POLITECNICO DI TORINO
Repository ISTITUZIONALE

Exploiting area/delay tradeoffs in high-level synthesis

Original

Exploiting area/delay tradeoffs in high-level synthesis / Kondratyev, A.; Lavagno, Luciano; Meyer, M.; Watanabe, Y.. -
(2012), pp. 1024-1029. (Intervento presentato al convegno Design, Automation & Test in Europe Conference &
Exhibition (DATE), 2012) [10.1109/DATE.2012.6176646].

Availability:
This version is available at: 11583/2501064 since:

Publisher:
IEEE

Published
DOI:10.1109/DATE.2012.6176646

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Publisher copyright

(Article begins on next page)

25 April 2024

© 2012 IEEE. Personal use of this material is permi
be obtained for all other uses, in any current or f
reprinting/republishing this material for advertisi
creating new collective works, for resale or redist
reuse of any copyrighted component of this work in

tted. Permission from IEEE must
uture media, including

ng or promotional purposes,
ribution to servers or lists, or
other works.

Exploiting Area/Delay Tradeoffs in High-level Sye#is

Alex Kondratyev, Luciano Lavagno,

Mike Meyer, Yosinori Watanabe

Cadence Design Systems

San Jose,

Abstract — This paper proposes an enhanced scheduling
approach for high-level synthesis, which relies on a multi-cycle
behavioral timing analysis step that is performed before and
during scheduling. The goal of this analysis is to accurately
evaluate the criticality of operations and determine the most
suitable candidate resources to implement them. The efficiency
of the approach is confirmed by testing it on industrial
examples, where it achieves, on average, 9% area savings after
logic synthesis.

. INTRODUCTION

Historically, the task of high-level synthesis igided into resource
allocation, scheduling and resource binding. Altmoadetermines
which resources will be used, then scheduling arste question
of when (at which state) every operation of thecHmation is

executed, while binding specifies a particular vese (from the
allocated set) to implement every operation.

The approaches known in the literature eitBetve these
problems sequentially or take a naive formulatibthe combined
problem, which is too expensive to solve for pratdesigns. In [1]
it was argued that these problems must be solvgether, in order
to obtain a high-quality implementation, which (&)competitive
with manual design and (2) is guaranteed to be @mphtable
within the given timing constraints. The difficulty due to the tight
relationship between scheduling and binding, bexalis choice of
a resource to implement an operation and its sébede mutually
dependent. For example, if some addition operasiam the critical
path, then the scheduler may either choose theesfast
implementation (e.qg., using carry lookahead) oedcife it in a later
clock cycle using a slower but cheaper implememiage.g., using a
ripple-carry adder).

To break this mutual dependency problem indanglustrial scale
designs, it is not sufficient to simply formulate @mbined
scheduling and binding problem, e.g., using Intedénear
Programming, because the solution space is toe tardind good
solutions. Thus, it is necessary to restrict tHatem space without
sacrificing the quality of results. To address tisisue, we present
an approach that first performsdatailed timing analysis spanning

multiple clock cyclesconsidering the actual pin-to-pin gate-level

delays for the resources. This computes the gaggiential slaclof
each operatiomwithin a behavioral pre-schedule Data Flow Graph
(DFG) [2]. The goal of this timing analysis is twatuate the
criticality of DFG operations by using their seqtiehslack. This
information is then exploited by a subsequédmuristic joint
scheduling and binding step to choose the best atat resource for
a given operation. Contrary to the traditionaliagtof static timing

978-3-9810801-8-6/DATE12/©2012 EDAA

CA, USA

analysis used in logic synthesis, operations cascheduled not just
within one statebut within aset of statesThe problem is therefore
formulated as finding the sequential slack on a D®se vertices
are operations and whose edges are dependencieseebet
operations. We implemented this approach in ourmerial high-
level synthesis tool, and here we discuss its eéxmgetal
effectiveness.

