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Abstract

The use of overcomplete sets of vectors (redundant bases or frames) together
with quantization is explored as an alternative to transform coding for signal
compression. The goal is to retain the computational simplicity of transform
coding while adding flexibility like adaptation to signal statistics. We show
results using both fixed quantization in frames and greedy quantization using
matching pursuit. An MSE slope of -6 dB/octave of frame redundancy is shown
for a particular tight frame and is verified experimentally for another frame.

1 Introduction

Vector quantization and transform coding are the standard methods used in signal
compression. Vector quantization gives better rate-distortion performance, but it is
difficult to implement and is computationally expensive. The computational aspects
make transform coding very attractive. In particular, transform coding is ubiquitous
in image compression.

For fine quantization of a Gaussian signal with known statistics, the Karhunen-
Loeve transform (KLT') is optimal for transform coding [2]. In general, signal statistics
are changing or not known a priori. Thus, one must either estimate the KLT from
finite length blocks of the signal or use a fixed, signal independent transform. The
former case is computationally intensive and transmission of the KLT coefficients can
be prohibitively expensive. The latter option is most commonly used, often with the
discrete cosine transform (DCT). As with any fixed transform, the DCT is nearly
optimal for only a certain set of possible signals. There has been considerable work in
the area of adaptively choosing a transform from a library of orthogonal transforms,
for example, using wavelet packets [5].

All varieties of transform coding represent a signal vector as a linear combination
of orthogonal basis vectors. In this paper, we present a method that represents a
signal with respect to an overcomplete set of vectors which we call a dictionary.
The representation is generated through greedy successive approximation. Much
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as the KLT finds the best representation “on average,” this method finds a good
representation for the particular vector being coded. The overhead in using this
method is that the indices of the dictionary elements used must be coded. Hence
in choosing a dictionary size there is a tradeoff between increasing overhead and
enhancing the ability to closely match signal vectors with a small number of iterations.

For a signal with correlated samples, we expect certain dictionary elements to
be chosen much more often than others. Thus entropy coding of the indices greatly
reduces the overhead in this representation. In particular, this method can be used
in a one-pass quantization system where the only adaptive component is a lossless
coder. We do not adapt the dictionary, which would be computationally expensive.
Note that one step of our algorithm is related to gain-shape vector quantization, and
the overall scheme could be seen as a cascade form.

We begin in Section 2 with background material on frame representations and
methods of generating frames. In Section 3 we discuss quantization in tight frames
with no distributional assumptions and no adaptation to signal properties. Finally,
in Section 4 we describe our quantization method based on matching pursuit. An
example illustrates the flexibility of this approach. Experimental results based on a
simple design which employs no distributional assumptions are also presented.

Throughout we will limit our attention to quantization of vectors from a finite
dimensional Hilbert space H = ¢ (or ). We denote the inner product of z,y € H
by < z,y >. and denote the norm of z by ||2|| =< z.2 >¥/2

2 Redundant Representations and Frames

Let {@p}M, C H, where M > N. If Span({pi}iL,) = H. thereexist 0 < A < B < o0

so that, Vf € H,
M

AHfHZS}g]<f:#9k>|2SBHfH2- (1)

We say that {@i}2L, is a frame or an overcomplete set of vectors with redundancy
ratio R = ]]‘V—/f [1]. Furthermore, if (1) holds for some A = B, we call the frame a tight
frame. 1f {@x}2L, is a tight frame such that ||¢]| =1V &, then A= R.

Since Span({pi}L,) = H, any vector f € H can be written as

M
F=3 sk (2)
k=1

for some set of coefficients {ax} C R which are not unique. We refer to (2) as a
redundant representation, although it may be the case that only N of the ay’s are
non-zero. Define the frame operator F associated with {pp}}L; to be the linear
operator frorm H to €V given by

(Ffi=<f.or>. (3)

Note that since H is finite dimensional, this operation is a matrix multiplication
where F is a matrix with kth row equal to ¢g. Using the frame operator, (1) can be
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rewritten as

Aly < F*F < Bly, (4)

where I is the N x N identity matrix. (The matrix inequality Aly < F*F means
that F*F — Aly is a positive semidefinite matrix.) In particular, F*F = Aly shows
that {p}M, is a tight frame.

