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DK-2800 Lyngby, Denmark  

IBM Research Division 
Almaden Research Center ,  K52/802 
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Abstract: Partially hidden Markov models (PHMM) are introduced. They are a variation of 
the hidden Markov models (HMM) combining the power of explicit conditioning on past observations 
and the power of using hidden states. (P)HMM may be combined with arithmetic coding for lossless 
data  compression. A general 2-part coding scheme for given model order but unknown parameters 
based on PHMM is presented. A forward-backward reestimation of parameters with a redefined 
backward variable is given for these models and used for estimating the unknown parameters. Proof of 
convergence of this reestimation is given. The PHMM structure and the conditions of the convergence 
proof allows for application of the PHMM to image coding. Relations between the PHMM and hidden 
Markov models (HMM) are treated. Results of coding bi-level images with the PHMM coding scheme 
is given. The  results indicate that  the PHMM can adapt to  instationarities in the images. 

1 Introduction 
Hidden Markov models are powerful models with a rich mathematical structure. The 
hidden Markov model (HMM) is a doubly embedded stochastic process. The ap- 
plications have often involved estimating the probabilities of hidden states in e.g. 
recognition problems. In this paper, the emphasis is not so much on recognition as on 
the basic problem of obtaining a good probability estimate of an observed sequence. 
Combined with entropy coding, this may translate directly into the number of bits 
to  code the observation sequence. In a universal coding scheme [Ris83][Ris86], parts 
of the past (the context) is used to obtain predictive estimates of the current value 
of an observation string. This has been applied with success to  e.g. bi-level images. 
In this paper, a combination of the HMM and the context approach is presented. 
The new model is called a partially hidden Markov model (PHMM). One approach 
to source coding is two-part coding where the coded data stream consists of an en- 
coding of the model parameters along with the coded data. A general coding scheme 
along these lines is presented. In Section 2, hidden Markov models and earlier work 
on coding with HMM is discussed. A statement of problem is given. In Section 3, 
the new partially hidden Markov model is introduced. In Section 4, the new general 
coding scheme is presented along with a set of reestimation formulas. In Section 5, 
constrained versions are given. The relations to a HMM models of larger order is 
given. In Section 6, the convergence of the PHMM reestimation formulas is proven. 
The results of experiments conducted with bi-level images is given in Section 7. 

'Most of the work was done while the author was on sabbatical leave a t  IBM Almaden Research 
Center. 
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2 Background and statement of problem 
A good tutorial on hidden Markov models is given in [Rab89]. The hidden Markov 
model is a doubly embedded stochastic process, where one of them is not directly 
observable (it is hidden). The output is produced by a set of stochastic processes 
connected with the states of the hidden process. A formal description of the HMM 
and the reestimation formulas will appear as a special case of the partially hidden 
Markov model presented later. 

For known model and parameters (known to sender and receiver), equations for se- 
quential calculation of probabilities for coding was presented by Ott  [Ott67]. Universal 
coding of hidden Markov sources, i.e. HMM (with unknown order and parameters) 
was presented in [LN94]. Shtarkov [Sht92] presented a universal coding scheme for 
switching sources (with unknown parameters) which include the HMM as a special 
case. Unfortunately, both these universal coding schemes involve summing over expo- 
nentially many sequences involving hidden states. Even though the sequences may be 
grouped resulting in only polynomially complexity in the data length, from a practical 
point of view this is still prohibitive. 

In the next section, our modification to the HMM is introduced. It is similar to 
a switching source in the sense that the outputs from a state(/component) are not 
independent. The difference is that for the PHMM, the current state and outputs 
may be dependent on previous outputs from different states(/components). 

The aim is to develop a coding scheme of reasonable complexity (linear in the data 
length) which uses hidden states with unknown parameters. 