. MOTIVATION

A. Resource variations
The high-level synthesis task is typically don¢hiree steps [2]:

1. Allocationchooses the type and number of resources to use;

2. Schedulinglefines the control steps (states) at which every
operation must be executed, and

3. Bindingbinds every operation to a particular resourcenftioe
multi-set chosen in step 1.

Choosing a proper set of resources during theatitmt step is non-

trivial for two reasons:

1. Some operations may be executed by several typessofirces
(for example addition can be executed by an adddvyoan
adder_subtractor), and

2. Operations may have different widths of operandd,a@ecisions
must be made on how to group them during allocatior
example, assume that two addition operations must b
implemented: add(6,6) and add(3,8) (where numipebsackets
show the width of the operands). Then, one needdetide
whether to allocate an adder(6,8) for both of therto allocate
two different adders, adder(3,8) and adder(6,6).

Allocation becomes prohibitively complex if, in ation to these

two aspects, the designer wants to consider detsyieaariations of

resources of the same type.

Table 1. Area and delay trade-offsfor multiplier and adder

Mul delay(ps) 430 470 510 540 570 610
8*8bit | area 878 662 618 575 545 510
Add delay(ps) 220 400 580 760 940 1220
16bit area 556 254 225 216 210 206

Table 1 shows area/delay trade-offs for resourcggeimented
with the TSMC 90nm library. One can see that amlajdnumbers
for these resources vary widely: 2-3x area andbk.Belay.

The problem of area/delay choices for res@irsaot unique to
HLS. RTL synthesis usually implements a solutioat tstarts from
the fastest possible timing, followed by area recgvor gates with
slack, after timing has been met. A similar apphoaas previously

assumed to work equally well for HLS. In the nexample,
however, we will disprove this claim and show tlatHLS the
separation of timing convergence and area recowey lead to
highly non-optimal solutions.

B. Scheduling example

Consider the SystemC specification shown in FigurAssume that
the desired throughput for this example is 3 clogtles to compute
an interpolation point (outer while loop iteratiof) fit 4 iterations
of the loop in 3 clock cycles, one must unroll thep. This results
in the following DFG (see Figure 2(a)), which regsi the
scheduling of 7 multiplications and 4 additions3irstates, which
requires at least 3 multipliers and 2 adders.

void interpolation::thread() {

while (true) {

for (inti=0;i<3;i++){
X *= deltaX;
deltaX *= scale;
sum += x;

wait();
fx.write(sum);
1}
Figure 1. Example of SystemC specification

Assume a clock cycle of 1100ps and ignore the delay
multiplexors and registers (this simplificationdisne for the sake of
illustration only; our actual implementation esttemthem).

scale

0 X0

deltaxo

scale

Figure 2. Different schedulesfor interpolation example
Case 1. Assuming the fastest resources, and usingdh&oon As

Possible (ASAPpolicy, gives the schedule shown in Figure 2(b),

where dotted lines show state boundaries. Theafigiath includes
two multiplications and one addition, resulting 2M30 + 220 =

1080ps. This satisfies the clock cycle, but givesoat no room for

area recovery: all three multipliers and one adaker on critical

paths. Area recovery for the second adder is plesaitd reduces its
area to 221 units (see Table 2).

Case 2. The opposite strategy is to start scheduling byrassy the
slowest resources, then reduce their delays orflthehen faced
with negative slack. Its result is shown in Figi), and the

critical path (see state 3) again consists of twadtiplications and
an addition, with slightly larger area than in Cagsee Table 2).

The optimal scheduling solution is presented inuFeég2(d) and
Table 2. It provides almost 50% area savings.

This scheduling example illustrates that:

1. Contrary to the RTL methodology, starting from tfastest
resources, followed by with area recovery, may Iteachighly
non-optimal implementations.

2. Starting from the slowest resources and upgradiemton the
fly may also result in highly non-optimal implemations.

3. The scheduler needs guidance on the criticalith@foperations
to be scheduled. If the best delays for addersraultpliers (as
shown in the last row of Table 1) had been knowe,dptimal
scheduling from Figure 2(d) could have been edsind.

To address issues 1-3, we propose to penfouiti-cycle timing
analysis on the DFG to find the (heuristically) best resource for
every operation before scheduling. This provides the type of
guidance to the scheduler that is missing in cotieal algorithms.

