
26 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A Network-on-Chip-based turbo/LDPC decoder architecture / Condo, Carlo; Martina, Maurizio; Masera, Guido. -
STAMPA. - (2012), pp. 1525-1530. (Intervento presentato al convegno Design, Automation & Test in Europe Conference
& Exhibition (DATE), 2012 tenutosi a Dresden (D) nel 12-16 Mar. 2012) [10.1109/DATE.2012.6176715].

Original

A Network-on-Chip-based turbo/LDPC decoder architecture

Publisher:

Published
DOI:10.1109/DATE.2012.6176715

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2496859 since:

IEEE

A Network-on-Chip-based turbo/LDPC decoder
architecture

†Carlo Condo, †Maurizio Martina, †Guido Masera

Abstract—The current convergence process in wireless tech-
nologies demands for strong efforts in the conceiving of highly
flexible and interoperable equipments. This contribution focuses
on one of the most important baseband processing units in
wireless receivers, the forward error correction unit, and pro-
poses a Network-on-Chip (NoC) based approach to the design
of multi-standard decoders. High level modeling is exploited
to drive the NoC optimization for a given set of both turbo
and Low-Density-Parity-Check (LDPC) codes to be supported.
Moreover, synthesis results prove that the proposed approach can
offer a fully compliant WiMAX decoder, supporting the whole
set of turbo and LDPC codes with higher throughput and an
occupied area comparable or lower than previously reported
flexible implementations. In particular, the mentioned design case
achieves a worst-case throughput higher than 70 Mb/s at the area
cost of 3.17 mm2 on a 90 nm CMOS technology.

Index Terms—VLSI, LDPC Decoder, NoC, Flexibility, Wireless
communications

I. INTRODUCTION

Wireless communications employ high-performance for-
ward error correction codes as turbo [1] and Low-Density-
Parity-Check (LDPC) [2] codes to achieve reliable transmis-
sion. Excellent error correction performance of turbo and
LDPC codes are obtained at the expense of significant com-
plexity at the decoder side. Even if the implementation of
turbo and LDPC code decoders is a well studied problem in
the literature, two critical needs emerged in the last years: i)
achieving high throughput, ii) granting flexibility and inter-
operability. The intrinsic differences between the turbo and
LDPC decoding algorithms and their iterative nature make
the design of high throughput, flexible turbo/LDPC decoder
architectures a challenging task.

In both turbo and LDPC decoders high throughput is
routinely achieved by employing parallel architectures [3],
[4], where several processing elements (PEs) perform the
decoding algorithm concurrently on different portions of the
received frame. However, PEs require a large bandwidth and
an efficient interconnection structure to concurrently read/write
data from/to the memory. High throughput PEs able to sup-
port both turbo and LDPC decoding [5]–[9] can be im-
plemented as Application-Specific-Integrated-Circuits (ASICs)
or Application-Specific-Instruction-set-Processors (ASIPs). In
general, ASIC solutions achieve higher throughput with lower
complexity as compared to ASIP implementations. However,
ASIP architectures are usually more flexible than ASIC ones.

Stemming from the general Network-on-Chip (NoC)
paradigm [10], Neeb et alii [11] proposed an interesting NoC-
based approach to enable flexible and efficient interconnection

among the processing elements in parallel turbo decoder
architectures. According to [12] this approach, where the
network structure is used to connect PEs belonging to the same
Intellectual Property (IP), is referred to as intra-IP NoC. In [13]
the intra-IP NoC approach is studied in the context of parallel
turbo decoder architectures investigating a number of direct
and indirect networks. A similar approach has been employed
for LDPC decoder architectures [12], [14]. Few recent works
[7], [9], [15] tried to exploit the intra-IP NoC approach to
design flexible turbo/LDPC decoder architectures. However,
from these works it is not clear how the design of the PEs
and the design of the network influence each other. Moreover
most of these implementations are not fully compliant with the
high throughput requirements of modern wireless standards.

This paper exploits the Turbo NoC cycle-accurate simula-
tion tool [16] described in [17], where an extensive analysis
of the performance achieved by various NoC topologies in
the context of turbo decoder architectures is shown. The con-
tribution of this paper is twofold: i) to propose a competitive
intra-IP-NoC-based ASIC architecture for flexible turbo/LDPC
decoding with a clear design flow; ii) to prove that the
flexibility achieved via the intra-IP-NoC-based approach has a
limited impact on the area of the decoder architecture. As
a case of study the WiMAX standard is considered. The
architecture has complexity comparable to the latest state-of-
the-art proposed flexible turbo/LDPC decoders, together with
a higher worst-case throughput, and guarantees multi-standard
compliance and low power consumption.

