
Error Modeling for Hierarchical

Lossless Image Compression

Paul G. Howard and Je�rey Scott Vitter

A shorter version of this paper appears in Proceedings of the IEEE Data

Compression Conference, Snowbird, Utah, March 23{26, 1992, 269{278.



Error Modeling for Hierarchical

Lossless Image Compression
1

Paul G. Howard2

Visual Communications Research
AT&T Bell Laboratories
Holmdel, N.J. 07733{3030

Je�rey Scott Vitter3

Department of Computer Science
Duke University

Durham, N.C. 27706{0129

Abstract

We present a new method for error modeling applicable to the MLP algorithm

for hierarchical lossless image compression. This method, based on a concept

called the variability index, provides accurate models for pixel prediction errors

without requiring explicit transmission of the models. We also use the vari-

ability index to show that prediction errors do not always follow the Laplace

distribution, as is commonly assumed; replacing the Laplace distribution with a

more general symmetric exponential distribution further improves compression.

We describe a new compression measurement called compression gain, and we

give experimental results showing that the MLP method using the variability

index technique for error modeling gives signi�cantly more compression gain

than other methods in the literature.
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1 Introduction

In this paper we address the question \How well can we hope to compress images
without loss of information, disregarding the computational resources required?" We
present a computation-intensive method that achieves about 7 percent better com-
pression than the lossless mode of the JPEG proposed standard. The signi�cance of
this work is threefold. First, our method can be used in practice when maximumcom-
pression is required. Second, as processors become faster and cheaper, our method
becomes feasible for everyday use. Third, we provide a standard to which we can
compare other faster methods to see how much compression they sacri�ce.

In [2] we introduced a paradigm for lossless image compression including four
components:

� Pixel sequence. Careful selection of the pixel processing order can permit
progressive compression, parallel computation, and improved compression ef-
�ciency.

� Prediction. Accurate prediction of pixel values based on the values of previously
coded pixels allows us to encode only the prediction errors (di�erences between
the actual and predicted values), leading to a great saving of code length. Pre-
dictive coding is the basis for most lossless image compression techniques.

� Error modeling. Precise characterization of the errors inherent in the prediction
process gives us a model that can be used e�ectively by a statistical coder.

� Coding and computational e�ciency. Arithmetic coding allows us to obtain
optimal average code length; Hu�man coding and quasi-arithmetic coding, our
new variant of arithmetic coding, give almost optimal compression with faster
running times.

We also introduced an algorithm for progressive coding based on a hierarchical pixel
sequence. This multi-level progressive algorithm is called MLP. In this paper we focus
on the error modeling component of MLP, and present a practical method of modeling
prediction errors that yields substantial improvements in compression e�ciency.

In the MLP algorithm, the pixels in an image are divided into levels, each level
having twice as many pixels as the preceding one. The pixels in a level are arranged in
a (possibly rotated) checkerboard pattern. Within a level we apply three operations
to each pixel:

1. We predict the pixel's intensity based on the intensities of other nearby pixels
(with known values) in all directions, and compute the prediction error.

2. We �nd an appropriate model for the prediction error, consisting of a probability
distribution speci�ed by a variance and possibly other parameters.

3. We encode the prediction error using the estimated model in conjunction with
a statistical coder.



1 INTRODUCTION 2

1

1

1 1

81

81

81 81

�9

�9

�9

�9

�9

�9

�9

�9

Figure 1: MLP prediction neighborhood. Before MLP processes its last level, the
values of the pixels with circles in them are known. The pixels with numbers in their
circles are used to predict the value of the pixel at the center, marked with a square.
The numbers in the circles are the relative weights given to the predicting pixels; if all
16 points can be used for prediction, the prediction will be the weighted sum of the
predicting pixels divided by 256. All unmarked pixels will also be predicted during
the last level.