Table 2. Comparison of different scheduling solutions

Impl. Mults Adds Area

Case1 | Del:d1=d2=d3 =430 Del: d1=221, d2=621 3408
Area: a1=a2=a3= 877 Area: a1=556, a2=221

Case2 | Del: d1=d2=d3=430 Del: d1=221, d2=550 3419
Area: a1=a2=a3=877 Area: a1=556, a2=232

Opt. Del:d1=d2=d3=550 Del: d1=d2=550 2180
Area: a1=a2=a3= 572 Area: a1=a2=232

1. PRIOR WORK

Timing analysis is typically used in HLS to checkether an

operation can be executed in the current contep st should be
postponed to a later one [3, 4, 5, 6, 7]. For thispose, the
computation of the combinational slack of the opers within a

given control step would suffice. Our setting iffetient because (a)
we want to evaluate the timing mobility of each mgpien within its

lifespan (which can cover several control steps)) @) this analysis
should be performebefore scheduling the given DFG.

[8] was the first work to provide a framework timing analysis
before scheduling. It considers pairwise timingstomints (minimal
and maximal) between operations of the DFG and estgga
constructive way to build a constraint graph whenénimal
constraints are represented by forward edges, wirikximal
constraints are represented by backward edges. duthors
proposed a quadratic procedure for checking cargigt of the
constraint graph, which is unfortunately too timmsuming for a
timing analysis algorithm that must be repeatedteetcheduling
every operation.

[9] proposed to translate the control flow grgi@FG) [2] and
DFG into a netlist whose nodes correspond to ojpest
Connections between operations are mediated by iadpec
“connection timing modules” that are reconfiguralbberepresent
both a wire and a register. The derived networknoidules was
used during path-based scheduling [5] to evaludtielwpart of a
given path fits within the current control step.iS'imodel could
capture moving operations across control stepswast limited to
considering only the combinational slack of openadi

Finally, in [10], a hierarchical timing model wauggested for
modules used in HLS. This model captures both coatlinal and

sequential aspects of module behaviors. It redticeitig analysis
to applying the Bellman-Ford algorithm to the timimonstraint
graph, which is more efficient than the method 8}, but is still
costly for practical applications (see experimenésiults). Another
limitation of the approach in [10] is that it catnmodel the
mobility of operations within several clock cycles.

On the other hand, the idea of performing setjaletiming
analysis is well established in the domain of digdircuit design.
[11] suggested an approach for simultaneous reginsind clock
skew scheduling to improve the clock cycle of @it The kernel
of this approach is a timing evaluation of critigalof gates in a
circuit considering sequential constraints. Theppsed method
minimized the clock cycle by first applying clockesv scheduling
and then retiming to the optimized schedule. Tloegss is iterated
until a fixed point. This method was enhanced i?] [y developing
an efficient timing analysis algorithm that uses retiming
formulation with linear complexity for practical @es (although the
worst case could be quadratic). This work also psep a definition
of sequential slack for gates, expressed in tefmsgguential arrival
and required times, that we will use later for @piens in the DFG.

The novelty of our work is as follows:

1. We propose the notion of a timed DFG that expligifpresents
the lifetimes of operations using a weighting medsa and
considering only forward edges.

2. We show that timing analysis on this DFG is redigciio the
computation of sequential slack [12] of DFG openasi with a
worst case linear complexity.

3. We show that area/delay tradeoffs in resource afioc for
DFG operations are reducible to the sequentiakdhacigeting
problem.

4. We propose a new scheduling framework that is liight
integrated with the timing analysis procedure.

5. All of our algorithms are suitable for arbitraryntml structures,
not just the acyclic DFG considered by most paskwo

IV. BASIC DEFINITIONS

The main definitions are introduced by using tharegle in Figure
3. Following a standard compilation flow, the inmpecification is
elaborated into a control flow graph (CFG) and déa graph
(DFG) [13]. The nodes of the CFG either serve wi/foin control
flow (conditionals and loops in SystemC) or corargp to “wait()”
calls in SystemC (state nodes).

void resizer:filter() {

while (true) {
for (inti=0; i < 1024; i++) {
int x = a.read() + offset;
if (x > th) {
wait(); // sO
y = x / scale - offset;
}else {
wait(); // s1
y =x * b.read();

wait(); // s2
out.write(y);

} o}
Figure 3. Example of SystemC specification
The DFG nodes, on the other hand, represeratqes, while
the DFG edges are data dependencies between thery BFG
operation is associated with a particular edgehefGFG. Figure 4

shows the CFG and DFG for the body of theloop in Figure 3
(state nodes are represented by shaded circles).