The paper is organized as follows: in Section II turbo and
LDPC decoding algorithms are summarized, whereas Sections
III and IV deal with the architectures of the NoC inter-
connection structure and the PEs respectively. Experimental
results for the WiMAX standard are shown in Section V and
conclusions are drawn in Section VI.

II. DECODING ALGORITHMS

Algorithms used to decode turbo and LDPC codes are
both iterative and based on data processing and message
passing phases. The two phases can be partially overlapped
employing pipeline architectures to increase the throughput.
In the following paragraphs these algorithms are summarized.

A. Turbo code decoding algorithm

Convolutional turbo codes rely on the parallel concatenation
of two constituent convolutional codes (CC) by the means
of an interleaver. The decoding algorithm is based on the
iterative exchange of extrinsic information between the two978-3-9810801-8-6/DATE12/ c©2012 EDAA

constituent decoders, usually referred to as Soft-In-Soft-Out
(SISO) units. Extrinsic information is exchanged according
to the order imposed by the permutation law defined by the
interleaver. A SISO produces, at each step k, the extrinsic
information of the corresponding uncoded symbol u, that is
λk[u] = σ · (λapok [u] − λaprk [u]) in the Log-Likelihood-Ratio
(LLR) domain where σ ≤ 1 [18]. The a-priori information
λaprk [u] is the extrinsic information produced during the previ-
ous half iteration, whereas the a-posteriori information λapok [u]
is obtained by the means of the BCJR algorithm [1]

λapok [u] =
∗

max
e:u(e)=u

{b(e)} − ∗
max

e:u(e)=ũ
{b(e)} − λk[cu] (1)

where λk[cu] is the systematic component of the intrinsic
information, ũ ∈ U is an uncoded symbol taken as a reference
(usually ũ = 0) and u ∈ U \ {ũ} with U the set of uncoded
symbols; e is a trellis transition and u(e) is the corresponding
uncoded symbol. The

∗
max{xi} function is implemented as

max{xi} followed by a correction term often stored in a
small Look-Up-Table (LUT) [19]. The correction term, usually
adopted when decoding binary codes (Log-MAP), can be
omitted for double-binary turbo codes with minor Bit-Error-
Rate (BER) performance degradation (Max-Log-MAP). The
term b(e) in (1) is defined as:

b(e) = αk−1[sS(e)] + γk[e] + βk[sE(e)] (2)

αk[s] = max
e:sE(e)=s

{
αk−1[sS(e)] + γk[e]

}
(3)

βk[s] = max
e:sS(e)=s

{
βk+1[sE(e)] + γk[e]

}
(4)

γk[e] = λ′k[u(e)] + λk[c(e)] (5)

where sS(e) and sE(e) are the starting and the ending states
of e, αk[sS(e)] and βk[sE(e)] are the forward and backward
metrics associated to sS(e) and sE(e) respectively. The term
λk[c(e)] is the intrinsic information received from the channel.

B. LDPC code decoding algorithm

LDPC codes are characterized by a very sparse M × N
parity-check matrix H and valid codewords x satisfy H ·xT =
0. Each code can be represented as a bipartite graph, known as
Tanner Graph, containing two sets of nodes: Variable Nodes
(VNs) and Check Nodes (CNs). VNs are associated to the
N bits of the codeword, whereas CNs correspond to the
M parity-check constraints. The most common algorithm to
decode LDPC codes is the Belief Propagation (BP) algorithm.
There are two main scheduling schemes for the BP: two-
phase scheduling and layered scheduling [20]. The latter
nearly doubles the converge speed as compared to two-phase
scheduling. In a layered decoder, parity-check constraints are
grouped in layers each of which is associated to a component
code. Then, layers are decoded in sequence by propagating
extrinsic information from one layer to the following one [20].
This process is iterated up to the desired level of reliability.

Let λ[c] represent the LLR of symbol c and, for column k
in H, bit LLR λk[c] is initialized to the corresponding received

soft value. Then, for all parity constraints l in a given layer,
the following operations are executed:

Qlk[c] = λoldk [c]−Rold
lk (6)

Alk =
∑

n∈N(l),n6=k

Ψ(Qln[c]) (7)

δlk =
∏

n∈N(l),n6=k

sgn(Qln[c]) (8)

Rnew
lk = −δlk ·Ψ−1(Alk) (9)

λnewk [c] = Qlk[c] +Rnew
lk (10)

λoldk [c] is the extrinsic information received from the previous
layer and updated in (10) to be propagated to the succeed-
ing layer. Term Rold

lk , pertaining to element (l,k) of H and
initialized to 0, is used to compute (6); the same amount is
then updated in (9), Rnew

lk , and stored to be used again in the
following iteration. In (7) and (8) N(l) is the set of all bit
indexes that are connected to parity constraint l.