The last level of the process is illustrated in Figure 1.
The best predictions come from linear combinations of the nearest 4, 12, or 16

pixels, the coe�cients being chosen to perform polynomial interpolation. Prediction
using 16 pixels is shown in Figure 1; the coe�cients are those which exactly �t a
polynomial of the form

3X
i=0

3X
j=0

aij x
iyj

to 16 data points arranged as in the �gure.
In passing, we note that the predicting pixels are symmetrically placed, and have

only three di�erent weights, namely w1 = 81, w2 = �9, and w3 = 1. Since the weights
are normalized, di�erent prediction methods di�er only in the ratios r21 = w2=w1

and r32 = w3=w2; in this case the ratios are the same: r = r21 = r32 = �1=9. In
practice, we can obtain slightly better compression for many images by using di�erent
predictors for di�erent levels. Using r = 0 for all but the last two levels (giving 4-
point prediction), r = �0:06 for the next-to-last level, and r = �0:12 for the last
level improves compression for most of our test images by about one half percent.
Note also that the corner pixels have very low weights and hardly contribute to the
prediction, so we can safely omit them. These corrections are somewhat ad hoc and
do not give a large improvement, so do not include them in our experimental results.

Arithmetic coding can encode the prediction errors optimally with respect to any
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given error model. Finding a good model is at least as important for compression
e�ciency as making good predictions. Using too 
at a distribution gives too low a
probability (and hence an excessively long code) to small error values, which occur
frequently. On the other hand, using too peaked a distribution allocates too little
probability to large errors. To keep the code length short, we prefer that the error
modeling be done implicitly, with no need to transmit side information about the
models used. Of course, the decoder must be able to mirror any error-modeling
computations performed by the encoder.

In this paper we introduce the notion of error modeling by variability index. In
Section 2 we present and motivate the algorithm. In Section 3 we use the variability
index as an experimental tool to show that prediction errors are not always Laplace
distributed, as is widely assumed. We also indicate a family of distributions that can
provide more accurate error models. In Section 4 we describe experiments showing
that application of the variability index algorithm to Laplace distributions leads to an
improvement in compression e�ciency of about 4 percent compared with implemen-
tations with explicit transmission of variances; further re�nement by allowing a wider
family of error distributions gives another half percent improvement. In Section 5 we
discuss the direction of our current work.

2 Modeling by Variability Index

In this section we assume that prediction errors are random variates from a Laplace
(or symmetric exponential) distribution with zero mean. This assumption is based on
considerable experimental evidence beginning with O'Neal [6], although in Section 3
we provide evidence that Laplace distributions are not always the best models for
predictive coders.

Our goal is to estimate the local variance of the pixel prediction errors in a given
level of the MLP encoding. This will allow us to select the appropriate Laplace distri-
bution (the one with the estimated variance) to use in encoding each pixel's prediction
error by arithmetic coding. Using a single variance for the entire level (as in [2]) dis-
regards local variations in the image; estimating and explicitly encoding variances for
small sections of the image (also done in [2]) incurs considerable overhead. It would
seem that previously encountered prediction errors of nearby pixels would be related
to a given pixel's error, but there is no obvious way to use them directly.

We estimate the variance by an indirect method: for each pixel we compute a
variability index, a quantity strongly correlated with the local variance. On the
supposition that pixels with similar variability index will have similar error models, we
adaptively estimate the local variance based on the variability index. The algorithm
is as follows:

1. For each pixel in the current level, we compute the variability index.

2. We sort the pixels in variability index order.

3. We initialize the variance estimate V . The choice of the initial value of V is not
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critical|for convenience we use the value it had one tenth of the way through
the previous level.

4. For each pixel (in order of decreasing variability index):

(a) We code the prediction error d, using a distribution with zero as its mean
and V as its variance.

(b) We use the prediction error d to update V . The variance is just the mean
squared error; our variance estimate is a weighted mean squared error,
computed by exponential smoothing:

V := f � V + (1 � f) � d2;
where f is a smoothing parameter. Since the prediction error d is coded in
step 4(a), both the encoder and the decoder can use its value in step 4(b).