The CFG abstracts the computation and shows orgyctintrol
paths and their latency.

Definition 1. [CFG] A CFG is a directed grap8 = (V, E, VO, S)
whereV is a set of nodes, aifitlis a set of directed edges(vl, v2)
vOis the unique “start” node, while SV is a set of state nodes.

Definition 2. [DFG] A DFG is a directed graph = (O, C), where
O is a set of vertices (operations) a@dconnections) is a set of
directed edgex= (01, 02) wherec exists when operatiom2
depends on results producedddy

EdgesE of G are distinguished into forward and backward edges,

where backward edges go from ancestors to predesesgen
doing a depth-first traversal of the CFG from itgyim [13].

The DFG and CFG are related through the use of tman
mappings between DFG operations and CFG edges.

Definition 3. [DFG-CFG mappings]. Given CFGG = (V, E, o, S)
and DFGD = (O, C), mappingbirth: O — E defines the birthday
edge for every DFG operation (which is the edgenedf by the
location of the operation in the source code). Miagpched: O—
E defines the scheduled edge for every DFG operd&titwich is the
edge assigned to an operation as a result oftiesdsding).

For example: for statementsa.read()+offsetandy=x*b.read()
birth(add) = elandbirth(mul) = e4

Loop_top

Main computation

Loop index computation
0

%

If_top

s0 1024

\tad/

e5

If_bottom
e6

s2

e7
Loop_ bottom

@ ®

Figure4. CFG (a) and DFG (b) for thefor loop body

Some operations have no flexibility in schedulifgence their
birthday edges are the only ones where they canlebally
scheduled. Examples of these operations are |/Orabpes
(read/write), because they implement the proto€obenmunication
between the SystemC model and its environment.

To capture the flexibility of scheduling DF@erations on CFG
edges, let us introduce the notioroperation sparfopSpai), which
generalizes the notion of an ASAP/ALAP intervalthe case of an
arbitrarily complex CFG.

Definition 4. [OpSpan] The opSpan of operationo is a

topologlcally ordered set of CFG edggmn(o) = {e,...,q} where:
e, (called the early edge af and denoted byarly(0) is the
“first” edge that is forward reachable from evewgyrlg edge of
any direct predecessor afand

- g (called the late edge ofand denoted bhate(0)) is the “last”
edge from which every late edge of any direct sseoeofo is
reachable.

Below are examples of opSpans for some opasin the DFG
in Figure 4(b)span(wr) = {7} becausevr = out.write(y)is a fixed
operationspan(div) = {el,e2,e4}.

V. TIMING ANALYSIS ON THE DFG
Definition 1. [Latency] 1. Given a pair of CFG edgédsl,e2)the
latency betweenel and e2 (latency(el,e)is defined as the
minimum number of state nodes in all forward pétésveereland
e2 Latency is undefined #2is not forward reachable froel

2. Given DFGD = (O, C), with two mapping®arly(o) andlate(0)
that define early and late edges for everyopfhe latency of DFG
edge (01,02) is defined aslatency(early(ol),early(o2))in the
corresponding CFG.

For the CFG in Figure 4(a), the following @eamples of edge
latencieslatency(e4,e6) = Olatency(el,e7) = &andlatency(e3,e4)
is undefined. For the DFG in Figure 4(b), the lateof (add,div) =
0 because they have the same early exgevhile the latency of
(add,mul)=1 becausenul cannot start earlier thab.