As an example, we will show that oversampling of a periodic, bandlimited signal
can be viewed as a frame operator applied to the signal, where the frame operator
is associated with a tight frame. If the samples are quantized, this is exactly the
situation of oversampled A/D conversion [7]. Let z = [X; Xp --- Xn]7 € BRY. We
define a corresponding continuous-time signal by

il t 2
z(t) = Xy + Z X212 cos 2—7;5— + Xopp1V2sin lTk—t . (5)

k=1

(Any real-valued, T-period, bandlimited, continuous-time signal can be written in
this form.) Define a sampled version of z.(t) by za[m] = z.(%ZL) and let y =
[24(0) z4(1) -+ z4(M — 1)]T. Then we have y = Fz, where

1 V2 0 V2 0
P 1 V2 cos b V2sin @ V2cos W@ V2sin Wo

: : : : : , (6)
L VZeos(M) Asin(M0) - Zcos(WM'B) /Esin(WM'6)

M'=M —1, and 0 = 2. Using the orthogonality properties of sine and cosine, it is
easy to check that F*F = My, so F is an operator associated with a tight frame.
Pairing terms and using the identity cos? kd +sin® kf = 1, we find that each row of F'
has norm v/N. Dividing F by /N normalizes the frame and results in a frame bound
equal to the redundancy ratio R. Also note that R is the oversampling ratio with
respect to the Nyquist sampling frequency. Notice that multiplication by F' can be
done efficiently using an FFT-based algorithm. We will refer to generating a frame
in RY for odd N using (6) as “Method I”.

A multitude of other families of frames can be found. For N = 3, 4, and 5,
Hardin, Sloane and Smith have numerically found arrangements of up to 130 points
on N-dimensional spheres that maximize the minimum FEuclidean norm separation
[3]. We refer to selecting one of these sets of points as “Method II”.

A third method is to consider the corners of the hypercube [~ﬁ, \/LN]N These
form a set of 2V symmetric points in RY. Taking the subset of points that have a pos-
itive first coordinate gives a frame of size 2V~1. This frame has the feature that inner
products can be computed by addition and subtraction without any multiplication.

3 Reconstruction from Frame Coeflicients

Let F e RM*N be a frame operator. Let & € RY and y = Fz. Suppose y is quantized
as j = Q[y] according to some partition of M. The uncertainty region associated
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Figure 1: Illustration of consistent reconstruction

with # is obvious from the partition. This quantization also induces a partition of RY
insofar as a certain region of R" would be mapped under Q o F to §. In general, §
will not be in the image of RN under F. Hence finding & such that Q[F#] = § is not
trivial.

Consider the case where the quantization in RM is scalar, i.e. independent in each
dimension. For ¢ = 1,..., M, denote the quantization stepsize in the ith component
by A;. For convenience we assume that the reproduction values lie halfway between
decision levels. Then for each 7, |§; — yi| < % Given ¢, suppose we wish to find %
such that Q[FZ] = §. We refer to this as a consistent reconstruction [8]. Then for
each 1, we must have

. . AV
[(F2); — g < 5 (M
Expanding the absolute value, we find the constraints
.1 . . 1 .

F:c§§A+y and F12—5A+y (8)
where A = [A; ... Ay]T and the inequalities are elementwise. These inequalities
can be combined into )

F . A+
< |2
e o< ®

The formulation (9) shows that & can be determined through linear programming [6].
An arbitrary cost function can be used.

It is important to note that even if F*F = Aly, %F*Q is not, in general, a solution
for &. This is due to the fact that Q[Fz] is generally not in the image of R under F'.
This is illustrated in Figure 1 for the case N = 1, M = 2. The position of the bold
line gives the mapping RY — RM. The labels on that line are with respect to RV,
The quantized value of y = Fz is §. A “naive” reconstruction gives %F*y, which is
not consistent. A possible consistent reconstruction is .

A general theory relating the partition of RV to the partition of RM is beyond
the scope of this paper. However, some results about the relationship between R and
the MSE are known in the case of the frame operator I given in (6). Indeed, some
partition properties were derived in [7], using specifically the sampling interpretation
of F. It was shown that for a given z € RY with certain conditions, the size of the
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partition cell in RYN diminishes with R as O(1/R?) in the MSE sense. The proof
explicitly uses the fact that y = Q[F'z] gives the sequence obtained by oversampling
and quantizing the continous-time signal z.(t) defined from z in (5). The condition
on z, however, is that z.(¢) must cross the thresholds of the quantizer at least N
times in one period 7. In the case N = 3 (W = 1), this is guaranteed for all

vector # = [X; Xy X5]T such that (/X2 + X2 > A. In the three dimensional case,

a stronger result can in fact be shown. If we consider a given bounded region of R3
whose elements z satisfy {/X? + X2 > A, then all the cells of the partition within
this region have a size which can be upper bounded by a/R? where a is a positive
constant. We conjecture that this type of result is true for any finite dimensional
tight frame of (6). Figure 2(a) shows a partition of R? achieved with R = £.

