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Abstract

Pattern-matching based document compression systems rely on finding a
small set of patterns that can be used to represent all of the ink in the document.
Finding an optimal set of patterns is NP-hard; previous compression schemes
have resorted to heuristics. We extend the cross-entropy approach, used previ-
ously for measuring pattern similarity, to this problem. Using this approach we
reduce the problem to the fixed-cost k-median problem, for which we present
a new algorithm with a good provable performance guarantee. We test our
new algorithm in place of the previous heuristics (First Fit, with and without
generalized Lloyd’s (k-means) postprocessing steps). The new algorithm gen-
erates a better codebook, resulting in an overall improvement in compression
performance of almost 17%.

1 INTRODUCTION

For scanned text, pattern matching based compression achieves the best compression
ratios currently known: roughly four times that of 2D-FAX coding [11]. Pattern
matching based compression has been studied by several research groups [1, 6, 9, 11].
This kind of compression involves the following steps:

Extract from the image of the scanned document a sequence of glyphs. Each glyph
typically represents one connected blob of ink occuring somewhere in the doc-
ument, represented as a positioned bitmap.

Partition the set of glyphs into equivalence classes of glyphs with similar bitmaps;
for each class, compute a representative pattern — a bitmap representing the
bitmaps of all glyphs in the class. This set of canonical patterns is the codebook.

Transmit the codebook and, for each glyph in the sequence of glyphs representing
the document, the glyph’s position and the index of its representative pattern.
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For lossy compression, the process stops here. For lossless compression, for each
glyph, also transmit the difference between the glyph and its representative, so
that the glyph’s bitmap can be exactly reconstructed.

For effective compression, the transmission step requires additional compression tech-
niques to economically represent the codebook, indices, and position information. For
this work, the codebook is compressed using Moffatt’s two-level context-based method
(following [11]). The glyph indices are coded using PPMC. The glyph positions are
coded using structure-based position coding developed in [15].

Several recent papers have focussed on how to measure the distance between
pairs of bitmaps [7, 14] via cross-entropy measures. These measures approximate the
number of bits needed to encode one bitmap given the other under various models.
In this paper we use the measure proposed in [14].

The main contribution of this paper is a new method for the partitioning step. Re-
cent works have used relatively ad-hoc heuristics for this step, with the most succesful
bearing a resemblance to Lloyd’s algorithm for vector quantizer design [4].

The conceptual basis of the new method is an extension of a particular cross-
entropy model, proposed and approximated in [14], for measuring distances between
bitmaps. Here is a summary of this model. Each bitmap is assumed to have been
generated by scanning an ideal character (a blob of ink) at some random offset. Thus,
any ideal character induces a probability distribution on the bitmaps. Conversely,
any bitmap induces a probability distribution on the ideal characters — the uniform
distribution on those ideal characters consistent with the bitmap. The patterns in
this model are these distributions. Each such pattern has a succint representation as
a bitmap. The distance between a pattern and a glyph is the conditional entropy of
the glyph given the distribution on ideal characters associated with the pattern.

To extend this model to the partitioning problem, we make the useful but perhaps
unwarranted assumption that the a-priori distribution of patterns is uniform. With
this assumption, given the set of glyphs in the document, each set of possible patterns
has a conditional probability. We call the set of patterns with the maximum condi-
tional probability the minimum-entropy codebook. We define the cost of a pattern
to be the number of bits needed to represent it, the cost of a codebook to be the
sum of the costs of its patterns, and the distortion of a codebook to be the number
of bits needed to represent all the glyphs in the document given the codebook. The
minimum-entropy codebook is the one with minimum cost plus distortion.

The combinatorial problem of finding this codebook reduces to a well-studied
problem called the fixed-cost k-median problem, for which we propose a new ap-
proximation algorithm with a good provable performance guarantee. We use this
algorithm to find a good codebook. We compare our partition algorithm, which we
will call Greedy k-median (GKM), with First Fit, First Fit followed by k-means post-
processing steps, and two plausible versions of GKM combined with Lloyd’s k-means
algorithm. By simply substituting GKM for First Fit in the partitioning step, we
reduce the size of the compressed documents in our test suite by 17%.