According to [21], the Ψ(·) function in (7) and (9) can be
simplified with a limited BER performance loss as

Rnew
lk ≈ −δ′lk · min

n∈N(l),n6=k
{|Qnk|} , (11)

usually referred to as normalized-min-sum approximation,
where δ′lk = σ · δlk and σ ≤ 1.

In a parallel decoder, the decoding algorithms summarized
in previous paragraphs are partitioned among P PEs. When
configured in turbo code mode, these PEs operate as con-
current SISOs, while they execute (6) to (10) in parallel for
P parity check constraints when configured in LDPC code
mode. In both cases, messages are exchanged among PEs to
propagate λapok [u] and λnewk [c] amounts in accordance with the
code structure. In the following, we indicate the j-th message
received and generated by PE i as λ′i,j and λi,j respectively.

III. DESIGN OF THE NOC ARCHITECTURE

Turbo and LDPC decoding have in common a complex
message passing phase, which varies in terms of duration and
intertwining with the parallelism of the decoder. In this section
we study the characteristics of NoC architectures requested to
support both turbo and LDPC decoding. To this purpose, we
start from results presented in [17] for NoC–based decoding of
turbo codes alone and extend them towards inclusion of LDPC
decoding. We also assume the same node architecture detailed
in [17] and shown in Fig. 1: each node in the network is made
of a Routing Element (RE), a Processing Element (PE) and
a memory (MEM) to store the incoming messages. The RE
is based on an F × F crossbar switch with F input FIFOs
and F output registers. t′i,j represents the memory location
where λ′i,j will be stored. In this work we concentrate on
the two most promising node architectures proposed in [17]:
the All-Precalculated (AP) and the Partially-Precalculated
(PP) architectures. The AP architecture makes use of off-
line simulations to compute the routing information of each
node and to store it in a routing memory. Since the routing

read enable load

conf.
crossbar

Location
Memory

Routing
algorithm/memory

Turbo dec. core

LDPC dec. core

input
[0, F − 1]

output
[0, F − 1]

λi,j λ′i,j
PE i MEM i

t′i,j

RE i

1

Figure 1. Node structure

information is precalculated, very complex routing algorithms
can be employed to compute the routing information and this
allows to reduce the depth of input FIFOs. Moreover, this
solution does not require any kind of header in the packet
structure, reducing the width of the input FIFOs. However,
as pointed out in [13], the AP architecture requires additional
memories to store the routing information of all supported
codes. In PP architecture the routing is performed on-line by a
routing algorithm: only t′i,j sequences are precalculated, while
destination node identifiers are included in the packet header.
Details on PE architectures will be given in Section IV.

A. NoC analysis and simulation tool

The SystemC simulator developed in [17] is here used
to extensively analyze the performance of NoC-based LDPC
decoder architectures, in terms of throughput and memory
requirements. A set of parameters is defined to take into
account a large number of possible design choices including
routing algorithms, node architectures and packet structures.
The simulator requires the description of the NoC topology,
i.e. the number of nodes and their links, then, it derives the
communication pattern among the nodes of the network.

In order to evaluate the performance of an NoC-based
LDPC decoder, a pre-processing tool has been developed to
produce equivalent interleavers. Indeed H, the parity check
matrix of the LDPC code, can be transformed in a turbo-like
interleaver once the decoding scheduling and the topology are
chosen. The following flow has been employed to analyze the
performance of NoC-based LDPC decoder architectures.
• The first step is the definition of the graph representation

of the H matrix. Size and structure of this graph depends
on the chosen scheduling. With the layered decoding
approach, the resulting graph has M nodes, and an arc
between row–nodes i and j is defined when a non-zero
entry is present on the same column of both i and j.

• The second step is the choice of the NoC topology and its
degree of parallelism. To this purpose, a set T of various

topologies, including mesh, toroidal mesh, spidergon,
honeycomb, generalized De-Bruijn and generalized Kautz
has been considered.

• The problem of mapping the LDPC codes on a specific
NoC is then formulated in terms of graph partitioning
and solved using the Metis bundle of graph–coloring
algorithms [22]. Once graph nodes are assigned to NoC-
nodes, the equivalent interleaver is constructed. The
framework built around the Metis package checks the
produced interleavers for minimum length and uniform
message distribution, selecting the optimal one for each
code–topology couple.