Note that the variability index is used only for sorting the pixels, then discarded. We
use decreasing variability index order because compression e�ciency is less dependent
on accurate variance estimates for large variances; hence we encode pixels with large
variances �rst in each level, before our variance estimate has stabilized. The sorting
step removes any natural ordering of the pixels, so both the encoder and the decoder
must maintain the pixel coordinates.

We have tried several di�erent quantities for the variability index, including both
intensity values and prediction errors of pixel neighborhoods of various sizes. Em-
pirically, the most e�ective is simply the variance of the four nearest pixels. The
smoothing parameter f must also be selected. Experiments show that the best re-
sults come from a large value like 0.992; smaller values make the estimated variance
too sensitive to random 
uctuations in the variability index.

3 Distribution Selection

When we code the pixels of a level in variability index order, we can plot histograms
of the error distributions for di�erent values of the variability index. A typical set of
plots is shown in Figure 2. Two facts are apparent. First, the error distributions are
not always Laplacian; in fact, for large variability index they appear closer to normal.
Second, the distributions become closer to the Laplace distribution for smaller values
of the variability index.

This leads us to consider a family of generalized symmetric exponential distribu-
tion functions which includes both the Laplace distribution and the normal distribu-
tion. Distributions in this family have the form

fn;�(x) =
�n

�
exp

�
��n

����x�
����n
�
: (1)

From the constraints on a probability distribution with variance �2, we can �nd the
values of parameters �n and �n:

�n =
n

2

 
�(3=n)

�(1=n)3

!
1=2

; �n =

 
�(3=n)

�(1=n)

!n=2

:
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Figure 2: Histograms showing distributions of prediction errors. The top row shows
the actual distributions of prediction errors for eight batches of 16,384 points each
taken from the last level of MLP's coding of Band 4 of the Donaldsonville Thematic
Mapper data set. The variability index decreases from left to right. The second and
third rows show the discretized Laplace distributions and normal distributions with
the same variances as the actual data in the corresponding column. The horizontal
lines are at intervals of 10 percent probability; prediction errors from �20 to +20 are
plotted.

For the Laplace distribution (n = 1), we have �1 = 1=
p
2 and �1 =

p
2; for the

normal distribution (n = 2), we have �2 = 1=
p
2� and �2 = 1=2.

We can use these distributions to optimize the exponent n in Equation (1), either
image by image or for a class of images. The best values of n for our individual test
images range from 1.0 to 1.9, the best overall value being 1.25. For many of our test
images we obtain a further slight improvement when we vary the exponent within
each level; in our experiments we use a given starting exponent and reduce it linearly
toward 1 as we progress through each level. The improvement obtained by using a
non-Laplace distribution is about a half percent; the extra improvement obtained by
varying the exponent within a level is small, as is the improvement from selecting the
optimal exponent image by image.

It appears that the distributions we see are actually mixtures of normal or near-
normal distributions. High variability indices can arise only in regions with high local
variance, so the mixture distribution contains contributions from only a small range
of distributions. Low variability indices, on the other hand, can come either from
regions with low local variance or from the not unusual occurrence of small deviates
in regions with high local variance. The resulting mixture has contributions from
many di�erent distributions, and tends to be more peaked near zero; this gives the
characteristic Laplace distribution shape.
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4 Comparative Results

Our experiments involved compressing 28 eight-bit grayscale images. We report our
results both in terms of compression ratio (original size divided by compressed size)
and in terms of a new measure called compression gain, described in Section 4.1. In
Section 4.2 we brie
y describe the test images and the compression methods com-
pared, and we present the results in narrative, tabular and graphical form.

