arXiv:1112.2313v2 [cs.LO] 14 Dec 2011

QBF-Based Boolean Function Bi-Decomposition

Huan Chen Mikolas Janota Joao Marques-Silva
University College Dublin INESC-ID Unversity College Dublin
Dublin, Ireland Lisbon, Portugal Dublin, Ireland

huan.chen@ucd.ie mikolas.janota@gmail.com jpms@ucd.ie

Abstract—This paper is an extension of[[6]. Boolean function =~ Decomposition of Boolean functions has been extensively
bi-decomposition is ubiquitous in logic synthesis. It entds the studied, and initial work can be traced back to 1950s [2]].[11
decomposition of a Boolean function using two-input simple Tne very first algorithm for bi-decomposition was presented

logic gates. Existing solutions for bi-decomposition are ften . . .
based on BDDs and, more recently, on Boolean Satisfiability. for the AND case in[[19]. The first solution for XOR case

In addition, the partition of the input set of variables is either Was given in [[22]. The general case of bi-decomposing of
assumed, or heuristic solutions are considered for findingapd boolean network was proposed in the warkl[25]. Traditional

partitions. In contrast to earlier work, this paper proposes the approaches[5][[10]. [15].[21].124] use BDDs as the unglerl

use of Quantified Boolean Formulas (QBF) for computing bi- g gata structure. However, BDDs impose severe conssraint
decompositions. These bi-decompositions are optimal in nas . - N .
on the number of input variables circuits can have. It is

of the achieved disjointness and balancedness of the inpuets
of variables. Experimental results, obtained on represerttive also generally accepted that BDDs do not scale for large
benchmarks, demonstrate clear improvements in the qualityof Boolean functions. As a result, recent wolk [7],[13], ][16],

computed decompositions, but also the practical feasibty of [17] proposed the use of Boolean Satisfiability (SAT) and
QBF-based bi-decomposition. Minimally Unsatisfiable Subformulas (MUS) to manipulate
large Boolean functions. This resulted in significant perfo
mance improvements. In addition] [7], ]16] proposed héeigris

Boolean function decomposition is a fundamental teclkpproaches for identifying variable partitions. Expli¢iiut
nique in logic synthesis. Given a complex Boolean functiomeuristically restricted) enumeration of variable pastis [13],
f(X), function decomposition consists of representjfi{d) [16], [17] sometimes produces good solutions, correspandi
as f(X) = h(g1(X),...,gm(X)), often withm < [[X]|, toadequate values of disjointness and balancedness. ldowev
such thath,gi,...,g,» are simpler sub-functions. Booleanit is in general difficult to guarantee the quality of variabl
function decomposition plays an important role in moderpartitions, since the number of possible partitions groxsoe
Electronic Design Automation (EDA), including multi-leve nentially with the number of inputs. This prevents brutecéo
logic synthesis and FPGA synthesis|[15].][18],1[24]. search[[15] in practice.

Bi-decomposition[[4], [Ti7], [[9], [[10], [[16], ([18], [([21],[12B
[25], a special form (withm = 2) of functional decompo-
sition, is arguably the most widely used form of Booleag
function decomposition. Bi-decomposition consists ofatee
posing Boolean functionf(X) into the form of f(X) =
h(fa(Xa,Xco), f8(XB, X)), under variable partitionX =

I. INTRODUCTION

This paper addresses the problem of computing bi-
ecompositions with optimum variable partitions. The opti
mality of achieved variable partitions is measured in terms
of existing metrics, namely disjointness and balancedness
{X4| X | Xc} wherein fewer number of variables are require he proposed solutions are based_ on n_ovel QBF fqr_mula‘uons
or the problem of Boolean function bi-decomposition sub-

in each SUb._Se‘XA’ X and Xc. . e ject to target metrics (e.g. disjointness, balancedndss). e
The qu.allty of Boqlean funpt|on decpmposm_on 'S OfterlI%Sesides the novel QBF formulations, the paper shows how
related with the quality of variable partitions| [7.][9]. 4, bi-decomposition can be computed V\'/iliptimumvalues for
[L7], as an optimal Solution requires fewer input variatzad the target metrics. Experimental results, obtained on-well
simpler sub-functions. g - EXP ' .
Similar to recent work [[7], [[16], [[I7], this paper ad_known benchmarks, demonstrate that QBF-based function
el e bap bi-decomposition performs comparably with recent heigrist

dresses tv_vprelatlve metrics measuring the quality of bl'approaches [7]/TA3]T16] T17], while guaranteeing optim
decompositions, namelylisjointnessand balancednessin X -
variable partitions.

