
A Scalable GPU-based Approach to Accelerate the
Multiple-Choice Knapsack Problem

Bharath Suri1 Unmesh D. Bordoloi2 Petru Eles2
1Delopt, India 2Linköpings Universitet, Sweden

e-mail: bharath s@delopt.co.in, {unmesh.bordoloi, petru.eles}@liu.se

Abstract—Variants of the 0-1 knapsack problem manifest
themselves at the core of several system-level optimization
problems. The running times of such system-level optimization
techniques are adversely affected because the knapsack problem
is NP-hard. In this paper, we propose a new GPU-based approach
to accelerate the multiple-choice knapsack problem, which is
a general version of the 0-1 knapsack problem. Apart from
exploiting the parallelism offered by the GPUs, we also employ
a variety of GPU-specific optimizations to further accelerate the
running times of the knapsack problem. Moreover, our technique
is scalable in the sense that even when running large instances of
the multiple-choice knapsack problems, we can efficiently utilize
the GPU compute resources and memory bandwidth to achieve
significant speedups.

I. INTRODUCTION

Given a set of items, each associated with a profit and a
weight, the 0-1 knapsack problem deals with how to choose a
subset of items such that the profit is maximized and the total
weight of the chosen items is less than the capacity of the
knapsack. There exists several variants and extensions of this
knapsack problem. In this paper, we focus on the multiple-
choice knapsack (MCK) problem because it is a general
version of the 0-1 knapsack problem. The MCK problem deals
with the case where the items are grouped into disjoint classes
and it will be formally introduced in Section II.
The knapsack problem manifests itself in many domains

like cryptography, financial domain, bioinformatics as well as
electronic design automation. Several algorithms and tools in
the domain of system-level design and analysis techniques are
variants of the knapsack problem. For instance, it has been
shown that a voltage assignment problem and a code-size
reduction problem on multi-processor platform are variants
of the 0-1 knapsack problem [8] and the MCK problem [2],
respectively. The knapsack problem is known to be NP-hard
and hence the running times of large instances of the problem
are significantly high. Moreover, the knapsack problem is
found at the core of optimization loops in system-level
problems [6] which also leads to high running times. While
heuristics [7], approximation schemes [7] and meta-heuristics
[1] have been proposed to solve the problem in polynomial-
time, such techniques do not return the optimal solution.
A dynamic programming algorithm to solve the problem
optimally is known [7], but it has a pseudo-polynomial
running time.

Our contributions and related work: To mitigate the high
running times for solving the knapsack problem, in this paper,
we propose a GPU-based technique. In particular, we map the
dynamic programming algorithm on the GPU and show that
significant speedups can be achieved in terms of the running
times.
Recently, a thread of research work has focused on mapping

various dynamic programming algorithms on to GPUs. A
dynamic programming algorithm builds a table via a number
of iterations, where each iteration fills one row of the table.
Due to data dependencies across the iterations, results from
the previous iterations must be ready before proceeding to the
next iteration. This calls for a synchronization between two
iterations. Typically, CPU-based synchronization approaches
have been used for implementations of dynamic program-
ming algorithms on the GPU and this hampers the potential
speedups. Recent techniques have proposed a GPU-based syn-
chronization technique in order to avoid CPU synchronization
[13], [12]. However, such methods put a limit on the total of
number of threads that can run on each GPU multi-processor
concurrently and this can limit the scalability. In contrast,
our proposed technique is scalable even with a GPU-based
synchronization technique. Moreover, we propose a multi-
phased synchronization scheme that significantly reduces the
number of threads that are otherwise busy waiting.
We would like to mention that GPUs have been deployed

to accelerate system-level design problems based on knapsack
problems [3]. Recently, Boyer et al. [4] reported some results
of solving the knapsack problem on GPUs. However, our
scheme has several advantages over both approaches. First,
they have not leveraged GPU-based synchronization. Second,
unlike above techniques, we configure the thread block size in
synergy with methods to exploit with on-chip memory. More-
over, the papers above did not address the scalability issue.
Finally, we compare our GPU results with implementations on
powerful multi-core platforms. We also note that our efforts are
orthogonal to work on using FPGAs for dynamic programming
and knapsack problems [9].