The notion of sequential slack for a node inedlist is known
[12]. A netlist is defined by nodes that are comaltimnal gates and
edges that are connections between gates. Edgesugéghts equal
to the number of flip-flops contained by this coctien. To reuse
the definition of sequential slack for operations, must convert the
DFG to a representation similar to a netlist. Oifécdlty is that
DFG operations are not fixed on particular edgas, ¢an be
scheduled anywhere inside their span. To reprabenflexibility,
we introduce the notion oftaned DFG

Definition 2. [Timed DFG]. Given DFGD = (O, C) with two
mappingsearly(o) and late(o) that define early and late edges fo
every opo, the timed DFGD' = (O', C) is defined as a directed
graph obtained fror® by the following steps:

1. Make DFGD acyclic by excluding backward edges.

2. Remove constant inputs from all operations (coristda not
affect timing).

3. For every operation introduce a sink nodg(o), with an edg®
— s(0),which means thagarly(s(0)) = late(0).

4. Set the weight of every edge to its latency.

Figure 5(a) shows a DFG for the “main computatiéordm the

example in Figure 4 with opSpans of the DFG openatishown in
brackets. Figure 5(b) shows the timed DFG for piése of code.

'
GD e

(a)

Figure5. Construction of timed DFG

Definition 3. [Arrival/required times of DFG operation] Given a
timed DFGD = (O,C), clock periodT and mappinglel: O —R that
for everyo /70O returns its delay, the arrival and required tirfars
operations are defined as follows:

Arr(o)=max(Arr(g)+del(o) — T *latency0;, 0)), q L/Predecessof®)

Arr(o) = 0, if o is a source operation (i.Bredecessors(o) £/)
Req(0) = min (Req{d— del(0) + T*latency0,0)), 0 /7Successof®)
Req(o) = Tif ois a sink operation (i.&uccessors(o) £/)
Definition 4. [Sequential slack of DFG operation]. Given arrival
and required times for operationits sequential slack is computed
asslack(o) = Req(o) — Arr(0)

The proposed algorithm for sequential slacknmotation is
presented in Figure 6. Its complexity is lineartire number of
connections in the DFG

Sequential Slack computation:

1. Given DFG D(O,C) and CFG G(V,E) compute
spans of operations from D

2. Construct timed DFG D ‘(O E"Y) byD

3. Denote by O oea the result of sorting O

topologically

4. Compute operation arrival times in the order
Of O sorted

5. Compute required time in the reverse order
Of (0] sorted

6. Compute sequential slack of DFG operations
Figure 6. Algorithm for sequential slack computation

Let us illustrate the computation of sequérdiack for the timed
DFG, shown in Figure 5(b), under the following amptions: the
delay of I/O operations id, the delay of all other operationss
and the clock cycle i$: D+d < T < 2*D. The results are shown in
Table 3, where arrival times are computed downvetading from
the first row, while required times are computedvag.

Table 3. Sequential slack computation for example 2.

Op Arr(op) Regq(op) slack(op)
rda |0 Req(add) - del(rd_a) =2T - | 2T-4D-d
4D
min(Req(div) - del(add),
- Req(s) — del(add), Req(mul) _
add Arr(rd_a) + del(rd_a) = d — del(add) + T) = 2T - 4D 2T-4Dd
div Arr(add) + del(add) = d + | Req(sub) - del(div) = 2T - | 2T-4D-d
D 3D
sub Arr(div) + del(div) = d + | Reqg(mux) — del(sub) + T= | 2T-4D —d
2D 2T-2D
rdb |0 Req(mul) - del(rd_b) = T - | T-2D-d
2D-d
max(Arr(rd_b)+ del(rd_b), | Req(mux) — del(mul) =T - | T-2D-d
mul Arr(add) -T + del(add))=d | 2D
max(Arr(sub)-T+del(sub), | min(Req(wr) — del(mux) + T, | 2T-4D—d
mux Arr(mul)+ del(mul)) = d + | Req(s)—del(mux))=T-D
3D-T
wr Arr(mux) — 1T + del(mux) | T-del(wr)=T-d 3T-4D-2d
=d+4D-2T

Observing Table 3, one can deduce that the dripath in this
DFG is: rd_a — add — div — sub — mux because these 5
operations have the same minimal value of slackncHe the
important property of combinational slack, namédigttall gates on
the critical path have the same minimal slackréserved.