practice, disjointness is in general preferréd][16], siitce
reduces the number of shared input variables betwgeand
fr. In turn, this often reduces complexity of the resulting The paper is organized as follows. Sectloh Il covers the
Boolean networkAbsolutequality metrics are an alternativepreliminaries. Section Il reviews models for Boolean ftiog

to relative quality metrics, and include total variable sgb(X) bi-decomposition. Section 1V proposes the new QBF-based
and maximum partition sizeX) [9]. Nevertheless, absolutemodels. Sectiol V presents the experimental results. Iginal
quality metrics scale worse with the number of inplts [9]. section V] concludes the paper and outlines future work.
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[l. PRELIMINARIES D. Quality Metrics

Variables are represented by $ét= {z1,z2,...,z,}. The The quality of variable partitions mainly impacts the gtyali
cardinality of X is denoted ag|X||. A partition of a setX of bi-decomposition[[7],[[9],[[16], and indirectly impactise
into X; C X fori=1,...,k (with X; 1 X; =0,i # j and decomposed network, e.g. delay, area and power consump-
U; Xi = X) is denoted by{ X;|X>|...|Xx}. A Completely tion [9]. Similar to [7], [16], [17], this paper measures the
Specified Function (CSF) is denoted Iy B” — B. Similar quality of variable partitions through tweelative quality
to the recent work(]7],[[16], this paper assumes CSFs. metrics, namelydisjointnessand balancednessAssume a
variable partition{X 4| Xg|X¢} for f(X), where X4, X5
and X are the sets of the input variables to decomposition
functions f4, fg and common tof4 and 5, respectively.

Definition 2 (Disjointness)ep = “\\);ﬁl‘ denotes the ratio
of the number of common variables to inputs. A values pf
close to 0 is preferred, asp = 0 represents a disjoint bi-

A. Boolean Function Bi-Decomposition

Definition 1: Bi-decomposition [23] for Completely Spec
ified Function (CSF)f(X) consists of decomposingi(X)
under variable partitionX = {X 4| X | X ¢}, into the form of
f(X) = fa(Xa,Xc) <OP> fp(Xp,Xc), where<OP> is
a binary operator, typicallyOR, AND or XOR.

This paper address&R AND and XOR bi-decomposition decomP?SItlon. |||X4H—HXBH\
because these three basic gates form other types of biDefinition 3 (Balancednessyp = —r— denotes
decomposition[[16]. Bi-decomposition is termelisjoint if the absolute size difference betwedny and Xp. eg = 0
|| Xc|| = 0. A partition of X is trivial if X = X4|JXc represents a balanced variable partition.

or X = Xp|JXc holds. Similar to earlier work([7],[[16], In practice, disjointness is preferred since a lower value
[17], this paper addresses non-trivial bi-decompositions ~ represents a smaller number of shared input variables of
B. Boolean Satisfiability the resulting decompos_ed circuit that typically has srr_lalle
) o area and power footprint. A lower balancedness typically
Boolean formulas) and ¢ are defined over a finite set ofcorresponds to smaller delay of the decomposed network.
Boolean variablesX. Individual variables are represented by Tpis paper develops QBF models for achieving disjointness

lowercase letters:, y, z, w and o, and subscripts may be g palancedness targets, or even the optimum solutions.
used (e.gx1). The Boolean connectives considered will-be

—, <+, A, V. When necessary, parentheses are used to enforce IIl. RELATED WORK

precedence. A formula in Conjunctive Normal Form (CNF)  Bi-Decompositions of Boolean functions are either based on
is defined as a set of sets of literals defined¥representing Binary Decision Diagrams (BDDs) or on Boolean Satisfiapilit

a conjunction of disjunctions of literals. A literal is etha (SAT). This section briefly overviews earlier work.

variable or its complement. Each set of literals is refeted . .