II. THE MULTIPLE-CHOICE KNAPSACK PROBLEM

In this section, we formally introduce the MCK problem.
Given m classes of items, with each class consisting of ni

items, each item in class i associated with a value of vik and
a weight of wik, and a knapsack of capacity C, the MCK

978-3-9810801-8-6/DATE12/2012 EDAA



problem is to choose exactly one item from each class such
that we maximize the value (profit), while having the total
weight of the chosen items at most equal to C.
We now succinctly describe a well-known dynamic pro-

gramming algorithm [7] that solves the multiple-choice knap-
sack problem in pseudo-polynomial time [7]. For a problem of
capacity C with m classes, the dynamic programming algo-
rithm builds a table with m+1 rows and C +1 columns.The
algorithm iterates m times corresponding to the m items, and
computes the values of all C+1 cells of one row of the table
in each iteration.At each cell j in the ith row, the equation
zi(j)← max(zi(j), zi−1(j −wik) + vik) computes the profit
zi(j) based on the weights wik and the values vik). The time

complexity of the algorithm is O(m ·n ·C), where n =
m∑

i=1

ni.

III. PROPOSED APPROACH

In this section, we present our proposed approach. This is
a short paper and for the sake of brevity, we will assume
that the reader is familiar with the CUDA programming
platform. For a complete description of CUDA, we refer the
reader to NVIDIA’s guide [10]. Our approach has four major
components and they will be described in the following.

A. Identifying data parallelism

To accelerate the dynamic programming algorithm using
GPUs, it is important to identify the dependencies and deter-
mine the data-parallel portions of the algorithm. From Section
II, we see that computation of any cell in a row (zi) depends
on the weights and values of the items in that class and values
in the previous row of the table (zi−1). Thus, there exists
no dependency along the row being computed and we can
compute a single row concurrently via separate threads. With
each thread computing a cell in a row, we launch C+1 threads
to compute a row concurrently. Note that the threads must
not start computation of the values of row i + 1 before all
the cells in the row i have been computed. To ensure this,
a straightforward approach is to perform synchronization on
the host CPU that enforces all threads of row i to run to
completion and then, launch the GPU kernel once again for
the next iteration i + 1. However, this implies that with a
problem instance having m classes of items, we must launch
the kernel m times to compute the entire table which leads
to performance deterioration [13]. We overcome this situation
by using GPU-based global synchronization as discussed in
Section III-C.

B. Shared memory and thread block size

During the computation of the ith row, each thread must
fetch the required input values and weights, i.e., the set
{(vi,1, wi,1), . . . , (vi,ni

, wi,ni
)}, corresponding to the ith class

in the given problem instance. Each time a thread fetches these
data from the Global Memory, there is an additional latency
(see [10]). In order to hide such penalties during memory
accesses, we first note that all threads require the same set
({(vi,1, wi,1), . . . , (vi,ni

, wi,ni
)}) of data. Hence, we pre-fetch

the entire set into the on-chip Shared Memory before the
computation by the threads start.
On-chip Shared Memory is shared only between the threads

of the same thread block [10]. Hence, pre-fetching data into
shared memory hides latencies for threads within a thread
block but each thread block must fetch the data at least once.
Hence, larger thread blocks (i.e., less thread blocks overall)
imply that more threads share the on-chip Shared Memory
and the number of times that data is fetched from the Global
Memory is less, thereby improving the performance. Thus, it
appears as if choosing the largest thread block size allowed
by CUDA hardware would be the optimum choice from the
perspective of performance.