3 Partially Hidden Markov Models 
In this section, we combine the hidden Markov model with an ordinary Markov model. 
The new model formulation is called a partially hidden Markov model. There are N 
(hidden) states, each denoted 3,. The produced observation sequence of length T is 
denoted 0 = 0 1 , 0 2  ... 0 ~ .  The output symbols Ot = IC belong to a discrete alphabet 

The idea is to combine hidden states 2 with observable states s. A PHMM is a 
{1,2 ... Nk}. 

process { O t ,  $} defined by the axioms and parameters (the right-hand sides) 

P(OtlOt-l, qt) = P(Otlqt, 4t) (1) 

P(qtlOt-l, = P(4tlqt-I, qt, qt-1) (2) 
where qt is a mapping of Ot-' with a finite range labelled {1,2 ... K}. qt could e.g. 
be a subset of Ot-l defined by a fixed template. This means that qt combined with 
the hidden state qt conditions the output Ot. (q t ,  q t - l )  conditions the state transition 
between hidden states qt-l and gt. The (partially) hidden Markov model is described 
by the parameter set X = ( K , A , B ) ,  where 7r gives the probabilities of the initial 
hidden state, A the conditional hidden state transition probabilities at3,  and B the 
conditional output probabilities b, for each of the states. 

In order to reduce the number of parameters, a context formulation of the PHMM 
may be used. When calculating the probabilities for (Ot+l), part of the causal data is 
used as context for conditioning the transition and the output probabilities. Let I de- 
note mappings of the observations. One context (ut = Iut(Ot))  is used for conditioning 
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the transition from the hidden state qt to qt+l. Another context ( w ~ + ~  = Iw,+,(Ot)) 
is combined with the hidden state Qt+l for conditioning the probability of output 
(Ot+l = I C ) .  ut and wt+l assume one of JV, and IV, values; respectively. Hence, the 
parameters of the partially hidden Markoir model X = (T, A, B )  consist of the following 

%* = P(Q1 = 5,) 

a ( i , 3 ,  I )  = P(q,+, = 3, IDt = S I >  qt = 3;)  

b , ( k  .) = P(Ot+l = klwtt1 = 3,: Bt+l = S J ) .  

(3) 

(4) 
(5) 

where S I  and s, are context values. h shorter notation is obtained when t is used to  
index the parameters: 

% ( i , j )  = p(q*+l = s,/%,q* = 3%) 

b t + l ( j ,  k) = P(Ot+l = k l W t + l >  Bt+l = 5,).  

(6) 

( 7 )  
Given the model parameters and the observation sequence until t ,  O t ,  we may sequen- 
tially calculate the probability of being in a specific hidden state s; at  t ,  

a t ( ; )  = P(01,qt = s$). (8) 
The definition of c y t ( Z )  as written above is the same as for the HMM [Rab89], although 
the influence of Ot is changed, as reflected in the induction formulas 

c?1(i) = T Z b Z ( 0 1 ) >  1 52 5 iv (9) 

If the seen parts of the states can assume only one fixed value, we have the formulation 
of the HMM given in e.g. [Rab89]. 

4 A general coding scheme employing PHMM 
A general two part coding scheme based on the PHMM is presented in this section. 
In the code stream, the model parameters are sent along with the coded data. 

4.1 

the observed sequence until t ;  i.e., Ot ,  given the PHMM model parameters is given 
by summing the forward variables at t ,  P(OtIA) = c y t ( z ) .  Combining with (10) 
we obtain a term for sequential calculation of the ideal codelength 

Coding with Partially Hidden Markov Models 
The partially hidden Markov model may be used to  encode data. The probability of 

The term C:~:t(')~t(',j) IS . a mixture weighting expressing the probability of state qt+l 
E,=, at(%) 

= S,, given the observation sequence Ot up to t .  This is also a renormalization of 
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the a values. The ideal code length is given by In[P(OIA)] = Cln[P(Ot+l /Ot ,A)] .  
An actual coding may be performed by applying arithmetic coding to  the sequence of 
conditional probabilities. For bi-level output data, P(Ot+l IOt, A) is sufficient. To use 
this for encoding, the model has to be given beforehand, or otherwise a codeable model 
is sent along with the coded data. A simple solution to  quantization and encoding 
PHMM parameters is given later. 