as a clause.. Moreover, it is assumed that each clause é BDD-Based Bi-Decomposition

non-tautological. Additional SAT definitions can be foumd i BDDs are a canonical representation of Boolean functions,
standard references (e.al [3]). and have been widely applied in function decompositidn [5],

- [10], [15], [21], [24]. Variants of BDDs have also been con-
C. Quantified Boolean Formulas sidered|[[9], targeting optimization of areg [9], [21], de[&],
Quantified Boolean Formulas (QBF) generalize Boolegg|—[10], [21], and power consumptiofl[9]. Algorithms bese

formulas by quantifying variables, either existentialll) ©r on BDDs have several advantages, including flexible Boolean
universally ). Variables in a QBF being quantified areynction manipulation[21]/]23], on-demand selection afiv
referred to adoundvariables, whereas those not quantified argy|e partitions[[9], [[14], and the ability to handle donire
referred to adreevariables. Throughout this paper, all Booleaggnditions [8], [21]. Algorithms based on BDDs also have
variables in QBF are assumed to be quantified (bound). QREy drawbacks. BDD-based approaches are generally memory
are assumed to be in thprenex form Qip:...Qnpn-¢, intensive, sensitive to variable ordefs [9], restricted tha

with @; € {3,V}, p; are distinct Boolean variables, ard number of primary input$ [16], and on the number of variable
is a propositional formula using only the variablgs and partitions considered.

the constant9) (false), 1 (true). For example, in a QBF . N
J2,Vz.f(x,y, 2), © and z are bound variables angis a free B:- SAT-Based and MUS-Based Bi-Decomposition
variable, prefix isdz, vz and matrix isf(z,y, 2). With the objective of target bi-decomposition of large
The problem of solving a QBF is referred to as quarBoolean functions with a large number of inputs, and cor-
tified satisfiability (QSAT). The general case of a QSATespondingly large number of variable partitions, receatkw
problem is PSPACE-completél![3], which is computationallgroposed SAT-based bi-decomposition/[16] and MUS-based
hard compared to Boolean SAT problems. Restrictions in thédecomposition[[7], [ [16]. SAT-based OR, AND and XOR
number of quantifier alternations characterize the polyimbmbi-decompositions under known and unknown partition of
hierarchy[3]. QBF formulas witlk quantifier alternations, that variables were proposed in [16]. For example, the widelyduse
start with3 are denoted QBJ5, whereas those that start withOR bi-decomposition can be computed by SAT solving [16].
v are denoted QBF. Formulas in QBE 5 areX} -complete, Given a non-trivial variable partitioX = {X4|Xp|Xc}, the
where formulas in QBEy areIl!-complete. following result holds:



Proposition 1: [16] A completely specified functigitX) and, by requiring unsatisfiability, quantifies th€, X' X"
can be written asfa(Xa,Xc) V f(Xp,Xc) for some variables universally. This results in the following QBF-fo
functionsf4 and f if and only if the Boolean formula mulation:

f(Xa, X, Xe)Af (X, X, Xo)Af(Xa, X5, Xe) (1) Jeuw, 0, VX x0 xS F(X) A FX) A N\ (1= ) V aw,)
is unsatisfiable, where variable sét’ is an instantiated i

version of variable set’. A=f(X") A /\((mi =2/)V fa,)]
An instantiatedversion z’ of Boolean variabler can be i
viewed as a new Boolean variahté that replaces:. This ap- 3)

proach assumes that a variable partitiin= {X 4| X | X} T
is given. In practice, such variable partitions are gemeral
unknown and must be automatically derived. One possibi
approach is to consider the following formulation [16]:

his QBF formulation has a few important drawbacks: (i) the
olution can be a trivial partition; and (ii) the quality of a
Bn-trivial partition can be arbitrary. As a result, theldpito
control the quality of the computed variable partition, uigs
extending[(B) as follows:

FX) A =f(XT) A/_\((Iz‘ =) Vog,)

2
AFX) A N =) v By,) @ B oo A NI XY A N (i =) v o)
wherez’ € X’ andz” € X" are instantiated versions afc A=FX) A N (@i =)V Ba,)]
X. a,, andg,, arecontrol variables for enumerating variable i
partitions. By assigning different Boolean valuescdp, and Afn(ax, Bx) A friax, Bx)
B, some of the clause§z; = )V ag, ), ((z; = 2)V Ba,) 4)

are relaxed._ The resulting clauses = Ié)_ and (x_i = z7) where fx(ax, 8x) requires a non-trivial variable partition,
impose equivalence relations for each pair of variablests Sand fr(ax, Bx) requires the computed variable partition to
/ 1 1 H b