Definition 4 does not consider clock boundard®n computing
sequential slack. It can be generalized to modifg tslack
computation to respect clock boundaries, by prengnbtperations
from being started too close to the clock edgewiteen their arrival
time plus delay would exceed the clock period. Gleeralization is
straightforward and is omitted for the sake of spdthe sequential

slack that respects clock boundaries when compugngired and
arrival time is callediligned slack

When the sequential slack for every operatioknigwn, one can
use it to perform area recovery in the same fashiis done in
logic synthesis with the zero-slack algorithm [1dlit without the
limitation to a single state.

The zero-slack algorithm identifies a path segimégth minimum
non-zero slack, and then distributes excess delayng gates on
that path segment, updating slack for all affegiatis. This process
is repeated until all gates have zero slack. Exdeksys can also be
distributed unevenly, taking into account senditiéi of the gate
area to delay increase, topology of the networke@avith smaller
fanin would affect fewer paths when their delayarde), etc.

To speed up the budgeting process, one caslasie binningi.e.,
consider the values of slack within some margihe¢dhe same. Our
experiments showed that imposing a margin of 5%hef clock
cycle has negligible effect on the results of theddeting, but
significantly speeds up convergence.

The algorithm for slack budgeting is proposeéigure 7.
Budgeting Sequential Slack:

1. Given DFG D(O,C) and CFG G(V,E) compute
minimal and maximal delays of operations and
construct timed DFG DO L

2. Compute sequential aligned slack in DO
assuming maximal operation delays.

3. Perform budgeting of negative aligned slack
in DO ' by decreasing delays in [min, max]
range. The result is D1 ' and a new
distribution of operation delays del1:0

4. Perform budgeting of positive aligned slack
inD1 ' by increasing delays in [min, max]
range. The result is D2 *and a final
distribution of operation delays del2:0

Figure7. Algorithm for dack budgeting

-R.

In a single budgeting step, the delay of operatican be updated at
most N = slack(o)/margintimes, wheremargin is the size of the
predefined bin in which slack values are considéoede the same.
From this follows that the complexity of budgeting O(C*N),
which is linear for practical examples, in whicmdat is bounded.

VI. SLACK-BASED SCHEDULING

Performing slack budgeting by using the DFG, asiedgabove,

achieves higher quality of results during high-lesgnthesis (as
will be shown in section VII). The ultimate goal @¢heduling is to
relate every operation to a clock cycle and its lemgntation

resource. This is done using two mappingsnd: O —Res

(operations to resources) asdhed: G-E (operations to edges).
Slack information could be used as a quick cheak design

feasibility, before full-fledged scheduling and diing.

Proposition 1. Given CFGG and DFGD = (O,C) with clock period
T, one-to-one mappingind: O —Resthat binds everp /7O to a
dedicatedresource with delaydel(o).If for O o alignedslack(o) >
0, then there exists a sched@euch that in the netlist defined by
scheduleS every resource has a positive combinational slack.

The proof follows from the observation that wali times of
operations in a timed DFG define mappsuiped: G-E (operations
to edges), which together with mappisigd gives the schedul@

One can also deduce that if slack budgetind®& D results in
some operations having negative aligned slack, thene is no
schedule that produces a netlist with positive doatipnal slack.

This immediately follows from the observation thsttaring of
resources has only negative impact on timing.

In addition to providing these easy-to-checkditians for design
feasibility, dack budgeting can be used to improve the quality of
scheduling even in the presence of resource sharing. Consider a
typical scheduling framework [1], whose simplifieéscription is
presented in Figure 8 (initially ignoring stepsiid).