4.1 Compression gain

A robust measure of compression performance, called compression gain, is introduced
in [2]. Here we give a slightly di�erent formulation, using a more convenient scale.
We de�ne the compression gain by

compression gain = 100 loge

reference size

compressed size
; (2)

where the reference size and compressed size are expressed in the same units, usually
either total bytes in the �le or average bits per pixel. Compression gain is expressed
in percent log ratio, denoted by the �

� sign. Since loge(1 + x) � x for small x, a
di�erence of any given small percent log ratio means almost the same thing as the
same di�erence expressed as an ordinary percentage. For the reference size we may
choose the original �le size, the zero-order entropy of the �le, or the size of the
compressed �le produced by some standard lossless compression method.

The logarithm in Equation (2) gives us additivity, so we can simply subtract the
compression gains of two methods to �nd the di�erence between them, expressed
in a percentage-like quantity. Coding e�ects, often expressed as percentages of code
length, can be given as losses that can simply be subtracted from the compression gain
of the modeling method. In this form we can clearly separate coding and modeling,
and we can see how tiny the coding e�ects are. The gain/loss terminology is natural:
larger numbers mean better compression.

4.2 Test procedures and results

The 28 images comprising our test data include 21 Landsat Thematic Mapper images
and seven other images (the \USC images") widely used in compression studies.
There are three Landsat data sets, each consisting of seven images (spectral bands);
the locations are Washington, D.C., Donaldsonville, Louisiana (90 kilometers west of
New Orleans), and Ridgely, Maryland (70 kilometers southeast of Baltimore). Each
band is coded independently of the other bands; we do not attempt to make use of
the correlation between bands in a data set. All images consist of 512 � 512 8-bit
grayscale pixels except the Ridgely images, which are 368 � 468 pixels. Each of the
Landsat data sets contains one highly compressible image (compressible to better
than 8 : 1) and six \normal" images.

In Table 1 we report compression ratios for all 28 images using a number of com-
pression methods, including three versions of the MLP algorithm. The same results
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are presented as compression gains in Table 2, and in graphical form in Figure 3. To
avoid cluttering the graphs in Figure 3 we include results for only one version of MLP,
and to keep the scale large we omit data for the three highly compressible Landsat
images.

The CCITT/ISO Joint Photographic Experts Group (JPEG) has recently pro-
posed a standard for image compression [1] that addresses both lossless and lossy
compression. We compare our results with the lossless mode of the JPEG proposed
standard. The JPEG lossless mode is based on prediction by one, two, or three points,
followed by Hu�man coding or arithmetic coding; encoding proceeds in raster scan
order. The standard gives some latitude to implementors; we report results from an
implementation based on two-point prediction with arithmetic coding. For all except
the three highly compressible Landsat images, two-point prediction provides 4�� to
10�� more compression gain than three-point prediction. We also include results for
the Minimax coder, AT&T's original lossless compression submission to the JPEG,
and for the Unix compress program. Figures for the Minimax coder are available
only for the Landsat images, not the USC images.

We report results for three versions of the MLP algorithm. The �rst is the orig-
inal MLP algorithm, with limited error modeling: we assume Laplace distributions
and compute and transmit a single variance for each level. The second also uses
Laplace distributions, and estimates variances using the variability index technique,
with scaling factor f = 0:992. In the third we use Equation (1) with n starting at 1:5
in each level, falling to n = 1 (Laplace) by the end of each level. This is the method
included in Figure 3. As noted in Section 2, there is only a small improvement when
we optimize n for each image or vary the exponent within each level. Optimizing for
each image requires compressing each image many times, so we omit that step in our
reported results; varying the exponent within each level is a simple procedure that
does improve compression slightly, so we include that step.

Here we summarize the methods tested together with the abbreviations used in
Tables 1 and 2 and Figure 3.