X_I?r?dX ’ ".’mdl kaandXSA_:_especgvzl_ya it 16Eespect target metrics, e.g. disjointness or balancedness

€ original work on -vased bi-aecomposilcn [ 1) Ensuring Non-trivial Partitions:Filtering of trivial par-
proposed the use of interpolation for computing the targtelttlons is achieved through constraints addedftd(a x, Ax)
functions f4 and fz. Given that our work focuses on improv-, . . o 9 . AR X
: ; I . " . . A trivial partition of X is such that eithetX = X4 |J X¢
ing the identification of variable partitions, interpotati can or X — XzUXc holds. In other words, aon-trivial
also pe used for c_:qmputing functiofis an.de. Similarl_y 0 partition is sﬁch thatX 4 7£.0) AN Xp # 0. Thié condition is
OR bi-decomposition, AND and XOR bi-decomposition Caﬁxpressed with cardinality constrains Least1(|J o) A
be computed by using SAT. Due to space limitations, thgtLeastl(U 5,) vex Gz

zeX FT)/:

section omits the explanation of SAT-based AND and XO g O . .
2) Targeting DisjointnessConstraints on variables,, and

bi-decompositions (e.g. see [16]). The approaches prapos ) o
in [16] are referred to akJH in the remainder of the paper. ﬂi serve to require target values of disjointness. Observe tha

SAT-based bi-decomposition |[7][_[16] proposed a num?” model [3), the assignmem_bz.z,_ﬂm) = (0,0) .denotes that.
ber of MUS-based techniques for computing good variabl N Xc' Improvemgnt; n d|§10|ntness conS|sts_s of redycmg
partitions. These include plain MUS computation and, mo e size of Xg. This is achieved by computing variable

recently, group-oriented MUS computation. These appresc Qrtitions with a sufficiently small number of pai(as;, 5)

can be viewed as practical engineering solutions for b\Mth (az, 6z) = (0,0). For a target level of disjointness
itho<e< 1, letkeNk=|||X]|le€]. Hence, the target

decomposition ofarge Boolean functions. Nevertheless, thes¥’ ; ; . )

approaches are heuristic and provide no guarantees ragar&PnStramth(o‘X’ Bx) is defined as follows:

the quality of computed variable partitions. o

Y @B <k ()

IV. QBF-BASED BI-DECOMPOSITION =

This section develops QBF models for computing Boolean o o )
function bi-decomposition with optimum variable partita Cl€arly, & is discrete and finite, and so the optimum value
The case for OR bi-decomposition is considered first. Aftefan be computed by iteratively solving QEH (4) for different

ward, the paper summarizes AND and XOR bi-decompositiof@lues ofk. o N
Moreover, observe that Boolean function bi-decomposition

A. OR Bi-Decomposition exhibits key symmetry properties. For example, s€ts and
Observe that, as described above, assignments tewthe Xp are indistinguishable and so the optimum solution is
and 3,, variables specify the set¥ 4, Xp and Xc. A key obtained even if constraiftX 4|| > || X || is included in the
observation is that formulatiohl(2) above provides thesdfsi problem formulation. This constraint can either be added to
a natural (albeit incomplete) QBF formulation. Formulat@@) fn(ax,Bx) or to fr(ax, Bx). In practice, this optimization
essentially quantifies existentially the,, and g,, variables reduces substantially the search space of the resulting QBF



3) Targeting BalancednessSimilarly to the approach for
disjointness, constraints on variables, andj3,, servetore- Vv, 5 Jx x x».[f(X)A=f(X) A /\((a:i =1i) Vay,)
quire target values of balancedness. Balancedness is\etgro ' i

if the difference between the number of variablesn set A=F(X") A /\((xi =2)V 5a,)]
X4, i.e. (g, Bz) = (1,0), and the number of variablesin i ’ '
setXp, i.e. (ag, B) = (0,1) is minimized For a target level Ve fa (o V = fr(a

of balancedness with 0 < e < 1, letk € N, k = [||X]| - €. fwtex, Bx) V=il X’BX(S)))