4.2 Reestimation of parameters 
If the model parameters are not given, we have the problem of estimating the pa- 
rameters, including those involving the hidden states. For a given model order of a 
HMM, the Baum-Welch method iteratively converges towards a local maximum of 
P(OIA) over the parameters A [LRS83]. The model parameters are reestimated after 
each pass of the data set. The reestimation formulas are modified for the PHMM as 
specified below. 

Given the entire observation sequence and the model parameters A, the forward 
variable may be supplemented with a backward variable to obtain the probability of 
being in a given hidden state 3; at time t ,  rt(i) = P(qt = S,lO, A).  

For the HMM, the backward variable at t for state S,, pt ( i )  is defined as P ( O L ,  lqt = 
Si, A) [Rab89]. For the HMM, we further have [Rab89] 

For the PHMM, rt(i) is still given as above. The backward variable /3 is now 
defined by solving Eq. 12. 

This way p involves the conditional probabilities of (6 and 7) and is rather a completion 
of the forward cy-pass than a probability in its own right. 

The induction formula determining the backward variable /3 becomes 

Introducing the contexts wt and wt+l, and thereby part of Ot,  as given by at and 
bt+l in the definition of p may be viewed as a look 'ahead' in the backward ,6 pass. 
There is no conflict in this as /3 will only be used in conjunction with cy values which 
hold the information outside of O&, of the contexts used by p. Using the HMM 
definition of p would require the part of the contexts involved in &(i) belonging to  Ot 
to be incorporated in the hidden states. (The reason for this is given in Section 6.2.) 
Therefore, introducing the conditioning on part of Ot in Pt gives a much smaller hidden 
state space and immediately leads to  fewer parameters and efficient implementation. 

lations of the involved variables have changed; 
The rcestimation expression of 7r is the same as for thc HMM although the calcu- 
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For A the reestimation formula is 

where 

and ~ ~ , ~ ( 1 )  is 1 if ut = si and 0 otherwise. For B, the reestimation formula is 

where ~ b , ~ ( n )  is 1 if wt+1 = s ,  and 0 otherwise and d t ( k )  is 1 if Ot = k and 0 otherwise. 
If the seen parts of the states can assume only one fixed value, we have the rees- 

timation formulation for the HMM given in e.g. [Rab89]. 
The PHMM definition of the contexts, vt and wt+l, are just given by general 

mappings I ( O t )  of the causal part of the observations. One choice is to  use a template 
and let the values within the template define the contexts. Where the template 
extends beyond the observation boundary, conditions have to  be specified e.g. by 
zero-padding. Relating the observable part of the states to the contexts of the two 
PHMM formulations, the context of the transitions vt is the union of qt and qt+l. The 
context w ~ + ~  of the outputs is y t+ l .  An example of a PHMM state ( y t ,  Qt) is that  the 
hidden part is part of the future data of the observation sequence and the seen part 
is part of the past, both given by templates (Fig. 1). 

4.3 The general coding scheme 
As shown previously, we may code the data in a forward pass given the model param- 
eters A. The reestimation formulas given by (16, 17 and 19) may be used to improve 
the model parameters if they are not already at a local optimum. The only question 
left is initialization. If the hidden states are (mappings of) part of the future data,  the 
model may be initialized by counting over the data set to be coded. Any finite rep- 
resentation of the parameters may be used. A slight modification of a uniform scalar 
quantizer was used. Initially, the parameters of the PHMM model X = (A, B, T )  were 
quantized to  a fixed precision for each of parameter groups A, B and T .  The probabil- 
ities were therafter adjusted to add up to one (with no negative probabilities) making 
in iinneccessary to code the last parameter. Furthermore, precautions were taken to  
ensure that the probability to be coded is non-zero. 