As a result of these analysis steps, LDPC check nodes are
partitioned among the nodes of each NoC: then, simulation
is used to evaluate the number of cycles required to perform
a decoding iteration with each NoC in T . Simulations are
repeated for several values of the following parameters:
• Processing element output rate (R): is the number of

messages produced by a PE in a clock cycle.
• Routing algorithm: three different routing policies are

embedded in [16]. They rely on the off-line computation
of the shortest paths between nodes. This information
is stored in one or more routing tables. When only
one shortest path is used (one routing table) the routing
algorithm is referred to as Single-Shortest-Path (SSP),
whereas when more shortest paths are computed (multiple
routing tables) the algorithm will be named All-local-
Shortest-Paths (ASP). The first approach described in
[17] is the SSP-Round-Robin (SSP-RR): it is based on
a circling serving policy. Similarly the SSP-FIFO-Length
(SSP-FL) routing algorithm is based on the current status
of input FIFOs. The third approach, named ASP–FIFO-
length-with-Traffic-spreading (ASP-FT), takes in account
all the possible different shortest paths. The serving
policy is a modified version of FL: it keeps a statistic of
sent messages to spread the traffic on the network [17].

• Delay/Send Colliding Message (DCM/SCM): this pa-
rameter activates a collision management technique. A
collision arises when two or more messages require to be
routed to the same output port. In this case, if the DCM
strategy is employed, the first message is routed according
to the selected routing algorithm, whereas the colliding
messages are kept in their FIFOs. On the contrary,
if SCM is used, colliding messages will be randomly
routed to one of the available output ports. Namely, the
configuration of the crossbar switch is chosen to route
non-colliding messages, whereas colliding messages are
treated as “don’t-care”.

• Route Local (RL): this flag allows to choose if local
messages, i.e. messages sent and received by the same
PE, are routed on the network (RL = 1) or are stored in
an internal queue, bypassing the routing (RL = 0).

B. Analysis of NoCs for LDPC codes

In order to show the potential of the NoC approach in the
design of LDPC code decoders, the whole set of WiMAX

Table I
THROUGHPUT [MB/S]/AREA[MM2] FOR WIMAX LDPC N = 2304, r = 0.5 CODE, FOR DIFFERENT TOPOLOGIES, PARALLELISM P , NODE DEGREE D,

ROUTING ALGORITHMS AND NODE ARCHITECTURES. FREQUENCY IS 300 MHZ, TECHNOLOGY IS CMOS 90 NM. RESULTS ARE OBTAINED FOR
PARAMETERS RL = 0, SCM , R = 0.5

D = 2, generalized De Bruijn D = 2, generalized Kautz
P = 16 P = 24 P = 32 P = 36 P = 16 P = 24 P = 32 P = 36

SSP-RR (PP) 37.77/2.02 41.19/3.16 50.16/3.68 50.31/4.02 38.10/2.05 49.23/2.79 48.20/3.67 55.47/3.84
SSP-FL (PP) 42.15/1.82 45.47/3.27 55.12/0.65 56.20/4.18 41.69/1.84 53.09/2.68 55.74/3.61 61.71/0.68
ASP-FT (AP) 42.15/0.40 45.47/0.59 55.12/0.65 56.84/0.71 41.69/0.40 53.09/0.51 55.74/0.64 61.71/0.68

D = 3, spidergon D = 3, generalized Kautz
P = 16 P = 24 P = 32 P = 36 P = 16 P = 24 P = 32 P = 36

SSP-RR (PP) 55.74/0.35 67.11/1.34 70.67/2.69 71.11/3.14 55.74/0.29 78.37/0.47 93.66/0.96 92.65/1.22
SSP-FL (PP) 55.47/0.30 69.82/1.11 75.62/2.59 75.79/3.20 55.74/0.28 77.49/0.43 97.63/0.69 101.05/0.86
ASP-FT (AP) 55.31/0.30 72.45/0.42 76.63/0.64 78.37/0.73 55.74/0.29 77.49/0.35 97.08/0.42 101.05/0.46

D = 4, rectangular honeycomb D = 4, generalized Kautz
P = 16 P = 24 P = 32 P = 36 P = 16 P = 24 P = 32 P = 36