Hence, the target constraifif (a.x, fx) is defined as follows: 6) Finding the Optimum: This section summarizes the

_ L approaches that can be used for computing the optimum
0< (> aw-Be— > a-f) <k (6) disjointness or balancedness. An initial upper bound, dh bo
r€X z€X disjointness and balancedness, can be obtained with tiip-gro
Observe that, as before, the optimum value kofcan be oriented MUS-based modél [7].Alt_ernatively, the upperrh_xdm
searched for, by iteratively solving the QBH (4) for diffate Can be set to 1. Three strategies have been studied for
values ofk. In addition, note that, in this case, the symmetr§oMputing the optimum disjointness and balancedness sialue
betweenX 4 and X is automatically removed, by requiring Monotonically Increasing (MI) denotes iteratively incsea
1Xall > | X5]l. ing the value ofk. Monotonically Decreasing (MD) denotes

4) Integrating Disjointness & Balancednes#n practical it(_er_atively decreasing the vqlue df. Finally., dichotom_ic
settings, it is often the case that the objective is to aehieflivide-and-conquer denotes binary search (Bin). In oueeixp

some simultaneous level of disjointness and balancednessMeNts: the best results for disjointness were obtainedyub

Definition 4 (Cost of Disjointness and Balancedness): sequence: MD- Bin — MI, where the number of iterations

The cost of Disjointness and Balancedness is the arithmeff?é Gi?c? 'Sb r}eurlsgcally chosent.)tF_or ;aliﬂc&?ness the best
sum of weighted Disjointness and weighted BaIancedneE%,Su S for balancedness were obtained wi :
which is expressed as the following cost function: B. AND/XOR Bi-Decomposition

AND bi-decomposition is the dual of OR bi-decomposition
ZwD-DisjomtneserwB-Balancedness (7) and can be converted from the construction of OR bi-
. decomposition[]7],[116],[[21]. The proposed QBF modsgl (9)
wherewp (wp € [0,1]) andwp (wp € [0,1]) are weights - 07, decomposef into f4 V fg. By negating both

for Disjointness and Balancedness, respectively. . : .
: 2 o sides, f is decomposed intonfa A —fp [16]. QBF-based
Observe that cost functiofl(7) can be simplified if d'S‘Jo'm>'<OR bi-decomposition is similar to ORBbi—decomposition, [7]

ness and balancedness are equally preferredype= wp = [16] and can be explained with an analogous derivation of

L. Moreover, i.f”XAH Is ass_umed to be_no !e_ss theA 5], the model [[(P). The full derivation of QBF-based AND/XOR
then the cardinality constraint can be simplified as follows bi-decomposition is omitted due to lack of space

0< (Z &y - Ba + Z - Bo— Z az-B.) <k (8) V. EXPERIMENTAL RESULTS
zeX zeX zEX The tool, STEP — Satisfiability-based fun€ion dEcom-
wherek € N,k = |[|X]| - ). Position, implements the techniques proposed by this paper.

STEP is implemented in C++, compiled with GCC, and uses
BC [1] for underlying circuit manipulation. The off-thexslf
QBF solver AReQS [12] and MUS solver MUSeér [20] were

5) Practical Implementation:In practice, the use of the
2QBF formula [(4) is not straightforward because it requir

auxiliary variables to encode it into CNF, as required b ) ;
most QBF solvers. These auxiliary variables are existhmtiaMSEd for QBF solving and MUS-based pre-processing of QBF

guantified in the innermost level of the QBF prefix an(ﬁeartchlngt. boun(ilsl, ;ggpgc:wely. Trel pt:olposec:lj QBF n:jodels
consequently result in a 3QCNF formula. or fargeting solelydisjontness solely balancednessan

Consider a 2QBF formuldz, Vx .4, whereg is not in CNF. !rllt*e d%?:iendtn(zzcglnlt:t?:ISanacneddr?:slgr\:\(/:eer(lnjzz d(\;vc;trhcg(;ft :Jtt.ij:]m
As indicated above, converting to CNF requires additional J buting

variables, which results in a 3QCNF formula. Instead ofg|sir¥heOptlmumSOIUtlonS; these are term&IEP-QD, STEP-QB

a solver for QBF formulas with three levels of quantifiers, andSTEP-QDB, respectively. The tod3i-dec implements OR

different approach is used, which has been recently Smesal—decomposnmn ol JH modei] [16]. STEP-MG represents

in [I2]. Consider the negation af,,Vy., i.e. ¥z, Ix o, group-oriented MUS-based bi-decompositibh [7].