Experimental results confirm the O(1/R?*) MSE behavior for Method I and suggest
that this behavior is a more general phenomenon. Simulations in which the quantiza-
tion stepsize was fixed and the frame redundancy was varied were performed. Results
for N = 3 are shown in Figure 2(b). Results for N =4 and 5 were similar. Using the
“naive” reconstruction value of £F*j gives an MSE slope of -3 dB/octave of frame
redundancy (dash-dot curve). Expanding using a frame generated by Method I or 11
and using consistent reconstruction results in an MSE slope of -6 dB/octave of frame
redundancy (solid and dotted curves). A linear program always returns a corner of
the consistent region. Since the consistent region is convex, we can get better per-
formance by averaging the reconstructions found using two different cost functions.
This is shown by the dashed curve.

4 Quantization Using Matching Pursuit

For quantization with good rate-distortion (R-D) performance, we do not expect to do
well by quantizing a set of frame coefficients and retaining all of them. Furthermore,
for relatively low rate coding, we expect that the best R-D performance would result
from retaining a small number of coefficients. This motivates us to use a greedy
algorithm to select a few inner products to retain.

Let D = {@i}}L, C H be a frame . We impose the additional constraint that
lloxl] = 1 Vk. We will call D our dictionary of vectors. Matching pursuit [4] is an
algorithm to represent f € H by a linear combination of elements of D. Furthermore,
matching pursuit is an iterative scheme that at each step attempts to approximate f
as closely as possible in a greedy manner. Hence we expect that after a few iterations
we will have an efficient representation of f.

The algorithm begins by selecting ko such that | < ¢, f > | is maximized. Then
[ can be written as its projection onto ¢k, and a residue R, f,

f =< 997607.)( > Pk + le (10)

The algorithm is iterated by treating Rif as the vector to be best approximated by
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Figure 2: (a) Partition of R? induced by quantizing with £ = 3 tight frame. (b) Exper-
imental results for reconstruction from quantized frame expansion. Dash-dot curve:
“naive” reconstruction. Dotted curve: consistent reconstruction from expansion I.
Solid curve: consistent reconstruction from expansion II. Dashed curve: improved
consistent reconstruction.

a multiple of o, . Identifying Rof = f. we can write

n—1

f:Z<'ﬁ'—ok,aRif>99ki+Rnf' (11)
i=0
Hereafter we will denote < @, f > by «;. Notice that since ¢ is determined by
projection, ay@y, L Ris1 f. Thus we have the “energy conversation” equation

NRAIIP = [|Rea fIIP + 0. (12)

Since k; is selected to maximize |o;|, the energy in the residue is strictly decreasing
until f is exactly represented.

To use matching pursuit for quantization, at the ith stage we quantize o, yielding
&; = Qlay]. The quantized version is used in determining the residual so that quan-
tization errors do not propagate to subsequent iterations. Note that the coefficient
quantization destroys the orthogonality of the projection and residual, so the analog
of (12) does not hold.

At this point we have several design problems. We must choose a dictionary,
design scalar quantizers, and decide how many quantized inner products to retain. In
principle, one could optimize each of these for a given source distribution, distortion
measure and rate measure.

EXAMPLE: Consider quantization of a source ¢ = [X|, Xz]T with a uniform
distribution on [—1,1]%. Suppose we want to use matching pursuit with a four element
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Figure 3: Partitioning of [-1, 1]* by matching pursuit with four element dictionary

dictionary to design a codebook that minimizes MSE with a constrained codebook
size. (Constraining codebook size is natural when a fixed rate coder will be applied
to the quantizer output.) Guided by symmetry, we choose

D= {[cos%r, sin%]r]T:kE {1,3,5,7}}. (13)

It may seem more natural to use k& € {0,2,4,6} in (13). The dictionary we have
selected was determined to lead to a better design.
Having selected a dictionary, we can explicitly find the p.d.f. of ag to be

2(v2 - Dyl lyl <iv2+ 2
PeolW) =) —2(lyl =1+ v2) h+va<ll<yieve - (4)
0

otherwise

We assume quantization is fine. Then the best codebook constrained quantizer for
ag can be found analytically [2]. The distribution of oy given @y is approximately
uniform on [—|dyl, |do|]. Thus the optimal quantizer for ey is uniform.

We have yet to decide how to divide our bit rate between dy and dy. Analysis
shows that the strategy that is consistent with our optimality condition is to have
the number of quantization levels for o proportional to p,,. Using a codebook size
of 304 and choosing the proportionality constant appropriately yiclds the codebook
and partition shown in Figure 3.

This example was included to demonstrate several things. It illustrates that there
are many design parameters within the matching pursuit framework. Optimizing
these parameters requires a measure of optimality and knowledge of the source p.d.f.
Lastly, Figure 3 shows that the partition generated by matching pursuit looks quite
different than that generated by independent scalar quantization or quantization of
tight frame coefficients.