The general coding scheme for a given model order is thereafter: 
1) Initialization of the model parameters X = ( T ,  A, B )  by counting. 
2) Reestimation n times of T (by 16), A (by 17) and B (by 19). 
3) Encoding of the reestimated PHMM parameters, e.g. coding quantized parameters. 
4) (Arithmetic) coding obased on P(Ot+ljOt, A) (11) in a forward pass. 

As for the HMM, the PHMM calculations including the reestimations may be 
effectively implemented based on a trellis structure with the hidden parts of the states 
as nodes. For a fixed number of iterations the complexity is linear in the data length. 
Furthermore no training set is required due to the simple initialization rule above. 
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5 Constraints and parameter tying 
To reduce the number of parameters and to introduce certain structures, the transi- 
tions may be constrained, e.g. by tying parameters. The use of Moore [Rab89] or 
Mealy [JM80] machines for the HMM are examples of model choices with different 
structures. 

To reduce the number of (free) parameters to be estimated, the approach of tying 
parameters has been developed [JM80]. The tying was defined in conjunction with a 
Mealy machine formulation of the HMM, where the output is given by the transition. 
The state s1 is tied to  Sz if there is a 1-1 correspondence between their outgoing 
(Mealy) transitions with corresponding probabilities being equal [JM80]. 

The transitions between the hidden states may be constrained. One instance of 
this is that  two consecutive hidden states are partly overlapping, i.e. only a subset 
of qt+l values is possible, given pt. Using a template to specify hidden state values 
(for initialization), the overlap between two consecutive hidden templates gives the 
overlap constraint. For images, this may be relaxed just imposing the constraint on 
a line by line basis. 

6 Convergence and equivalence 
The reestimation of the partially hidden Markov model given previously still converges 
to  a local maximum of P(O1X) over A. The proof of the convergence of the HMM 
[LRS83] applies with a few modifications. The proof evaluates the probabilities of the 
observations P(O1X) and P(OIX) conditioned on two consecutive sets of parameters 
in the reestimation process. This is done by summing over all sequences (of hidden 
states). This still applies if we just consider the hidden part of the PHMM slates. 
Evaluating the above probabilities the terms are organized according to  the state 
transitions and the observed symbols. This grouping is extended to include the seen 
conditioning contexts for the PHMM. 

6.1 Proof of the convergence of reestimation formulas 
Let S denote the number of hidden state sequences qT and s be a specific state se- 
quence. Let U, and U, be defined as P ( p  = s ,  OlX) and P(qT = s ,  OlX), respectively. 
The conditional probabilities of the observation, given the current model X and the 
new estimated parameters A, respectively, are compared based on the following in- 
equality [LRS83], 

where &(A, x) G E, u,lnv,. 

parameters conditioned on their contexts, it can be seen that 
Inserting the expressions for U ,  and U, and regrouping terms according to  the 
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H.u , . .  ...... * ...... j 
. . .  , . .  . . .  , . , ,  . . .  ....... I .......... 

Figure 1: Left) The seen part of the state is the previous value, qt = Ot- l  and the hidden 
part is the next value qt = Ot+l .  Right) Templates defining states ( q t , q t )  of a PHMM. 

where Ni is the number of A-contexts for ut,. N ,  is the number of B-contexts and N, 
and NI are the number of predecessor z and successor 1 hidden states, while Nk is the 
size of the output alphabet. Further, summing over all S hidden state sequences 

where for sequence s, n,,l(s) is the number of transitions from S, to  S, given U = si, 
m,k,(s) is the number of times symbol k is g:nerated in state 5, given w = s,, and fi is 
1 if initial state is 5;. Equation 21 for & ( A ,  A)  consists of (Nl+ N,)Ni + 1 independent 
sets of terms with the constraint E, zt  = 1. Maximizing C, c;lnz, gives exactly the 
reestimation formulas. 