Observe that ifiz, Vx.¢ is valid, thenVz,3x.—¢ cannot be (Pgl)vizn dig:ﬁ“g;gﬁ?&fgﬂgﬁgr f;?g_t]lﬁrr:c%gs:?:i‘;y (t)huetpurt)
valid. Thus, if the QBF solver provides@unterexampléor P 9 P

why ¥, 3x.—¢ cannot be satisfied, it represents a model sed and the earlier models. Each PO is internally repteden

3,.¥x.6. For QBF [3), the model represents the intende And-Inverter Graph (AIG) within ABCL[1]. Theriginal

variable partition. As a result, the 2QBF formula to be usedlUnfortunater, AND and XOR bi-decompositions of LJH modsl tin-
becomes: available in toolBi-dec No result of LJH AND, XOR could be shown here.



TABLE |
COMPARISON OF QUALITY METRICS BETWEENOR MODELS

A - OR LJH [16] vs. STEP{QD,QB,QDB} OR STEP-MG [T] vs. STER-QD,QB,QDB}
Circuit Statistics — —— — —

Circuit Disjointness Balancedness Disjointss+Balancedness Disjointness Balancedness Disjointness+Balancedness
#n #nM | #out STEP-QD | Both two are| STEP-QB | Both two are | STEP-QDB | Both two are | STEP-QD | Both two are | STEP-QB | Both two are | STEP-QDB | Both two are

better (%) equal (%) | better (%) equal (%) better (%) equal (%) | better (%) equal (%) | better (%) equal (%) better (%) equal (%)

C7552 207 194 108 30.00 70.00 50.00 50.00 0.00 100.00 0.00 100.00 35.29 64.71 16.67 83.33
s15850.1| 611 183 684 0.00 100.00 7.69 92.31 7.69 92.31 16.61 83.39 52.10 47.90 14.09 85.91
s38584.1| 1464 147 | 1730 18.60 81.40 70.15 29.85 41.76 58.24 23.14 76.86 84.54 15.46 41.12 58.88
C2670 233 119 140 8.33 91.67 48.72 51.28 11.54 88.46 22.22 77.78 76.92 23.08 42.31 57.69
i10 257 108 224 17.57 82.43 73.23 26.77 18.92 81.08 50.51 49.49 84.87 15.13 21.62 78.38
s38417 1664 99 | 1742 12.28 87.72 52.65 47.35 6.45 93.55 20.62 79.38 60.94 39.06 4.94 95.06
$9234.1 247 83 250 11.58 88.42 60.78 39.22 8.11 91.89 14.15 85.85 71.30 28.70 18.60 81.40
rot 135 63 107 4.17 95.83 72.92 27.08 8.33 91.67 33.87 66.13 87.10 12.90 30.56 69.44
s5378 199 60 213 10.38 89.62 82.24 17.76 5.00 95.00 17.27 82.73 90.09 9.91 15.00 85.00
s1423 91 59 79 3.85 96.15 42.31 57.69 5.00 95.00 21.21 78.79 51.61 48.39 0.00 100.00
pair 173 53 137 26.60 73.40 82.46 17.54 38.10 61.90 17.02 82.98 96.49 3.51 23.81 76.19
C880 60 45 26 33.33 66.67 81.25 18.75 0.00 100.00 0.00 100.00 87.50 12.50 14.29 85.71
clma 415 42 115 0.00 100.00 37.50 62.50 0.00 100.00 45.45 54.55 76.32 23.68 50.00 50.00
ITC_b07 49 42 57 7.69 92.31 84.62 15.38 0.00 100.00 27.78 72.22 94.44 5.56 0.00 100.00
ITC_b12 125 37 127 0.00 100.00 12.66 87.34 0.00 100.00 0.00 100.00 13.92 86.08 0.00 100.00
shc 68 35 84 17.65 82.35 88.24 11.76 21.05 78.95 40.68 59.32 86.89 13.11 36.84 63.16
mm9a 39 31 36 30.00 70.00 38.10 61.90 0.00 100.00 0.00 100.00 64.29 35.71 0.00 100.00
mm9b 38 31 35 11.11 88.89 4211 57.89 0.00 100.00 8.00 92.00 65.38 34.62 0.00 100.00