2



2 PREVIOUS WORK

Previous systems[11] used a simple codebook generation algorithm which we call the
First Fit algorithm. This algorithm works as follows:

FIRST-FIT(S)

1. Let the set of equivalence classes P ← ∅
2. for each glyph in the document c ∈ S
3. do find a p ∈ P such that distance(p, c) < T
(the distance between p and c is defined as the distance between the first element of
p and c.)
4. if there is such a p, add c to p, continue with next c
5. else P ← P ∪ {{c}}
6. return P

The First Fit algorithm runs in O(mn) time (m is the number of equivalence
classes, n is the number of glyphs). The algorithm is fast, but does not have a good
performance guarantee relative to the optimal partition. In the worst case, the number
of equivalence classes is n times worse than the optimal partition. For example,
consider the glyph list L = {a, b, c, d} and matching pairs {a, b}, {b, c}, {b, d}. Notice
that a does not match directly with c and d. The First Fit algorithm partitions a
and b into an equivalence class. Because c and d do not match to a, which is the
first element of the partition {a, b}, two partitions are created for c and d. So the
final partition is {{a, b}, {c}, {d}}. If we change the order of the list to {b, a, c, d},
however, the algorithm finds the partition {{b, a, c, d}}.

Several compression systems, including MGTIC [13] and CDIS [16], combine a
bitmap averaging method with the First-Fit algorithm to form a multi-pass pattern
classification method. For each equivalence class, all of the bitmaps in the class are
averaged and the result is thresholded to obtain a new pattern. The glyphs are
then repartitioned, with each glyph being assigned to the first matching pattern.
Patterns with no matched glyphs are deleted. This process is iterated until little or
no improvement results.

We also test a variant of this algorithm which reassigns each glyph to its best

matching pattern. This algorithm is a specialization of the Generalized Lloyd (k-
means) algorithm for vector quantizer design, because the repartitioned equvalence
classes satisfy the nearest-neighbor condition [4]. We call this algorithm “modified

k-means” because the averaging and thresholding steps do not necessarily produce
an optimal pattern for each equivalance class. This can degrade the performance of
the algorithm.

3 THE GREEDY K-MEDIAN ALGORITHM

The weighted fixed-cost k-median problem is the following. Let G = (V,E) be a
directed or undirected graph with non-negative edge weights d : E → R and non-
negative vertex weights c : V → R. For any subset S of vertices, define the cost of S
to be c(S) =

∑

w∈S c(w); define the distortion of S to be d(S) =
∑

v∈V d(v, S) where
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d(v, S) = minw∈S d(v, w). The problem is to find a set minimizing the cost plus the
distortion.

Our problem of finding a minimum-entropy codebook reduces to this problem in
a directed graph with a vertex v for each glyph in the document. The cost of v is the
cost of the glyph’s pattern; the cost of edge (u, v) is the distance between the glyph
of u and the pattern of v’s glyph. Any subset of vertices in the graph then represents
a codebook of corresponding cost and distortion. Because of the properties of glyphs
and their patterns, the weights in this graph satisfy the usual triangle inequality, as
well as c(v) ≤ c(u) + d(u, v) for all u, v.

3.1 Previous work.

Hochbaum [5] gives a polynomial-time algorithm that finds a set for which the
cost plus the distortion is at most 1 + lnn times the minimum possible. Roughly,
Hochbaum observes that the problem reduces to a traditional weighted set-cover
problem with exponentially many sets. She then argues it suffices to consider only
quadratically many of these sets and obtains a cubic-time algorithm by adapting the
weighted greedy set cover algorithm of Chvatal [2].

For the variant in which the desired cost k is specified, and the problem is to mini-
mize the resulting distortion, Lin and Vitter [8] give a polynomial-time approximation
algorithm with the following performance guarantee: given ǫ > 0, the algorithm re-
turns a set of cost at most (1+ 1/ǫ)(1+ ln(|V |))k with distortion at most 1+ ǫ times
the minimum distortion for a set of cost k. They present a related algorithm for the
fixed-cost problem that returns a set with cost plus distortion bounded by

(1 + ǫ)d(OPT) + (1 + 1/ǫ)(1 + ln(|V |))c(OPT),

where OPT is the optimal set. These algorithms each solve a linear program and
then round the solution using the set-cover algorithm of Chvatal.