Thread block size: We choose the number of thread blocks
launched (B′) and the number of threads in each thread block
(T ), such that the total number of active threads results in
maximum utilization. We illustrate our choice in the context
of nVIDIA Tesla M2050 but note that the same principle can
be applied to other devices. nVIDIA Tesla M2050 has 14
multi-processors and allows a maximum of 1536 active threads
per multi-processor. We choose 768 threads per thread block
and a total of 28 thread blocks. Such a configuration assigns
two thread blocks or equally, 1536 threads per multi-processor
leading to a 100% utilization or occupation, as encouraged by
CUDA [10]. Hence, in this set-up, B′ = 28 and T = 768. With
a constant number of thread blocks irrespective of the problem
size, we ensure that Global Memory accesses remains limited
even for large problem sizes while ensuring high utilization.
Typically, such a limit the number of thread blocks, and

hence the total number of threads, imposes a limit on the
problem size CUDA can tackle. As an illustration, let us
assume that the thread block size is T . Considering a knapsack
of capacity C, we know the size of the row in the dynamic
programming table is C+1. If each thread computes one cell
of the table, we need ceil(C+1

T
) thread blocks to compute one

row. For problem instances where C is large, ceil(C+1

T
) > B′.

Hence, to ensure scalability, we compute multiple cells with
single thread and this is described in Section III-D.

C. GPU-based synchronization
Recall from Section III-A that we need to synchronize the

threads between two kernel launches. We utilize a GPU-based
synchronization approach instead where the kernel is launched
only once to compute the complete table instead of m times
as required by CPU-based synchronization.
We use inter-block communication via Global Memory to

achieve synchronization. Each thread updates a variable in
Global Memory upon completing its computation. A small
number of threads of size S, where S is the size of the warp,
in each thread block are kept idling in an infinite loop until
this variable in the Global Memory has been updated by all the
other thread blocks as well. A warp in CUDA is essentially the
smallest set of threads that are scheduled in parallel by CUDA.
While S threads are idling for global synchronization, the rest
of threads in the thread block can proceed to pre-fetch data



� � � � �����

��� ���

Fig. 1. Multiple cells computed by each thread in coalesced fashion.
Computation of cells in a single row is divided into several iterations, and in
each iteration the threads from 0 to B′T − 1 compute adjacent cells.

for the next iteration thereby reducing the bottleneck involved
in global synchronization. We note here that according to
CUDA schedulers, the active thread blocks do not yield the
execution. Thus, if S threads of a thread block is waiting on
a global variable, not only this thread block but all other non-
active thread blocks will be deadlocked as well. However, as
described in the previous section, we configure the number
of thread blocks on each multi-processor such that there are
only active thread blocks in our kernels. This does not limit us
from solving large instances of the problem, though, because
we utilize each thread to compute multiple cells of the dynamic
programming table. This will be described in the next section.

D. Single Thread Mutli-cell Computation

We have discussed in Section III-B and Section III-C, that
we configure our thread block size on each multi-processor
to a small number with limited number of threads. This is
in order to ensure (i) high processor utilization and optimize
memory accesses and (ii) facilitate GPU-based synchroniza-
tion. Even with this restricted thread block size, we are able
to solve large problem instances by employing each thread
to compute multiple cells in the dynamic programming table.
Our approach is described below.
Considering B′ thread blocks and each block having T

threads, we have a total of B′T threads. For simplicity of
elucidation, let us consider a problem instance where each
thread computes exactly L cells, L = C+1

B′T
. An intuitive

approach is employ each thread to compute L adjacent cells of
the table. For instance, thread-0 computes 0 . . . L−1, thread-1
computes L . . . 2L−1 and so on. In this approach, computation
of a row of the dynamic programming table is done in L

iterations. During the 1st iteration, thread-0 computes cell
0, thread-1 computes cell L, thread-2 computes cell 2L and
so on, in parallel to exploit the parallelism Section III-A.
During the 2nd iteration, thread-0 computes cell 1, thread-
1 computes cell L + 1, thread-2 computes cell 2L + 1 and
so on. Note, however, that in this approach, threads with
consecutive ids must access non-adjacent memory locations
and this results in a non-coalesced access pattern [10]. This
severely reduces the global memory throughput and impedes
performance. We propose an approach to maintain high global
memory throughput by coalescing global memory access. This
is illustrated in Figure 1. We see that any thread, X , is