circuits were used and sequential circuits were converted i optimum, were no worse thaBi-dec. As can be observed,
combinational circuits using ABC [1] commancbmb'. STEP-QD, STEP-OQB, and STEP-QDB are in many cases
This section compares experimental results on the qualdgpable of improving the metrics computed by the other two
and performance of Boolean function bi-decomposition b&sols. Tablell summarizes the quality metrics of all models
tween different tools, nameli-dec (with its best quality where the criterion defined fdrettermeans (15TEP-Dis has
mode, using commantbi_dec [circuit.blif] or 0 1'), STEP- lower disjointness, (25TEP-Bal has lower balancedness and
MG (fastest mode ofSTEP) and STEP-{QD,QB,QDB}. (3) STEP-DB has lower sum of disjointness+balancedness.
The experiments were performed on a Linux server withs can be concluded, the proposed QBF models were able to
an Intel Xeon X3470 2.93GHz processor and 6GB RAMi-decompose Boolean functions whenever possible, wherea
Experimental data were obtained on industrial benchmargarlier models fail to achieve the best decompositions inyma
ISCAS’85, ISCAS’'89, ITC'99 and LG®NTH. Circuits with cases.
zerodecomposable PO functions were removed from the tables .
of results. For each circuit, the total timeout was set to0600™ Practical Performance of QBF Models
seconds. Each run of the QBF solver was given a timeoutPerformance is also significant to function bi-decompositi
of 4 seconds. Due to space restrictions, only represeatatds logic synthesis involves several iterations of funciien
experimental results (for thiarge benchmarks, withtinM  compositions[[7],[[9],[[24]. Tablé_ll shows the performanc

> 30) are showrf. of the proposed models using two performance metftics [7],
) ) - [16]: overall performance in secondSRU(s)) and the number
A. Quality of Variable Partitions of functions that can be decomposed by each té@eQ.

The quality of variable partitions are essential to functioDue to space limitations, only results for circuits witirge
bi-decomposition and determine the overall quality [7]}, [9number of support variablegfiiM > 30) are presented in
[16], [17]. STEP-{QD,QB,QDB} can guarantee the qualitythe table?. Figure[1 shows scatter plots comparing the run
of variable partitions. For example, the new QBF modef§mes of STEP-{QD,QB,QDB} against the other tools. As can
allow for controllable disjoint, balanced and customized, be observedSTEP-{QD,QB,QDB} outperformsBi-dec, but
with user-specified cost functions, bi-decompositionmir performs worse tha8S8TEP-MG. Nevertheless, it is important
to [7], [16], [17], disjointnessandbalancednessrere used to to point out that bothBi-dec and STEP-MG compute ap-
validate the quality of the results obtained with the new QBBYoximate solutions, where& EP-{QD,QB,QDB} computes
models. exact solutions. Table_ IV shows the percentage of instances

Table[] shows the results of quality metrics between modeiglved bySTEP-{QD,QB,QDB}. As can be observe&TEP-
for OR bi-decomposition. Columngin, #InM and #0ut QD solves close to 92% of the POSTEP-QB solves close
denote the number of primary inputs, maximum number & 98% of the POs, an8TEP-QDB solves close to 85% of
support variables in POs, PO functions (to be decomposelliig POs. These results are promising, given the current pace
respectively.STEP-{QD,QB,QDB} is bootstrapped with the of improvement of QBF.
result of STEP-MG. Hence, STEP-{QD,QB,QDB} cannot
yield metrics worse thaBTEP-MG. Moreover, the results of

STEP-{QD,QB,QDB} for any PO, even if unable to prove the Boolean function decomposition is ubiquitous in logic
synthesis. This paper addresses Boolean function bi-

2Note that the FigurEl1 presents the run timesair145 circuits. decomposition and develops novel QBF models for finding