3.2 A New Greedy Algorithm

Our new algorithm is somewhat simpler to implement than either of the aforemen-
tioned algorithms and provides comparable performance guarantee in graphs with
weights satisfying the triangle inequality. The algorithm is based on the greedy al-
gorithm for minimizing a linear function subject to a submodular constraint [10] (a
generalization of the greedy set-cover algorithm).

Define the capped distortion of a set S to be

δ(S) =
∑

v∈V

min(d(v, S), c(v)).

The algorithm is the following.

GREEDY-K-MEDIAN(G = (V,E), c, w)

1. S ′ ← ∅
2. do S ← S ′

3. choose v ∈ V that maximizes (δ(S)− δ(S ∪ {v}))/c(v)
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4. S ′ ← S ∪ {v}
5. while c(S ′) + δ(S ′) < c(S) + δ(S)
6. return S

The loop executes linearly many times and each iteration takes quadratic time. Thus,
GREEDY-K-MEDIAN runs in cubic time.

3.3 Analysis.

Fix a graph G with vertex weights c and edge weights w. Recall that c(S) and d(S)
denote the cost and distortion, respectively, of a set S. Let OPT denote the set of
vertices such that c(OPT) + d(OPT) is minimal.

The main point of the analysis is the following.
Claim: GREEDY-K-MEDIAN maintains the invariant

δ(S)− d(OPT)

δ(∅)− d(OPT)
≤ exp(−c(S)/c(OPT)).

Proof : At the beginning of any iteration, adding to S all of the vertices in OPT

would result in a set with δ(S) = d(OPT). Thus, since δ is supermodular, some
vertex w in OPT can be added such that

δ(S)− δ(S ∪ {w})

c(w)
≥

δ(S)− d(OPT)

c(OPT)
.

Together with the choice of v (and a little algebra) it follows that

δ(S ∪ {v})− d(OPT) ≤ (δ(S)− d(OPT))(1− c(v)/c(OPT)).

The result follows inductively, using 1− c(v)/c(OPT) ≤ exp(−c(v)/c(OPT)). With
a little more work (details are in the full paper), one can show:
Corollary: The set S returned by GREEDY-K-MEDIAN has cost plus distortion
bounded by

d(OPT) +

(

1 + ln
δ(∅)

c(OPT)

)

× c(OPT).

If the weights satisfy the triangle inequality, it is not hard to see that c(OPT) +
d(OPT) ≥ maxv c(v) ≥ δ(∅)/|V |. Thus, the previous corollary and a little algebra
imply:
Corollary: Given a graph with edge and vertex weights satisfying the triangle inequal-

ity, the set S returned by GREEDY-K-MEDIAN has cost plus distortion bounded by

2× d(OPT) + (1 + ln |V |)× c(OPT).

In such graphs, if the cost of the optimal solution is much smaller than the distor-
tion (as one might expect in a problem corresponding to a reasonably long document),
these performance guarantees are fairly strong. In particular, when the ratio between
the two is about ln |V |, the performance guarantee is constant; when the ratio grows
larger, the performance guarantee tends to 1 (this follows from the first corollary).
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Test document Codebook size Decrease in codebook size
F. F. K-means GKM F.F. – K-means F.F. – GKM

CCITT1 177 157 162 11.3% 8.5%
CCITT4 164 163 224 0.6% -36.6%
BROOKS1 408 386 281 5.4% 31.1%
BROOKS2 365 339 287 7.1% 21.4%
BROOKS3 332 309 247 6.9% 25.6%
BROOKS4 371 343 290 7.5% 21.8%
LAMBDA1 614 583 313 5.0% 49.0%
LAMBDA2 214 180 120 15.9% 43.9%
LAMBDA3 713 677 331 5.0% 53.6%
LAMBDA4 648 596 368 8.0% 43.2%
Average 7.3% 26.2%

Table 1: Codebook size for the First Fit algorithm with and without modified k-means
optimization and the GKM algorithm. With the exception of CCITT4, GKM dominates
First Fit. On average, GKM has a 26% smaller codebook than First Fit, and a 19% smaller
codebook than First Fit with modified k-means.