Generally speaking, it is only required that there is a well-defined sequence of 
contexts ( u t ,  tutt l) ,  which are mappings of the causal part ( O t )  of the observations for 
the given traversal. This context sequence must be invariant to  the reestimations of 
parameters but it may vary with t .  Later this will be used in conjunction with the 
border problems of an image, using slightly different mappings at the borders. 

6.2 Equivalence conditions for HMM and PHMM 
Consider a subset of PHMM models, where the context mappings are invariant with 
respect to  t and the dependence on 0' only involves the values OjpM.  For this subset, 
an equivalent HMM model of a larger order may be derived. Using a Mealy type 
HMM, two constraints are imposed on the HMM. One constraint ensures that the 
new state holds the information of the last output. The other constraint ensures that 
the new state holds information of the last M values. i.e. O{-M in the hidden state. 

7 Coding of (bi-level) images 
The general PHMM coding scheme of Section 4 has been applied to  bi-level images. 
The initialization of parameters was performed on the individual images to  be coded 
as described previously. Therafter. the parameters were improved by applying the 
reestimation formula. These parameters are explicitly coded before coding thc actual 
data. 

Figure 2 depicts some of the templates used to  define states. In this report, the 
image is traversed line by line giving a one-dimensional structure of the hidden states. 
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JBIG SO6 
JBIG SO9 

3,534,684.7 1,932,944.9 45% 
733,906.3 633,482.1 14% 

Table 1: PHMM ideal code lengths after initialization and 8 iterations on three images 
Image I 0 iterations I 8 iterations I Reduction 

CCITT 4 I 514,414.8 I 450,267.5 1 12% 

The contexts can introduce a two-dimensional structure. At the borders zero-padding 
is used. The context of the first pixel of a row is combined with the hidden states 
of the former row. The reestimation still converges as we have a fixed sequence of 
contexts which does not change with the reestimation. Thus advantage is taken of 
using a time-varying mapping for the contexts. 

7.1 Experimental Results 
The general coding scheme was applied to bi-level images. The results were compared 
with those of JBIG [JBI93], the best standard for coding bi-level images. Three 
different bi-level images, from the CCITT and the JBIG Stockholm test sets were 
chosen. A text page (CCITT4), an error-diffused image (JBIG, SO9) and a mixture 
of (positive and negative) text and halftone (JBIG, S06) were used. Different model 
orders were tried out to  find good models. 

The context mappings and the initialization of the hidden states were given by 
templates. Initial experiments showed that A- and hidden-templates corresponding 
to  a PHMM state (qt,i&) given by the 8-neighbors (Fig. 1 and Fig. 2) gave good 
results. The A-template specifies vi. The hidden template specifies the number of 
hidden states and it is used for calculating the values used for initializing the PHMM 
parameters. This corresponds to a 6-pixel A-template and a 4-pixel hidden-template 
(Fig. 2 left). The transitions of the hidden states were furthermore overlap constrained 
on a line by line basis, leaving only two free pixels of the successor hidden state, qJ.  
This basic setting of A- and hidden-templates was used in combination with various 
B-templates throughout the further experiments. The B-template specifies w ~ + ~ .  

An experiment over the 3 chosen test images is summarized in Table 1. The 
B-templates had 6 pixels (e.g. as in Fig. 2 right). The results indicate that the 
reestimation improves the compression result. The tests on SO6 with mixed text and 
image gave the highest improvement. A likely explanation is that ,  the simple layout 
structure in SO6 was efficiently captured to yield a 45% reduction of code length after 
just 8 iterations. (These results are without quantization.) 