In a practical situation, the source distribution is not known. Hence we endeavored
to apply matching pursuit without making any distributional assumptions. We expect



20

the best performance with a dictionary that is “evenly spaced” on the unmit sphere
or a hemisphere. We are purposely vague about the meaning of evenly spaced, since
the importance of this is not yet clear. The three methods described in Section 2
were used to generate dictionaries. Method I provides the most flexibility. However,
large dictionaries of this type are not “evenly” distributed because they lie in the
intersection of the unit sphere with the plane z; = ﬁ We present experimental
results using each method.

Our experiments all involve quantization of a zero mean Gaussian AR source with
correlation coefficient p = 0.9. Source vectors are generated by forming blocks of N
samples. All inner product quantization was scalar, uniform and equal in each dimen-
sion. In addition to not relying on distributional assumptions, this is computationally
easy and consistent with equally weighting the error in each direction. Distortion was
measured by MSE and rate by summing the (scalar) entropies of the &;’s and o’s
retained. We denote the number of inner products retained by p and the quantization
stepsize by A.

Figure 4 shows the D(R) points obtained using Method I with N = 9. The
dictionary redundancy ratio is R = 8. The dotted curves correspond to varying p,
with the leftmost and rightmost curves corresponding to p = 1 and p = 9, respectively.
The points along each dotted curve correspond various values of A. The dashed curve
shows the performance of independently quantizing in each dimension.

The lower boundary of the region bounded below by one or more dotted curves is
the best R-D performance that can be achieved with this dictionary through choice p
and A. The simulation results show that matching pursuit performs as well or better
than independent scalar quantization for rates up to about 23 bits per vector (2.6
bits per source sample).

The simulation described above does not explore the significance of the R param-
eter. Simulations as above were performed with R varied from 1 to 256. Redundancy
factors between 2 and 8 resulted in the best performance.

Simulations with NV = 25 and R varied from 1 to 256 showed the best performance
was achieved with R between 2 and 4. The matching pursuit quantizer outperformed
the independent quantizer up to a rate of 75 bits per vector (3 bits per source sample).

Consider use of Method II. We select a dictionary of size eight in R* from [3].
Figure 5(a) shows the R-D performance of four quantizers. The dashed curve results
from using matching pursuit with separate entropy coding of each index and each
coefficient. The solid curve shows the improvement resulting from vector entropy
coding of the indices. The “knees” in these curves correspond to rates at which the
optimal number of coefficients to retain changes. Independently quantizing in each
dimension and scalar entropy coding gives the dotted curve. Replacing the scalar
entropy coding by vector entropy coding gives the dash-dot curve.

At rates up to about 6 bits per vector (1.5 bits per source sample), matching
pursuit quantization outperforms independent scalar quantization with either entropy
coding method. At these rates, only one quantized inner product is retained. The
matching pursuit quantization does better than independent quantization with scalar
entropy coding for rates up to about 12 bits per vector (3 bits per source sample).
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Figure 4: R-D performance of matching pursuit quantization with one to nine inner
products retained. (N =9, R = 8, dictionary generated using Method I.)

This simulation shows that vector entropy coding of indices gives improved per-
formance at high rates. At first glance it may appear that at high rates independent
quantization with vector entropy coding is far superior to other methods, but we
must consider the complexity involved in the entropy coding. Consider operation at
8 bits/vector. The matching pursuit quantizer retains two coefficients, so the vector
entropy code for the indices has 8% = 64 symbols. The entropy codes for ap and a;
have 20 and 6 symbols, respectively. On the other hand, the vector entropy code for
the independently quantized vectors has 14* = 38416 symbols. Thus with limited
computational resources, the matching pursuit quantizer may be the best choice.

Figure 5(b) shows simulations results using Method Il with N = 8. The curve
types are the same as in Figure 5(a). This simulation shows a great performance
improvement in using vector entropy coding for the indices. The matching pursuit
quantizer with vector entropy coded indices outperforms the independent scalar quan-
tizer at all rates.

At this point a qualitative observation is in order. The advantage that we exploit
over independent scalar quantization is that we represent the signal in the directions
ol maximal energy first and discard coefficients when they become disproportionately
costly in an R-D sense. This is reminiscent of the KLT since the KLT transforms a
signal to a representation where the coeflicients arc ordered to correspond to directions
with decreasing energy. Thus we expect “on average” the dictionary elements chosen
will correspond to the KLT. In simulations with N = 2 and R large, we find that
histograms of k; and & are sharply peaked at values corresponding to the first and
second eigenvectors of the KLT, respectively.
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