SSP-RR (PP) 55.12/0.42 77.49/0.61 98.46/0.72 97.90/1.03 55.74/0.31 72.45/0.60 70.10/1.06 104.73/0.76
SSP-FL (PP) 55.47/0.39 78.01/0.53 98.18/0.63 106.67/0.87 55.74/0.29 77.84/0.49 72.00/0.98 109.37/0.72
ASP-FT (AP) 55.65/0.40 78.01/0.48 99.03/0.55 109.37/0.58 55.74/0.39 78.01/0.47 100.47/0.54 108.68/0.58

codes has been used as a design case. In Table I the most
relevant results for the WiMAX LDPC code with N = 2304
and rate r = 0.5 are shown. This code is the most demanding
one within WiMAX specification in terms of PE resources.
Given that D = F − 1 is the degree of the topology, for
each topology in T all routing algorithms have been tested
for D = 2, 3, 4 and P = 16, 24, 32, 36. The throughput has
been computed as

T =
(N −M) · fclk

(latcore + ncycles) · Itmax
(12)

where fclk is the clock frequency, Itmax is the maximum
number of iterations, latcore is the maximum latency of the
decoding core and ncycles is the duration of the message
passing phase. Results in Table I have been obtained with (12),
imposing fclk = 300 MHz, Itmax = 10 and latcore = 15
cycles. The value of ncycles is measured by the means of the
simulator [26].

The area occupation is the post synthesis result obtained
with Synopsys Design Compiler on a 90 nm CMOS technol-
ogy. These area results do not take in account the PE and the
incoming message memories.

Generalized Kautz topologies outperform all the other ones
in terms of both throughput and complexity in the case
of LDPC codes. Moreover, D = 3 solutions give higher
throughputs than D = 2 ones, whereas they are comparable
to D = 4 topologies but with lower area occupation.

C. Analysis of NoCs for turbo and LDPC codes

To find the most suited NoC for both turbo and LDPC
decoding according to the WiMAX standard we analyzed the
results shown in [17] for turbo codes and the ones presented in
Table I for LDPC codes. Generalized Kautz topologies show
the best average throughput-to-area ratio both for turbo and
LDPC codes and D = 3 is a good throughput/complexity
trade-off. For LDPC codes the minimum value of P to achieve
the 70 Mbit/s throughput required by the IEEE 802.16e

Table II
THROUGHPUT [MBITS/S]/AREA[MM2] FOR NOC BASED ARCHITECTURES

SUPPORTING ALL WIMAX TURBO AND LDPC CODES

P = 22, D = 3, generalized Kautz, R = 0.5

turbo @ 75 MHz LDPC @ 300 MHz
N = 2400, r = 0.5 N = 2304, r = 0.5

SSP-RR (PP) 74.25/0.63 72.45/0.46
SSP-FL (PP) 74.26/0.60 72.30/0.39
ASP-FT (AP) 73.29/0.69 72.91/0.34

standard, with a 300 MHz clock frequency, is 22. On the
contrary, turbo codes yield a higher than required throughput
with a 22-nodes NoC. Thus, the working frequency for turbo
codes can be lowered to 75 MHz and throughput is still
above limit. For both codes throughput and area show a weak
dependence on the routing algorithm. However, the SSP-FL
routing algorithm guarantees the best average performances
also with different topologies and non-WiMAX codes, thus
being the best choice in terms of flexibility. A choice of the
obtained results are given in Table II for N = 2400 turbo code
and N = 2304, r = 0.5 LDPC code.

IV. DESIGN OF PROCESSING ELEMENT ARCHITECTURES

Each PE includes two distinct decoding cores.

A. LDPC decoding core

For LDPC decoding, the PE must be structured so that all
the block lengths and code rates imposed by the standard
are supported. A simple and effective architecture based on
a sequential processing has been designed. Fig. 2 shows the
architecture of the LDPC decoding core: λoldk [c] values are
read from the λk[c] memory, used to store the incoming
messages received from the network. Similarly, Rold

lk , required
to compute Qlk[c], is stored in a dedicated memory. Then,
Qlk[c] values are compared sequentially in the Minimum
Extraction Unit (MEU) to find the first two minimum values
(11) [21]. A further comparison selects which of the two

CMP

Address

Generator

MEU

 MEMORY

 MEMORY

read address

write address

λnewk [c]

Rnew
lk

λoldk [c]

·σ

Qlk[c]
Rnew

lk

λk[c]

Rold
lk

Rlk

Qlk[c]

Figure 2. LDPC decoding core

BMU ECU
CU

STBBTS

CU

registers

unit

βk[s]

b(e) λk[u]
βk[s]

λaprk [u] γk[e]

βk[s]

BL λk[b]

βk[s]

αk[s]

λk[c(e)]

BL λaprk [b]

βk+1[s]

αk−1[s]

b(e)

αk[s]

Figure 3. Turbo decoding core (SISO)

minimum values is required to update λnewk [c] as in (10).
Concurrently, Rnew

lk values are stored in the Rlk memory for
use during the next iteration. This architecture is completely
independent of the code, but it is limited by the size of
memories. Both λk[c] and Rlk memories must have enough
storage capability to cope with the heaviest possible workload
among the supported codes. Simulations show that the worst
case among WiMAX codes is given by the 1152 parity checks
of degree 6/7 in the N = 2304, r = 0.5 code. Given this
sizing, not only all the other WiMAX codes, but any QC
LDPC code with no superposition of vertexes between nodes
and code with smaller size can be decoded.