Further cxperiments were carried out for the two JBIG test images (SO6 and SO9). 
The figures for PHMM coding are obtained by adding the cost of coding the quantized 
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JBIG i 
Code length 

1,045,576 

Table 

Code 
No coding 
MMR 
JBIG 
JBIG 
PHMM 
PHMM 
PHMM 
2-pass 
2-pass 
Predictive 
Predictive 
Context 

tgeS09 
Context size 

Code lengths for JBIG 
JBIG image SO6 

Context size Code length 
13,369,344 
7,970,024 
2,049,160 
1,778,256 

1,599,380.3 
1,463,564.0 
1,459,579.2 
1,522,748.2 

1,267,644.5 

1,195,163.7 

10 
10 (Adaptive) 

6(+4) 
8(+4) 
9(+4) 

13 

18 

22 

2,293,664 
594,312 

589,974.5 

699,140.5 
607,355.4 
580,187.2 
553,196.6 
546,070.1 

10 

8(+4) 

8 
13 
13 
16 
17 

parameters to  the ideal code length ln[P(OIX)] based on these quantized parameters. 
(The overhead of applying a good arithmetic coder being negligible.) For the JBIG 
images SO6 (4352 by 3072 pels) and SO9 (1024 by 1024 pels) the best PHMM results 
and results of other compression methods are summarized in Table 2. The current 
FAX MMR G4 standard did not perform well on either image. The JBIG standard 
gave good results. For S06, the results of using PHMM coding with a B-template 
of 6 and 8 pixels gave a reduction in code length of 23% and 29%, respectively, in 
comparison with the default JBIG. The reduction was 12% and 18%, respectively, 
in comparison with JBIG using the one adaptive template pixel. A B-template of 9 
pixels gave a marginally better result (0.3%) than the best result with 8 B-template 
pixels. For the 8-pixel B-template quantization with 5, 9 and 12 bits precision for the 
A, B and 7r parameters, respectively, was used. The cost of coding the parameters 
was 52,404 bits. This accounts for almost 10% of the code length. 

For further comparison, a two-part coding using the same quantizer as for the 
PHMM was applied. For this two-part code a greedy search was carried out to  de- 
termine the best template pixels for conditioning the probabilities. The overall best 
result was obtained with 13 template pixels. The PHMM coding with 8 B-template 
pixels gave a slightly better (3%) result than the best two-part code described above. 
Using one-pass predictive coding with implicit coding of the parameters, larger tem- 
plates could be used and better results obtained. The template was again determined 
by a greedy search. Finally, a Context coding (similar to  the one in [Ris86]) was 
performed using 22 pixels in the tree. The pixels were chosen from the results of the 
greedy search above. This produced the best result. 

In the tables, context sizes refer to (max.) number of pixels used for conditioning 
the output probability. For the PHMM, this is the number of pixels in the B-template 
plus the hidden template. 

For SO9, the best PHMM result was obtained with an 8-pixel B-template. The 
PHMM coding used quantization with 3, 6 and 8 bits precision for the A, B and 7r 

parameters, respectively. 
The predictive codings are primarily more effective in coding the model (implic- 

itly). The comparisons indicate that a more effective coding of the PHMM parameters, 
local adaption of the probabilities and adaption of the template pixels would improve 
the results of the PHMM. In the comparisons using the same coding of the model 
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parameters, the PHMM gave the best results. 

8 Conclusions 
Partially hidden Markov modelling, a new approach to hidden Markov modelling, has 
been presented. It combines the powers of hidden Markov models with that of Markov 
models, making explicit use of both the seen past and the hidden states. A general 
coding scheme based on PHMM modelling and reestimation for unknown parameters 
was presented. For unknown parameters, reestimation formulas for the PHMM were 
given and their convergence proven. The proof also holds when part of the PHMM 
is variant in time. This was utilized in conjunction with images and crossings at the 
image borders. Using the PHMM, 2-dimensional dependence is efficiently introduced 
in HMM for coding purposes. The reestimation formulas and the model formulation 
allow efficient implementation. For a fixed number of reestimations, the complexity 
is linear in the data length. Experiments conducted with bi-level images indicate 
that the PHMM can adapt to instationarities. Good results were obtained coding 
bi-level images. For the two chosen images of the JBIG test set, PHMM coding 
outperformed JBIG. For one of the images by 18% compared with the best JBIG 
setting. Comparison with coding schemes with implicit coding of parameters indicated 
areas of improvement for the PHMM coding. 
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