In step 1, a minimal set of resources (typjctike fastest ones) to
implement all operations iD is created. Then the resource- and
timing-constrained scheduling problem is solvedthi current set
of constraints (timing and resources) is infeasible expert system
analyzes the problem and suggests how to relaxstheduling
problem. Relaxation may result in adding a new wes® adding a
state (if allowed by the designer), etc. After thésheduling is
repeated. Either this iterative process succeedgraducing a
feasible schedule, or the expert system conclutEsio relaxation
exists to help scheduling because the design iscomstrained. In
the latter case, one would need to change thefgaditn or some
constraints. As mentioned in Section 2, if the ekpgstem uses the
fastest resources, then area recovery during githesis will be
sub-optimal because it is applied only within egtérstate.

Scheduling algorithm:

Input: DFG D, CFG G, clock period T, Library L,
User constraints U

0. Find optimal delays for operations by slack
budgeting of DFG D.

Create a set of initial resources

Call Schedule_pass

If successful, do area recovery, return success
Else, relax constraints (add resource, add
state, etc) and goto step3

If there is no relaxation contributing to
schedule progress, return failure

AwbhpE

o

Schedule_pass
1. Esi = topologically sorted set of CFG G edges

2. forall einE o
a. schedule ready operations sorted by
priorities
b. if eisthe lastedge in span(o0) and o is not

scheduled, return failure
c. recompute opspan of not-scheduled operations
d. redo slack budgeting and if needed update
resource delays

Figure 8. Scheduling with area/delay tradeoffs

The enhanced algorithm (now considering stefzold) provides a
different starting point for scheduling, by firsbroputing the best
set of possible resources for each operation from globally
budgeted delay/area standpoint. As a result, for criticabmgtions
the fastest resources are created, while for niticatroperations a
slower but more area-efficient version is proposed.

In addition to providing a different startingipbwith a suitably
better set of initial resources, changes must belem@s the
Schedule_passlgorithm itself. Sharing of a resource among
operation®1 ando? effectively results in merging the set of critical
paths forol and 02 and introduces deviations from the timing
analysis made on the original DFG. To take thesangbs into
account, slack budgeting is redone after schedelegy edge. This
requires the recomputation of the opSpan for adirafions not yet
scheduled. Since timing of operations when shaaimgsource may
only worsen, new slack violations may appear andtra fixed by
decreasing the delays of operations.

VIl. EXPERIMENTAL RESULTS

To quantitatively evaluate the effectiveness of theposed
approach, we selected an IDCT algorithm used irwidecoding
and performed an extensive design space explorédioit, using

both pipelined and non-pipelined implementationghviatencies
ranging from 32 to 8 clock cycles. We performedHLS and logic

synthesis runs, for the IDCT exploring a 20X powange, a 7X
throughput range and a 1.5X area range. In all,mesmade sure
that timing was met for the specified clock periafter logic

synthesis.

We first performed high-level synthesis using thenwentional
approach, i.e., using the fastest resources and tising area
recovery. We then compared it with the results of proposed
approach (see Figure 8). The cell area resultsplai@ement, using
a TSMC 90nm library) are shown in Table 4, wherecénv and
A_slack stand for area numbers for the conventiara slack-
based approaches, respectively. They suggest tiiewiing

observations:

Table 4. Area savingsfor timing-based approach
Des | Aconv | Aslack | Save | Des A _conv | A slack | Save

% %

D1 90085 89287 0.1 D9 98506 84932 16.0
D2 | 65441 63974 23 D10 | 103026 | 88481 16.4
D3 67365 57440 17.3 D11 106247 93156 14.2
D4 | 68716 58651 172 | D12 | 105657 | 103305 | 2.3
D5 76888 81566 55 D13 79871 63232 26.2
D6 | 80848 83433 -3.0 D14 | 76963 71290 8.0
D7 83826 88017 4.7 D15 86099 74238 16.0
D8 69210 62524 10.7 | Average savings 8.9

1. Exploiting area/delay tradeoffs has a positive iotp@n
implementation quality, providing on average a 9%aasaving
after logic synthesis.

2. For three designs (D5, D6 and D7), the quality ted slack-
based implementation deteriorates with respect
conventional approach. The analysis shows thdtese designs
most resources end up being timing critical, whades not

provide much room for improvement using a slackebas nqware accelerators.”

approach. The degradation comes from the fact that
scheduler was unable to recover from starting veltbwer
resources and had to restrict sharing to meet gimtnsimilar

customers using our technology, we observe that péfformance
degradation is acceptable for a user, while thenfitation based on
the Bellman-Ford algorithm is impractical (see coents in Section
.