Set Number Number of
classes (m)

Capacity
(C)

Problem
size (m×C)

Set 1 5 12665 63325
Set 2 10 15700 157000
Set 3 20 94280 1885600
Set 4 50 390500 19525000
Set 5 100 303500 30350000

TABLE I
PROBLEM INSTANCES

responsible for the cells X in the 1st iteration, X + B′T in
the 2nd iteration and so on until all the C+1 cells in the row
are computed. This means that in each iteration threads with
adjacent ids will compute adjacent cells and accessing adjacent
memory locations leading to coalesced memory access.

IV. EXPERIMENTS AND RESULTS

Experimental setup: Our proposed GPU-based implementa-
tion, henceforth referred to as the CUDA-SYNC, was executed
on a nVIDIA Tesla M2050 GPU, which consists of 14 multi-
processors and a total of 448 processing elements running at
1147 MHz. The GPU was connected to host system via on-
board PCI-express (16x) slot. The host machines consisted of
2 Xeon E5520 CPUs, where each CPU has 4 cores — a total
of 8 cores. Apart from CUDA-SYNC, we also implemented
three other versions on the CUDA in order to illustrate the
improvements achieved from our proposed techniques. First,
we have CUDA-GLOBAL where we have not implemented
any pre-fetching to on-chip Shared Memory, GPU synchro-
nization or multi-cell computation techniques. In this regard,
CUDA-GLOBAL is similar to the existing techniques [3], [4].
Second, we have implemented CUDA-SHARED where we
allow Shared Memory usage but neither GPU synchronization
or multi-cell computation has been included. Finally, we have
also implemented CUDA-MULTI cell that allows multiple
cells to be computed by the same thread but do not include
GPU-based synchronization. We compare the running times of
each of these implementations with CUDA-SYNC and show
that CUDA-SYNC outperforms all of them.
Apart from the GPU implementations, an OpenCL (spec

v1.1) implementation of the dynamic programming algorithm
that was executed on the host to compare how an imple-
mentation on multi-core platform performs against a GPU.
In this implementation, we computed the rows of the dynamic
programming algorithms in parallel in the 8 cores. All the
cores of the host were clocked at 2.27 GHz. We also had a
sequential version (CPU) of the algorithm that ran on a single
core of the host CPU.
To evaluate the performance of the above implementations,

random problem instances of 5 different sizes were gener-
ated. Table I shows the five different problem sets that were
generated for the experiments. In each set, we generated 5
instances and the running times were averaged over these 5
instances. The values and weights in the problem instances
were randomly generated, with no correlation between the
value and weight of an item [11], [5]. In all the instances,
the number of choices in each class (ni) was between 10 and



Fig. 2. Comparison of our proposed CUDA-SYNC algorithm against
sequential CPU and 8-core implementations.

 0

 50

 100

 150

 200

 250

 300

 350

 400

1 2 3

R
u

n
n

in
g

 t
im

es
 (

in
 m

s)

Problem instance

CUDA-SYNC
MULTICORE

Fig. 3. Comparison of our proposed CUDA-SYNC algorithm against multi-
core implementation.