B. Turbo decoding core

The proposed solution for the turbo decoding core is the
SISO architecture in Fig. 3. Since the turbo code used in
the WiMAX standard is double-binary each message λi,j
is a vector of three elements. According to [23], sending
bit-level (BL) instead of symbol-level extrinsic information
reduces the NoC complexity of roughly 1/3. Resorting to the
solution proposed in [24] this complexity reduction comes at
the expense of a 0.2 dB BER loss. A dedicated unit, the Bit-
To-Symbol Conversion Unit (BTS CU) converts the incoming
a priori values from bit (BL λaprk [b]) to symbol (λaprk [u])
information, whereas, the Symbol–To–Bit Conversion Unit
(STB CU), converts the processed extrinsic values (λk[u])
before sending them on the network (BL λk[b]). The BMU,
i.e. Branch Metric Unit, is entitled the task of computing the
γk[e] (5). Another unit handles, sequentially, βk[s], αk[s] and
b(e) as in (1). βk[s] values are stored in a set of registers for
use during the calculation of b(e). The Extrinsic Computation
Unit (ECU) produces the updated LLR λk[u]. As in [7], the
number of bits to represent λk[c], αk[s], βk[s] and λk[u] is set
to 7, whereas 5 bits are sufficient for Rlk and λk[c(e)].

The SISO and the LDPC core share their internal memories.
The number of 7-bit memory locations is determined by the
N = 2304, r = 0.5 LDPC code, that needs to store all the

λoldk [c] values (1152×7). On the same λk[c] memory are also
mapped the 22 × 3 × 16 blocks for αk[s] and βk[s], 8 + 8
for each of the 3 windows assigned to every one of the 22
SISOs. The size of the 5-bit Rlk memory is instead fixed by
the 2400 × 4 blocks needed by the SISO for λk[c(e)], while
the LDPC core only needs 1152× 7 for Rlk.

V. RESULTS

As a case of study, a complete turbo/LDPC decoder for
the WiMAX standard has been implemented. Table III shows
the pre–layout synthesis results (2nd row), obtained with
Synopsys Design Compiler on a 90 nm deep sub-micron
CMOS technology [25], together with recent state–of–the–art
dual code decoders. Where possible, worst–case throughput
and the relative code are reported. For the sake of fairness it is
worth noting that [5] and [9] support both WiMAX and LTE
modes. In this work the SISO/LDPC core shared memories
account for 61.8% of the processing core area: SISO-exclusive
logic contributes for 18.6%, while LDPC core-exclusive logic
occupies the remaining 19.6%. Comparison with [9] shows
similar core area occupation, whereas our NoC contributes
for 0.61 mm2, about the 20% of the total area occupation.
Its larger complexity is mainly due to the more distributed
topology and complex node architecture. Both LDPC and
turbo cases in this work show compliance with the WiMAX
standard throughput requirements. LDPC codes are considered
with R = 0.5, and a clock frequency of 300 MHz for both
the NoC and the LDPC core. The worst case values, obtained
for the N = 2304, r = 0.5 code, are still above 70 Mb/s:
in [9], according to the provided formula, for the same code
throughput is below the standard threshold. The best working
conditions for turbo decoding are with R = 0.33. Since the
designed SISO architecture produces two λk[u] every three
clock cycles, it must run at half the clock frequency of the
NoC: fSISO

clk = 0.5fNoC
clk . Moreover sufficient throughput is

obtained with fNoC
clk = 75 MHz, allowing the SISO to run at

37.5 MHz. If fNoC
clk is rescaled to 200 MHz and fSISO

clk to 100
MHz, our worst–case throughput overperforms the best–case
value of [9] (198 vs. 173 Mb/s), despite the higher number of
iterations and the much lower fclk.

This characteristic, together with the lower memory ac-
cesses rate of turbo decoding, results in a large power re-
duction w.r.t. LDPC decoding. It is worth noting that, in the
turbo decoding mode the proposed architecture achieves the
lowest power consumption as compared with [5]–[9].