VI. CONCLUSIONS



TABLE Il
COMPARISON OF QUALITY METRICS BETWEEN ALL MODELS

OR LIH ! vs. STEP-QD OR LJH ! vs. STEP-QB OR LJH ! vs. STEP-QDB
STEP-QD is Both are STEP-QB is Both are STEP-QDB is Both are
better (%) equal (%) better (%) equal (%) better (%) equal (%)
12.98 87.02 63.53 36.47 25.40 74.60
OR STEP-MG vs. STEP-QD OR STEP-MG vs. STEP-QB OR STEP-MG vs. STEP-QDB
STEP-QD is Both are STEP-QB is Both are STEP-QDB is Both are
better (%) equal (%) better (%) equal (%) better (%) equal (%)
35.85 64.15 79.98 20.02 28.79 71.21
AND STEP-MG vs. STEP-QD| AND STEP-MG vs. STEP-QB| AND STEP-MG vs. STEP-QDB
STEP-QD is Both are STEP-QB is Both are STEP-QDB is Both are
better (%) equal (%) better (%) equal (%) better (%) equal (%)
27.02 72.98 85.71 14.29 35.12 64.88
XOR STEP-MG vs. STEP-QD| XxOR STEP-MG vs. STEP-QB XOR STEP-MG vs. STEP-QDB
STEP-QD is Both are STEP-QB is Both are STEP-QDB is Both are
better (%) equal (%) better (%) equal (%) better (%) equal (%)
23.87 76.13 81.44 18.56 24.96 75.04
TABLE Il
PERFORMANCE DATA FOROR BI-DECOMPOSITION
LIH [16] STEP-MG [[7] STEP{QD,QB,QDB}
Circuit STEP-QD STEP-QB STEP-QDB
fiDec | CPU (s)| #Dec | CPU (s) #Dec | CPU (s) | #Dec | CPU (s) | #Dec | CPU (s)
C7552 10 625.13 17 16.56 17 50.72 17 25.64 17 56.67
s15850.1 - TO 294 42.83 294 152.53 294 90.58 294 474.60
s38584.1| 1065 | 1912.06| 1055 23.12 1055 572.78 1055 117.25 1055 | 3178.68
C2670 40 258.68 40 3.86 40 39.89 40 16.83 40 81.17
i10 131 | 2582.97 150 17.18 150 299.46 150 54.37 150 506.55
s38417 - TO 1203 | 2658.25| 1203 | 4718.92| 1203 | 3487.92| 1203 | 5166.74
s9234.1 102 130.43 114 12.23 114 100.10 114 27.50 114 461.56
rot 49 28.53 62 0.81 62 17.88 62 4.42 62 124.58
s5378 107 47.19 111 3.31 111 82.88 111 11.24 111 345.38
s1423 26 53.45 40 1.63 40 22.14 40 5.13 40 109.54
pair 117 84.42 114 10.50 114 202.11 114 33.00 114 433.46
C880 16 64.72 16 2.03 16 6.65 16 7.44 16 30.21
clma - TO 39 40.90 39 106.27 39 48.01 39 135.24
ITC_bO7 14 16.38 18 1.47 18 2.44 18 2.07 18 44.73
ITC_b12 80 17.80 79 0.44 79 13.14 79 1.97 79 70.27
shc 51 8.80 62 0.57 62 10.28 62 2.80 62 138.74
mm9a 22 103.38 28 4.16 28 28.29 28 10.20 28 60.58
mm9b 20 95.90 26 7.57 26 34.50 26 13.30 26 59.51
TABLE IV

PERCENTAGE OF SOLVEDPOs wITH STEP{QD,QB,QDB} FOROR
BI-DECOMPOSITION

#0ut

STEP-QD (%)

STEP-QB (%)

STEP-QDB (%)

38582

91.97

97.81

84.42

perform comparably with state-of-the-art heuristic siolo
for Boolean function bi-decomposition![7], [13], [16], L7
Future work will address performance improvements,
through tight integration of the new QBF models with helist
SAT-based approaches. Another line of research is to shely t
QBF-based bi-decomposition techniques for model checking

optimumbi-decompositions according to the well-established
metrics, namely disjointness and balancedness. In additio

the paper describes techniques for improving the models and
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