3.4 GKM with k-means improvement

We next combine GKM with the k-means algorithm as follows:

GKM WITH MODIFIED K-MEANS(G,c,d)

0. define rate(S, v) = (δ(S)− δ(S ∪ {v}))/c(v)
1. S ′ ← ∅
2. do S ← S ′

3. choose v′ ∈ V that maximizes rate(S, v′)
4. do v ← v′

5. v′ ← the centroid of {w ∈ V |d(w, v) = min(d(w, S), c(w))}
6. while rate(S, v′) > rate(S, v) + ǫ
7. S ′ ← S ∪ {v}
8. while c(S ′) + δ(S ′) < c(S) + δ(S)
9. return S

The centroid in step 5 is (some estimation of) the optimal center for the set of ver-
tices (glyphs) assigned to the vertex (pattern) v. The algorithm considers it as a
possible alternative to v. Similarly, we can use the modified k-means algorithm as a
postprocessing step:

GKM FOLLOWED BY MODIFIED K-MEANS

1. Compute the initial equivalence classes by GREEDY-K-MEDIAN.

2. Average the glyphs in each equivalence class and creating an ideal pattern for each class.

3. Reclassify the glyphs by matching each glyph with its closest ideal pattern. Delete empty

classes.

4. Go to step 2 while the number of equivalence classes is decreased by at least some con-

stant k.
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Test document Codebook size Decrease in codebook size
GKM GKM k-means GKM–GKM k-means

CCITT1 162 142 12.3%
CCITT4 224 138 38.4%
BROOKS1 281 275 2.1%
BROOKS2 287 226 21.3%
BROOKS3 247 194 21.5%
BROOKS4 290 219 24.5%
LAMBDA1 313 303 3.2%
LAMBDA2 120 110 8.3%
LAMBDA3 331 314 5.1%
LAMBDA4 368 366 0.5%
Average 13.7%

Table 2: Codebook size for GKM and GKM followed by modified k-means. GKM followed
by modified k-means results in smaller number of pattern for all the test documents. The
average improvement is 13.7%.

4 EXPERIMENTAL RESULTS

We have implemented the GKM algorithm with and without modified k-means post-
processing. cost(c) is estimated as the area of each glyph. We compute cost(c|p)
using the spatial sampling error based cross entropy measure mentioned above [14].
We also implemented the First Fit algorithm with multi-pass optimization as used
in the MGTIC system [11]. We have tested these configurations on ten high quality
scanned document pages with over 20,000 glyphs. Two of the pages, CCITT1 and
CCITT4, are from the CCITT test image set, scanned at 200 dpi. The other eight
pages, the BROOKS series and the LAMBDA series, are from the MIT AI lab’s tech-
nical document collection and are scanned at 300 dpi. We measured the performance
of each codebook generation algorithm according to its use in document image com-
pression. For a fair comparison, we adjusted pattern matching thresholds in each case
so that no characters were misclassified.

Table 1 compares the sizes of the codebook produced by the First Fit codebook
generation algorithm with and without the multi-pass optimization, and our GKM
algorithm. In each case we used the same underlying pattern matching algorithm,
EPM [14]. We use the first match version of the modified k-means optimization
(used in MGTIC [11]) because it produces slightly better results and runs faster than
the best match version. Compared with the First Fit algorithm, GKM reduces the
codebook size by an average of 26%, a remarkable improvement. Notice that for
CCITT4, the number of patterns grows. In this case, GKM shifts the costs of coding
one glyph given another glyph to the costs of patterns while minimizing the total
cost. The modified k-means optimization reduces the codebook size by an average of
7.2%, a smaller gain than GKM.