The architecture in [5] not only supports both WiMAX and
LTE modes but it also features a very small area occupation.
However, it does not reach a high enough throughput for the
WiMAX standard, while our decoder has both smaller area
and higher throughput than [7]. Area occupation is smaller
than [6], but throughput analysis is difficult, since standard
compliance is stated but no minimum values are reported. The
architecture for WiMAX/WiFi LDPC codes and 3GPP-LTE
turbo code presented in [8] runs at 500 MHz and achieves
the highest throughput among compared architectures with
the same complexity as our architecture. A fair comparison

Table III
LDPC/TURBO ARCHITECTURES COMPARISON: CMOS TECHNOLOGY PROCESS (TP), PROCESSING AREA OCCUPATION (Acore), TOTAL AREA

OCCUPATION (Atot) NORMALIZED AREA OCCUPATION FOR 65NM TECHNOLOGY (AN), CLOCK FREQUENCY (fclk)(1 IS fNoC
clk , 2 IS fSISO

clk), PEAK POWER
CONSUMPTION (POW), DATA WIDTH (DW), MAXIMUM NUMBER OF ITERATIONS (Itmax), CODE LENGTH (N) AND RATE (r) AND THROUGHPUT (T)

Decoder P Tp Acore Atot Antot fclk Pow DW Itmax Code N , r T

[nm] [mm2] [mm2] [MHz] [mW] [bits] [Mb/s]

This Work 22 90 2.56 3.17 1.65 300 415 7 – 5 10 LDPC 2304, 0.5 72.00 (min.)
751 – 37.52 59 7 – 5 8 DBTC 4800, 0.5 74.26 (min.)

[9] 8 90 2.44 2.6 1.36 520 N/A 7 – 5 10 LDPC 2304, 0.5 62.5 (min.)
8 – 6 6 DBTC N/A 173 (max.)

[5] 1 65 N/A 0.62 0.62 400 76.8 7 – 5 20 LDPC N/A 27.7 (min.)
8 5 DBTC N/A 18.6 (min.)

[7] 12 45 N/A 0.9 1.88 150 86.1 7 – 5 8 LDPC N/A 71.05 (min.)
7 – 5 8 DBTC N/A 73.46 (min.)

[6] 384 45 N/A 0.94 1.96 333 1000 N/A 25 LDPC N/A 333 (avg.)

[8] 12 90 1.18 3.20 1.67 500 N/A 9 – 6 15 LDPC 2304, 0.5 600 (max.)
9 – 6 6 BTC 6144, 0.3 450 (max.)

is not possible as WiMAX turbo code is not addressed. The
proposed decoder guarantees compliance with WiMAX, but is
not limited to its codes: the SISO can work with any 8 state
Double-Binary-Turbo-Code (DBTC), whereas the LDPC core
can sustain any code smaller than 802.16e ones (e.g. WiFi).

VI. CONCLUSIONS

The design of a fully flexible NoC based turbo/LDPC
decoder is presented, together with custom simulation software
models for a thorough analysis of the NoC architecture. The
proposed decoder implementation offers an unmatched degree
of flexibility and full compliance with the WiMAX standard,
guaranteeing the highest worst–case throughput and small area
occupation compared to the latest state–of–the–art solutions,
together with particularly low power consumption in turbo
mode.

REFERENCES

[1] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit error
correcting coding and decoding: Turbo codes,” in IEEE International
Conference on Comm., 1993, pp. 1064–1070.

[2] R. Gallager, “Low-density parity-check codes,” IRE Trans. on Informa-
tion Theory, vol. 8, no. 1, pp. 21 –28, 1962.

[3] O. Muller, A. Baghdadi, and M. Jezequel, “Exploring parallel processing
levels for convolutional turbo decoding,” in IEEE International Confer-
ence on Information and Communication Technologies: from Theory to
Applications, 2006, pp. 2353–2358.

[4] T. Brack, F. Kienle, and N. Wehn, “Disclosing the LDPC code decoder
design space,” in Design, Automation and Test in Europe, 2006. DATE
’06. Proceedings, vol. 1, 2006, pp. 1–6.

[5] M. Alles, T. Vogt, and N. Wehn, “FlexiChaP: A reconfigurable ASIP for
convolutional, turbo, and LDPC code decoding,” in Turbo Codes and
Related Topics, 2008 5th International Symposium on, 2008, pp. 84 –89.