Table 5. Relative scheduling execution times

Conventione Sequentil slack base Bellmar-Ford base
1 1.1¢ 10.2
VIII. CONCLUSIONS

This paper describes an enhanced framework fordsding and

binding in high-level synthesis. It improves oymst approaches
by using a behavioral timing analysis that quatitiédy estimates
the criticality of operations by computing theirgsential slack.

This information is used to choose the most araa/gfficient set of
resources during scheduling. The approach is imghted in a

commercial high-level synthesis tool. Its applicatresults in area
savings of 9% over a conventional approach.

REFERENCES

1. A. Kondratyev, M. Meyer, L. Lavagno, Y. WatanabBealistic
Performance-constrained Pipelining in High-level n®gsis,”
Design, Automation & Test in Conference, pp. 13834, 2011.

2. Giovanni De MicheliSynthesis and Optimization of Digital
Circuits, McGraw-Hill, 1994.

3. D. Gajski, N. Dutt, B. Pangrle, “Silicon comgitan (tutorial),” in
Proc. IEEE Custom Integrated Conference, pp.102-1986.

4. Pierre G. Paulin, John P. Knight, “Force-Diréct&cheduling in
Automatic Data Path Synthesis,” in Proc. DAC, ppb-202, 1987.

5. R. Camposano, “Path-based Scheduling for Syisthd&EEE
Trans on CAD of Integrated Circuits and System§,1@9 no. 1, pp.
85-93, 1991.

6. S. Gupta, N. Dutt, R. Gupta, and Al. NicolauPRK: A High-

be t Level Synthesis Framework for Applying ParallelgiCompiler

Transformations,VLSI Designpp. 461-466, 2003.

7. R. Schreiber et al, “High-level synthesis of pmgrammable
in Proc. IEEE Internaticdbahference on
Application-Specific Systems, Architectures, anddessors, pp.
113-124, 2000.

phenomenon could be observed in the example shown {8 D. Ku, G. Micheli, “Relative scheduling underming

Section 2 (see Table 2) where starting from sloresources
and upsizing them on the fly results in a worsa @nan starting
from the fastest resources.
We also applied our proposed technique to over &@§tomer
designs, which cannot be reported in this paper dae
confidentiality reasons. In general, for those sage which a
significant amount of sequential slack was avadalind our

technigue could suggest a better initial set obuese speed grades,

we observed an average final area improvementafteffo.

Computing timing introduces performance penaltiesrind
scheduling. This was evaluated (Table 5) by prdfithe scheduling
routines applied on design D1 from Table 4. Thatficolumn
corresponds to conventional scheduling, the seceootimn
represents the scheduling time for the proposedkdlased
approach, while the third column provides the salied time for
the proposed approach when timing analysis is dasiag the
Bellman-Ford algorithm as in [10]. Based on ourexignce with

constraints,” in Proc. DAC, pp.59-64, 1990.

9. A. Kuehlmann, R. Bergamaschi, “Timing analysishigh-level
synthesis,” Proceedings of the IEEE/ACM InternatioGonference
on Computer Aided Design (ICCAD '92), pp. 349-35992.

10. N. Chandrachoodan, S. Bhattacharyya, L. Ray‘Tihe
hierarchical timing pair model,” in Proc. of IEEKB8posium on
Circuits and Systems, pp 367-370, 2001.

11. X. Liu, M. Papaefthymiou, E. Friedman, “Maxirnig
performance by retiming and clock skew scheduling,”Proc.
DAC, pp. 231-236, 1999.

12. J. Cong, S. Lim, “Physical planning with retirgj” in Proc. of
ICCAD, pp. 2-7, 2000.

13. Steven S. Muchnick,Advanced Compiler
ImplementationMorgan Kaufmann, 1997.

Design and

14. P. Hauge, R. Nair, E. Yoffa, "Circuit placement fmedictable
performance,” in Proc. of ICCAD, pp. 88-91, 1987.