Table 2 compares the sizes of the codebook produced by the plain GKM algorithm
and the GKM followed by modified k-means algorithm. GKM followed by modified k-
means is better than plain GKM. GKM with k-means (not shown) performed slightly
worse than plain GKM. The mixed results of the k-means algorithm may be due to
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Test document Lossy Lossless Size of output
compression ratio compression ratio GKM/F.F. GKM/F.F.

F.F. GKM F.F. GKM (lossy) (lossless)
CCITT1 93.7:1 95.7:1 34.5:1 35.4:1 98.2% 97.5%
CCITT4 54.9:1 44.5:1 11.2:1 10.7:1 123.4% 104.7%
BROOKS1 87.2:1 105.4:1 42.8:1 47.5:1 82.7% 90.1%
BROOKS2 75.2:1 83.8:1 21.8:1 23.1:1 89.7% 94.4%
BROOKS3 80.3:1 90.9:1 24.4:1 23.1:1 88.3% 105.6%
BROOKS4 72.5:1 80.1:1 20.8:1 22.0:1 90.5% 94.5%
LAMBDA1 54.9:1 89.8:1 30.5:1 39.3:1 61.1% 77.6%
LAMBDA2 145.0:1 236.7:1 79.4:1 101.9:1 61.6% 77.9%
LAMBDA3 48.0:1 68.0:1 13.6:1 20.6:1 70.5% 66.0%
LAMBDA4 47.9:1 75.5:1 24.0:1 29.7:1 63.4% 80.8%
Average 82.9% 88.9%

Table 3: Overall compression ratios for plain GKM and First Fit. GKM improves com-
pression significantly. The average lossy output of GKM is about 83% of First Fit’s output.

thresholding effects.
Table 3 compares overall compression ratios achieved using GKM and First Fit.

We used the same lossy glyph position coding scheme [15] and Entropy-based Pattern
Matching (EPM) [14] to compress the test images. With the exception of CCITT4,
GKM dominated First Fit. The use of GKM reduced the size of the compressed
documents by an average of 17%.

We also compared reconstructed images resulting from plain First Fit and GKM.
As you can see in Figure 1, GKM usually picks a better quality bitmap as the pattern,
resulting in better reconstructed images.

5 DISCUSSION

GKM performed surprising well compared to the popular First Fit algorithm in our
experiments. We had expected to improve compression by a few percent, but we
were unprepared for the 17% improvement in overall compression performance that
we saw. Clearly the glyph clustering algorithm is more important than previously
realized.

K-means postprocessing steps helped First Fit, but did not help GKM, presum-
ably because GKM does a good job on its own. We had believed at first that K-means
steps could not degrade a codebook, because of the performance guarantees associ-
ated with this algorithm. However, after seeing codebooks degraded, we realized that
the distortion measure that K-means is guaranteed not to degrade is not ours, that
our thresholded (non-linear!) distance measures do not fit into the K-means frame-
work, and that K-means minimizes distortion, not library size. Use this “universal”
algorithm with caution.

GKM runs in cubic time, taking several minutes to partition a single dense page
of text on a moderately aged DEC Alpha workstation. This is far too long, although
since only encoding is slow, this extra time could be tolerable for some applications.
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Reconstructed image using First Fit algorithm

Reconstructed image using GKM

Figure 1: A randomly selected zoomed portion of CCITT1 reconstructed by First Fit and
GKM. It is clear that First Fit and GKM pick different glyphs as the representitive patterns
to reconstruct the original image. In most cases, GKM picks a better quality bitmap.

We expect investigations into efficient data structures for GKM to be fruitful.
A shortcoming in our model that we would like to address (at a later date) is the

fact that we assume that all patterns are equally likely: there is no explicit pattern
indexing cost in the minimization. If we could include estimates of these costs in the
minimization, then patterns which are likely in some context would be favored over
patterns which are unlikely in some context. Since text entropies are small compared
to glyph entropies, this would be a small effect, but we might see these costs breaking
ties between two patterns which match a glyph almost equally well, as often occurs
with “l” and “1” and occasionally “a” and “s”. In essence we would like to develop
a minimum entropy model of the document which encourages consistent spelling by
taking into account the syntactic structure of the document.
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