Abbreviation Compression Method

JPEG JPEG lossless mode, with two-point prediction

Original Our MLP method, using Laplace distributions and
a single variance for each level

n = 1 Our MLP method, using Laplace distributions and
variance estimation by variability index

n = 1:5 to 1 (MLP{VI) Our MLP method using the variability index, with
the exponent varying from 1.5 to 1.0 in each level

MM coder AT&T Minimax coder, with two-point prediction
compress Unix compress program

In our experiments we �nd that using MLP with the variability index technique
gives the best compression for all images; it is about 7 percent better than JPEG
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Multi-level Progressive (MLP)

Image JPEG Original
Variability Index

MM compress
n = 1 n = 1:5 to 1

W1 2.07 2.16 2.20 2.21 2.15 1.70
W2 2.67 2.74 2.82 2.83 2.76 2.21
W3 2.28 2.37 2.43 2.44 2.36 1.92
W4 1.81 1.90 1.92 1.93 1.88 1.46
W5 1.68 1.76 1.78 1.80 1.74 1.34
W6 7.92 8.66 9.65 9.74 8.08 5.36
W7 2.10 2.20 2.22 2.23 2.17 1.70

D1 2.26 2.27 2.40 2.41 2.34 1.79
D2 3.07 2.92 3.23 3.24 3.16 2.36
D3 2.58 2.45 2.72 2.72 2.65 1.99
D4 1.85 1.89 1.97 1.98 1.91 1.34
D5 1.82 1.83 1.94 1.95 1.87 1.34
D6 9.25 9.61 11.14 11.25 9.35 6.14
D7 2.17 2.21 2.30 2.31 2.23 1.65

R1 2.28 2.40 2.44 2.46 2.38 1.79
R2 2.94 3.04 3.14 3.17 3.07 2.26
R3 2.45 2.55 2.64 2.66 2.56 1.86
R4 2.24 2.32 2.41 2.42 2.33 1.76
R5 1.78 1.85 1.93 1.94 1.85 1.34
R6 2.08 2.17 2.23 2.25 2.15 1.58
R7 7.43 8.06 8.70 8.76 7.85 5.50

Landsat average 2.41 2.48 2.58 2.59 2.50 1.87

couple 1.54 1.57 1.64 1.64 1.17
crowd 1.87 1.79 2.03 2.03 1.31
lax 1.31 1.34 1.38 1.38 1.04
lena 1.72 1.80 1.89 1.89 1.14
man 1.64 1.64 1.75 1.75 1.15

woman1 1.58 1.58 1.67 1.67 1.30
woman2 2.28 2.38 2.51 2.50 1.40

USC average 1.66 1.68 1.78 1.78 1.20

Table 1: Compression ratios (original �le size divided by compressed �le size) for
28 grayscale images. Figures for the Minimax coder are not available for the USC
images.
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Multi-level Progressive (MLP)

Image JPEG Original
Variability Index

MM compress
n = 1 n = 1:5 to 1

W1 | 4.0 5.9 6.3 3.6 �19:9
W2 | 2.4 5.4 5.8 3.4 �18:9
W3 | 3.6 6.2 6.6 3.5 �17:2
W4 | 4.6 6.0 6.7 4.0 �21:6
W5 | 4.9 6.1 6.7 3.6 �22:6
W6 | 8.9 19.8 20.7 2.0 �39:1
W7 | 4.6 5.8 6.3 3.5 �21:2

D1 | 0.2 6.0 6.4 3.2 �23:5
D2 | �5:0 5.0 5.2 2.8 �26:6
D3 | �5:3 5.2 5.4 2.7 �26:1
D4 | 2.4 6.5 7.1 3.2 �32:1
D5 | 0.5 6.4 6.8 2.8 �30:6
D6 | 3.9 18.6 19.6 1.1 �41:0
D7 | 1.8 5.9 6.5 2.7 �27:3

R1 | 5.1 6.7 7.6 4.5 �24:3
R2 | 3.6 6.9 7.8 4.4 �26:0
R3 | 3.9 7.2 8.1 4.1 �27:7
R4 | 3.7 7.4 8.0 4.1 �23:8
R5 | 3.7 7.6 8.3 3.7 �28:3
R6 | 4.4 7.1 8.0 3.7 �27:3
R7 | 8.2 15.8 16.5 5.5 �30:1