1024. The values and weights (wik) were assigned random
values between 1 and 10000.
Results: We now discuss the results from the experiments
conducted. In case of GPU-based implementations, the run-
ning times reported here also includes the time required to
transfer the input data to the GPU and the time required to
fetch the results from the GPU to the host.
Figure 2 shows the comparison between the running times

of the sequential algorithm (CPU), our proposed CUDA-
SYNC algorithm and the multi-core (8-core) implementation.
For smaller problem instances (1 and 2), the running times
of the GPU and multicore implementations are not visible,
since they coincide with the x-axis. CUDA-SYNC achieves
a tremendous speedup of 220 × over the sequential CPU
implementation. Note that the bars for CPU running times
for problem instance 3, 4 and 5 are truncated so as to fit them
into the figure and the running times are labeled at the top.
Notice that the speedup is higher for larger problem instances.
In Figure 3, we plot the running times of the multi-core

implementation with CUDA for problem sets 1 to 3 because
they were not visible in Figure 2. We report that our CUDA
implementation achieves a speedup of 3-4 × on average over
multi-core implementation. This is despite the fact that all
the eight cores of our multi-core platform run at significantly
higher frequency than the GPU processing elements. This

 0

 200

 400

 600

 800

 1000

 1200

 1400

3 4 5

R
u

n
n

in
g

 t
im

es
 (

in
 m

s)

Problem instance

CUDA-GLOBAL
CUDA-SHARED

CUDA-MULTICELL
CUDA-SYNC

Fig. 4. Comparison of our proposed CUDA-SYNC algorithm against other
CUDA-based implementations.

is due to the significant parallelism that our implementation
can extract from the dynamic programming algorithm as well
as the fact that we have been able to implement various
optimizations like GPU-based synchronization.
In Figure 4, we compare CUDA-SYNC against all the

other CUDA implementations.For clarity, we have plotted
results only for the larger problem instances. CUDA-SYNC
outperforms all the other GPU implementations. This shows
the impact of each feature in our framework that carefully
exploits the dynamic programming characteristics in synergy
with CUDA architectural features. CUDA-SYNC, for example,
is 20% faster than CUDA-GLOBAL (which is similar to
existing techniques [3], [4]) on an average.

REFERENCES

[1] N. K. Bambha, S. S. Bhattacharyya, J. Teich, and E. Zitzler. Systematic
integration of parameterized local search into evolutionary algorithms.
IEEE Trans. Evolutionary Computation, 8(2), 2004.

[2] S. Baruah and N. Fisher. Code-size minimization in multiprocessor
real-time systems. In International Parallel and Distributed Processing
Symposium, 2005.

[3] U.D. Bordoloi and S. Chakraborty. Accelerating system-level design
tasks using commodity graphics hardware: A case study. In International
Conference on VLSI Design, 2009.

[4] V. Boyer, D. El Baz, and M. Elkihel. Solving knapsack problems on
GPU. Comput. Oper. Res., 39:42–47, January 2012.

[5] B. Han, J. Leblet, and G. Simon. Hard multidimensional multiple choice
knapsack problems, an empirical study. Comput. Oper. Res., 37:172–
181, 2010.

[6] H. P. Huynh and T. Mitra. Instruction-set customization for real-time
systems. In DATE, 2007.

[7] H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack problems. Springer,
2004.

[8] H. Liu, Z. Shao, M. Wang, J. Du, C. J. Xue, and Z. Jia. Combining
coarse-grained software pipelining with DVS for scheduling real-time
periodic dependent tasks on multi-core embedded systems. J. Signal
Process. Syst., 57, 2009.

[9] Z. Nawaz, T. P. Stefanov, and K.L.M. Bertels. Efficient hardware gener-
ation for dynamic programming problems. In International Conference
on Field-Programmable Technology, 2009.

[10] NVIDIA. CUDA Programming Guide version 4.0, 2011.
[11] D. Pisinger. Core problems in knapsack algorithms. Oper. Res., 47:570–

575, 1999.
[12] S. Xiao, A. M. Aji, and W. Feng. On the robust mapping of dynamic

programming onto a graphics processing unit. In International Confer-
ence on Parallel and Distributed Systems, 2009.

[13] S. Xiao and W. Feng. Inter-block GPU communication via fast barrier
synchronization. In International Conference on Parallel and Distributed
Systems, 2010.