[6] F. Naessens, B. Bougard, S. Bressinck, L. Hollevoet, P. Raghavan, L. V.
der Perre, and F. Catthoor, “A unified instruction set programmable
architecture for multi-standard advanced forward error correction,” in
IEEE Workshop on Signal Processing Systems, 2008, pp. 31–36.

[7] G. Gentile, M. Rovini, and L. Fanucci, “A multi-standard flexible
turbo/LDPC decoder via ASIC design,” in International Symposium on
Turbo Codes & Iterative Information Processing, 2010, pp. 294–298.

[8] Y. Sun and J. R. Cavallaro, “A flexible LDPC/Turbo decoder architec-
ture,” Jour. of Signal Processing Systems, vol. 64, no. 1, pp. 1–16, 2010.

[9] P. Murugappa, R. Al-Khayat, A. Baghdadi, and M. Jezequel, “A flexible
high throughput multi-ASIP architecture for LDPC and turbo decoding,”
in Design, Automation and Test in Europe Conference and Exhibition,
2011, pp. 1–6.

[10] P. Guerrier and A. Greiner, “A generic architecture for on-chip packet-
switched interconnections,” in Design, Automation and Test in Europe
Conference and Exhibition, 2000, pp. 250–256.

[11] C. Neeb, M. J. Thul, and N. Wehn, “Network-on-chip-centric approach
to interleaving in high throughput channel decoders,” in IEEE Interna-
tional Symposium on Circuits and Systems, 2005, pp. 1766–1769.

[12] F. Vacca, G. Masera, H. Moussa, A. Baghdadi, and M. Jezequel,
“Flexible architectures for LDPC decoders based on network on chip
paradigm,” in Digital System Design, Architectures, Methods and Tools,
2009. DSD ’09. 12th Euromicro Conference on, 2009, pp. 582 –589.

[13] M. Martina, G. Masera, H. Moussa, and A. Baghdadi, “On chip
interconnects for multiprocessor turbo decoding architectures,” Elsevier
Microprocessors and Microsystems, vol. 35, no. 2, pp. 167–181, Mar
2011.

[14] H. Moussa, A. Baghdadi, and M. Jezequel, “Binary De Bruijn onchip
network for a flexible multiprocessor LDPC decoder,” in ACM/IEEE
Design Automation Conference, 2008, pp. 429–434.

[15] ——, “Binary de Bruijn interconnection network for a flexible
LDPC/turbo decoder,” in IEEE International Symposium on Circuits and
Systems, 2008, pp. 97–100.

[16] M. Martina, “Turbo NOC: Network On Chip
based turbo decoder architectures,” downloadable at
http://personal.delen.polito.it/maurizio.martina/turbo.html.

[17] M. Martina and G. Masera, “Turbo NOC: A framework for the design
of network–on–chip–based turbo decoder architectures,” IEEE Trans. on
Circuits and Sistems I, vol. 57, no. 10, pp. 2776 – 2789, 2010.

[18] J. Vogt and A. Finger, “Improving the max-log-MAP turbo decoder,”
IEE Electronics Letters, vol. 36, no. 23, pp. 1937–1939, Nov 2000.

[19] S. Papaharalabos, P. T. Mathiopoulos, G. Masera, and M. Martina,
“On optimal and near-optimal turbo decoding using generalized max∗

operator,” IEEE Comm. Letters, vol. 13, no. 7, pp. 522–524, Jul 2009.
[20] D. Hocevar, “A reduced complexity decoder architecture via layered

decoding of LDPC codes,” in Signal Processing Systems, 2004. SIPS
2004. IEEE Workshop on, 2004, pp. 107 – 112.

[21] J. Chen, A. Dholakia, E. Eleftheriou, M. Fossorier, and X. Y. Hu,
“Reduced-complexity decoding of LDPC codes,” IEEE Trans. on
Comm., vol. 53, no. 8, pp. 1288–1299, Aug 2005.

[22] Family of graph and hypergraph partitioning software. [Online].
Available: http://www.cs.umn.edu/m̃etis

[23] M. Martina and G. Masera, “Improving network-on-chip-based turbo
decoder architectures,” submitted to Jour. of Parallel and Distributed
Computing, available at: http://arxiv.org/abs/1105.1014.

[24] J. H. Kim and I. C. Park, “Bit-level extrinsic information exchange
method for double-binary turbo codes,” IEEE Trans. on Circuits and
Systems II, vol. 56, no. 1, pp. 81–85, Jan 2009.

[25] A. Pulimeno, M. Graziano, and G. Piccinini, “UDSM trends comparison:
From technology roadmap to UltraSparc Niagara2,” IEEE Trans. on
VLSI, 10.1109/TVLSI.2011.2148183, to appear.