Landsat average | 2.6 6.7 7.3 3.4 �25:3

couple | 2.0 5.9 6.3 �27:4
crowd | �4:3 8.4 8.3 �35:4
lax | 2.0 5.1 5.3 �23:5
lena | 4.3 9.3 9.4 �41:8
man | 0.0 6.7 6.7 �35:2

woman1 | �0:1 5.6 5.5 �19:2
woman2 | 4.2 9.3 9.2 �48:8

USC average | 1.1 7.0 7.0 �32:3

Table 2: Compression gains for 28 grayscale images, expressed in percent log ratio
(��) using JPEG lossless mode compression as the reference value. Figures for the
Minimax coder are not available for the USC images.
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Figure 3: (a) Compression ratios (original size divided by compressed size) arranged
in order of decreasing compressibility, measured by the compression ratio using MLP{
VI. (b) Compression gains measured with respect to JPEG lossless mode, expressed in
percent log ratio (��) and arranged in order of decreasing compressibility as measured
by the compression gain using MLP{VI. Landsat images are identi�ed by data set
and band number. Images D6, W6, and R7 are not included: they are all highly
compressible, and would appear o� the scale in both graphs. The USC images are
identi�ed by the �rst three letters (or �rst two letters and last digit) of their names.
Figures for the Minimax coder are not available for the USC images.
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lossless mode and almost 4 percent better than the Minimax coder. The variability
index technique improves on the original MLP algorithm by over 4 percent, and using
a di�erent exponent in Equation (1) gives another half percent compression, at least
for the Landsat images. Figures for the compress command are included only to show
how poorly suited it is for image compression.

As we have noted, the MLP method runs slowly. The prediction step, the com-
putation of the variability index, and arithmetic coding all make heavy use of the
processor. However, hardware continues to become faster and cheaper. A typical run
of the MLP program takes about 2 minutes and 26 seconds on a Sun SPARCsta-
tion 1, the equipment with which we began this research; now we can run it in about
43 seconds on a SPARCstation 10, an improvement factor of 3.4. It really does make
sense to try for maximum compression; the hardware will catch up!

5 Conclusions

We conclude that using the variability index for the error modeling component of the
MLP algorithm is extremely e�ective. It gives good estimates of local pixel variances
without requiring any overhead (side information) to describe the models. In addition,
the use of the variability index to classify pixels according to their local variability
allows us to see that prediction errors are best modeled by a Laplace distribution
only for groups of pixels with low variability; this leads us in turn to the use of
di�erent distributions. Since the original MLP algorithm gives results generally better
than the JPEG lossless mode and comparable to the AT&T Minimax coder, and the
variability index technique gives more than 4 percent better compression than the
original method, we see that the variability index technique improves substantially on
other available lossless image compression methods. It also retains MLP's advantages
of progressivity and parallelizability.

We are currently investigating several questions. We wish to �nd a theoretical
basis for the variability index; we expect that this will enable us to estimate the
variance directly from the variability index, without the sorting step and the indirect
adaptive estimation. We are also investigating the choice of exponent in Equation (1);
an understanding of the factors that combine to produce the optimal exponent at a
given pixel will enable us to estimate the exponent directly, leading to still better
compression. A related issue is to determine the distribution mixing process that
leads to the observed error distributions.

In other recent work [3,5], we identify simpli�cations that enable us to obtain
maximumspeed at some cost in compression e�ciency. The resulting non-progressive
compression system (called FELICS) gives compression about 7�� worse than MLP
and about the same as the JPEG lossless mode. FELICS runs nearly 50 times faster
than MLP, �ve times faster than a commonly used implementation of the JPEG
lossless mode, and as fast as the Unix compress program. We have also investigated
a progressive version of FELICS [4] that uses MLP's pixel sequence; it obtains about
1�� better compression than non-progressive FELICS at the cost of a small decrease
in speed.
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