchmarks
ISCAS’85, ISCAS’89, ITC’99 and LGSYNTH. Circuits with
zerodecomposable PO functions were removed from the tables
of results. For each circuit, the total timeout was set to 6000
seconds. Each run of the QBF solver was given a timeout
of 4 seconds. Due to space restrictions, only representative
experimental results (for thelarge benchmarks, with#InM
> 30) are shown2.

A. Quality of Variable Partitions

The quality of variable partitions are essential to function
bi-decomposition and determine the overall quality [7], [9],
[16], [17]. STEP-{QD,QB,QDB} can guarantee the quality
of variable partitions. For example, the new QBF models
allow for controllable disjoint, balanced and customized,i.e.
with user-specified cost functions, bi-decompositions. Similar
to [7], [16], [17], disjointnessandbalancednesswere used to
validate the quality of the results obtained with the new QBF
models.

Table I shows the results of quality metrics between models
for OR bi-decomposition. Columns#In, #InM and #Out
denote the number of primary inputs, maximum number of
support variables in POs, PO functions (to be decomposed),
respectively.STEP-{QD,QB,QDB} is bootstrapped with the
result of STEP-MG. Hence, STEP-{QD,QB,QDB} cannot
yield metrics worse thanSTEP-MG. Moreover, the results of
STEP-{QD,QB,QDB} for any PO, even if unable to prove the

2Note that the Figure 1 presents the run times forall 145 circuits.

optimum, were no worse thanBi-dec. As can be observed,
STEP-QD, STEP-QB, and STEP-QDB are in many cases
capable of improving the metrics computed by the other two
tools. Table II summarizes the quality metrics of all models,
where the criterion defined forbettermeans (1)STEP-Dis has
lower disjointness, (2)STEP-Bal has lower balancedness and
(3) STEP-DB has lower sum of disjointness+balancedness.
As can be concluded, the proposed QBF models were able to
bi-decompose Boolean functions whenever possible, whereas
earlier models fail to achieve the best decompositions in many
cases.

B. Practical Performance of QBF Models

Performance is also significant to function bi-decomposition
as logic synthesis involves several iterations of functionde-
compositions [7], [9], [24]. Table III shows the performance
of the proposed models using two performance metrics [7],
[16]: overall performance in seconds (CPU(s)) and the number
of functions that can be decomposed by each tool (#Dec).
Due to space limitations, only results for circuits withlarge
number of support variables (#InM > 30) are presented in
the table2. Figure 1 shows scatter plots comparing the run
times ofSTEP-{QD,QB,QDB} against the other tools. As can
be observed,STEP-{QD,QB,QDB} outperformsBi-dec, but
performs worse thanSTEP-MG. Nevertheless, it is important
to point out that bothBi-dec and STEP-MG compute ap-
proximate solutions, whereasSTEP-{QD,QB,QDB} computes
exact solutions. Table IV shows the percentage of instances
solved bySTEP-{QD,QB,QDB}. As can be observed,STEP-
QD solves close to 92% of the POs,STEP-QB solves close
to 98% of the POs, andSTEP-QDB solves close to 85% of
the POs. These results are promising, given the current pace
of improvement of QBF.

VI. CONCLUSIONS

Boolean function decomposition is ubiquitous in logic
synthesis. This paper addresses Boolean function bi-
decomposition and develops novel QBF models for finding



TABLE II
COMPARISON OF QUALITY METRICS BETWEEN ALL MODELS

OR LJH 1 vs. STEP-QD OR LJH 1 vs. STEP-QB OR LJH 1 vs. STEP-QDB

STEP-QD is Both are STEP-QB is Both are STEP-QDB is Both are
better (%) equal (%) better (%) equal (%) better (%) equal (%)

12.98 87.02 63.53 36.47 25.40 74.60

OR STEP-MG vs. STEP-QD OR STEP-MG vs. STEP-QB OR STEP-MG vs. STEP-QDB

STEP-QD is Both are STEP-QB is Both are STEP-QDB is Both are
better (%) equal (%) better (%) equal (%) better (%) equal (%)

35.85 64.15 79.98 20.02 28.79 71.21

AND STEP-MG vs. STEP-QD AND STEP-MG vs. STEP-QB AND STEP-MG vs. STEP-QDB

STEP-QD is Both are STEP-QB is Both are STEP-QDB is Both are
better (%) equal (%) better (%) equal (%) better (%) equal (%)

27.02 72.98 85.71 14.29 35.12 64.88

XOR STEP-MG vs. STEP-QD XOR STEP-MG vs. STEP-QB XOR STEP-MG vs. STEP-QDB

STEP-QD is Both are STEP-QB is Both are STEP-QDB is Both are
better (%) equal (%) better (%) equal (%) better (%) equal (%)

23.87 76.13 81.44 18.56 24.96 75.04

TABLE III
PERFORMANCE DATA FOROR BI -DECOMPOSITION

Circuit
LJH [16] STEP-MG [7] STEP-{QD,QB,QDB}

#Dec CPU (s) #Dec CPU (s)
STEP-QD STEP-QB STEP-QDB

#Dec CPU (s) #Dec CPU (s) #Dec CPU (s)

C7552 10 625.13 17 16.56 17 50.72 17 25.64 17 56.67
s15850.1 - TO 294 42.83 294 152.53 294 90.58 294 474.60
s38584.1 1065 1912.06 1055 23.12 1055 572.78 1055 117.25 1055 3178.68
C2670 40 258.68 40 3.86 40 39.89 40 16.83 40 81.17
i10 131 2582.97 150 17.18 150 299.46 150 54.37 150 506.55
s38417 - TO 1203 2658.25 1203 4718.92 1203 3487.92 1203 5166.74
s9234.1 102 130.43 114 12.23 114 100.10 114 27.50 114 461.56
rot 49 28.53 62 0.81 62 17.88 62 4.42 62 124.58
s5378 107 47.19 111 3.31 111 82.88 111 11.24 111 345.38
s1423 26 53.45 40 1.63 40 22.14 40 5.13 40 109.54
pair 117 84.42 114 10.50 114 202.11 114 33.00 114 433.46
C880 16 64.72 16 2.03 16 6.65 16 7.44 16 30.21
clma - TO 39 40.90 39 106.27 39 48.01 39 135.24
ITC b07 14 16.38 18 1.47 18 2.44 18 2.07 18 44.73
ITC b12 80 17.80 79 0.44 79 13.14 79 1.97 79 70.27
sbc 51 8.80 62 0.57 62 10.28 62 2.80 62 138.74
mm9a 22 103.38 28 4.16 28 28.29 28 10.20 28 60.58
mm9b 20 95.90 26 7.57 26 34.50 26 13.30 26 59.51

TABLE IV
PERCENTAGE OF SOLVEDPOS WITH STEP-{QD,QB,QDB} FOR OR

BI -DECOMPOSITION

#Out STEP-QD (%) STEP-QB (%) STEP-QDB (%)

38582 91.97 97.81 84.42

optimumbi-decompositions according to the well-established
metrics, namely disjointness and balancedness. In addition,
the paper describes techniques for improving the models and,
consequently, for QBF solving. A key example is breaking
the symmetry between sets of variables in the computed bi-
decomposition. Experimental results obtained on representa-
tive benchmark circuits, demonstrate that the new QBF models
can be solved efficiently with modern 2QBF solvers [12], and

perform comparably with state-of-the-art heuristic solutions
for Boolean function bi-decomposition [7], [13], [16], [17].

Future work will address performance improvements,
through tight integration of the new QBF models with heuristic
SAT-based approaches. Another line of research is to study the
QBF-based bi-decomposition techniques for model checking.
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