
UC San Diego
UC San Diego Previously Published Works

Title
Robust wavelet zerotree image compression with fixed-length packetization

Permalink
https://escholarship.org/uc/item/6h18h1w3

Authors
Rogers, J K
Cosman, P C

Publication Date
1998-03-01

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6h18h1w3
https://escholarship.org
http://www.cdlib.org/

Robust wavelet zerotree image compression with

�xed-length packetization�

Jon K. Rogers Pamela C. Cosman

Dept. of Electrical and Comp. Engineering, Univ. of California at San Diego

La Jolla, CA 92037-0407 fjkrogers,pcosmang@code.ucsd.edu

Abstract

We present a novel robust image compression algorithm in which the output

of a wavelet zerotree-style coder is manipulated into �xed-length segments. The

segments are independently decodable, and errors occurring in one segment do

not propagate into any other. The method provides both excellent compres-

sion performance and graceful degradation under increasing packet losses. We

extend the basic scheme to perform region-based compression, in which spec-

i�ed portions of the image are coded to higher quality with little or no side

information required by the decoder.

1 Introduction

Wavelet zerotree image coding techniques developed by Shapiro (EZW) [1], and fur-
ther re�nements by Said and Pearlman (SPIHT) [2] provide high performance, low
complexity image compression. These algorithms are highly dependent on the state

of the system and are, therefore, highly susceptible to bit errors. A single bit error
could potentially lead to decoder derailment. If the output streams from these algo-
rithms were directly divided into packets, loss of a single packet (due either to packet
misrouting, or to corrupted bits which might be detected with some error detection
scheme) would lead to uncontrolled degradation of the image quality.
Various strategies exist to address these issues. Retransmission protocols (ARQ)

allow the decoder to request that the encoder send a packet again. Forward error
correction (FEC) techniques allow a certain number of errors to be corrected. Both
of these strategies entail some cost. Retransmission protocols introduce delay; the
retransmitted packets might not arrive soon enough to be useful. Error correction

�This work was supported by ARO Grant No. DAAH04-95-1-0248 and by an NSF Career Award
under Grant MIP-9624729.

1

schemes reduce the compression achievable because extra bits are added. Further-
more, there is no graceful degradation in image quality if the error correction capacity
of the code is exceeded.
Several researchers have recently used various modi�cations of wavelet zerotree

compression to compose noise-robust coders. Man et al., [3] modi�ed the SPIHT
algorithm to contain a larger portion of �xed rate symbols. The bitstream is then
broken into sub-streams which receive di�erent amounts of error protection based on
their noise sensitivity. Creusere [4], using a variation of EZW, partitioned wavelet
coe�cient trees into groups which were each independently coded. The resulting
sub-streams were interleaved for transmission. Any single bit error will only corrupt
one sub-stream. Although not using zerotree-style quantization, the video codec in
[5] involving entropy coded scalar quantization of subband coe�cient trees together
with run-length and Hu�man coding, is related in spirit to the current work. The bit-
stream in [5] is divided into variable-length independent packets which allow complete
subband coe�cients trees to either be lost or received as a unit.
In this paper, we present a wavelet zerotree compression and packetization method

that is robust against packet erasure without the use of FEC or ARQ schemes. It
di�ers from previous schemes in that we do not use FEC, and in that the output
stream is composed of �xed-length segments. This is suitable for packet-switched
networks operating with �xed-length packets, or, for circuit-switched networks, it
can be seen as a method to provide resynchronization points to the decoder at �xed
intervals. We discuss its extension into a region-based codec in which a small region
of an image is coded to a high rate (high quality) while the remainder is coded to a
low rate (low quality).

2 Packetizing the Zerotree Bitstream

Wavelet zerotree coders can operate with di�erent numbers of decomposition levels,
and with di�erent structures for the parent-child relationships. We here describe
an encoder with particular choices for the decomposition levels and the parent-child
structures; these choices were motivated by our goal of operating with a packet length
of 53 bytes (48 payload) and target bit rates in the range of 0.1 to 0.4 bpp, but
other choices could be used as well. The basic idea is to modify the SPIHT/EZW
zerotree-style coder such that the �nal bitstream can be manipulated into �xed-length
segments (packets) which are independently decodable.
The encoder begins with the basic SPIHT [2] algorithm with no arithmetic encod-

ing, and only four levels of wavelet decomposition. The coe�cient tree structure used
is that of Shapiro [1], in which each \head" coe�cient in the low-low band has 3 chil-
dren, one in each of the next directional bands. For a 512�512 image, there are 1024
head coe�cients in the low-low band; each has 3�(1+4+16+64) = 255 descendants
in its tree. The encoder encodes the image out to a target bit rate (e.g., 0.2 bpp)
and stores the bits. Each stored bit is associated with exactly one of the 1024 trees.

2

The SPIHT and EZW coders put out bit streams in which the bits corresponding to
di�erent trees are interleaved; this yields progressivity. The most-signi�cant-bit for
every coe�cient of every tree is made known to the decoder before transmitting any
information about the next signi�cant bit. To achieve noise robustness, we sacri�ce
this progressivity. The output bitstream is de-interleaved and re-organized into 1024
variable-length sub-streams, where each sub-stream contains information pertaining
to only one tree of coe�cients.
A cumbersome but straightforward �xed-length packetization method can now be

seen, which serves as an introduction to our method. The 1024 sub-streams are
ordered in some �xed order (e.g., a raster scan) known to both encoder and decoder.
We assume initially that we are using standard ATM packets (48-byte payload) and
that no sub-stream has more than 48 bytes. The encoder concatenates sub-streams
into a packet until no more will �t. If only n trees �t, the encoder pads out any
space remaining in the packet with null bits, and tree n + 1 starts the next packet.
A substantial amount of overhead would be required in each packet. Firstly, each
packet needs to say which tree begins the packet. If the �rst packet contains trees
1{4, and the second one contains trees 5-11, in the event that the �rst packet is lost,
the decoder would not know that tree 5 begins the second packet. Since there are
1024 head coe�cients, ten bits are required in each packet to say which tree starts
the packet. Secondly, the decoder must be able to parse out the concatenated sub-
streams. At any point in the original EZW and SPIHT algorithms, by interpreting
the bits received up to that point, the decoder can determine to which tree the next
bit pertains. The decoder simply marches through the decreasing threshold levels
and the trees (sets) until either a stop code is encountered or a pre-determined target
rate is reached. However, when the sub-streams are de-interleaved and concatenated,
a separate stop code would be needed to indicate the terminating point of each sub-
stream; alternatively the encoder can inform the decoder how many bits are in each
sub-stream, and this would equally well enable the decoder to parse them out.
It turns out that the null-padding and the need for stop codes or explicit bit counts

for the trees can all be avoided. By re-interleaving the set of sub-streams in any
one packet, the decoder can decode each tree in the packet without stop codes or
additional information regarding each tree size. A small piece of additional overhead
(say, 4 bits) is required in order to tell the decoder how many trees are interleaved
in the current packet. The decoder would be unable to correctly cycle through the
round-robin of interleaved trees in the packet if it did not know how many there are.
Each packet gets �lled exactly. To �ll the next packet, the encoder examines the

upcoming ordered sub-streams. Suppose the next n trees would under�ll the packet;
the encoder can grow them out by encoding them at a rate higher than the initial
target rate. As necessary, more sorting and re�nement passes are conducted for those
trees alone, and the results interleaved, until the packet is exactly �lled. Alternatively,
the n+1 trees over�lling the packet can be pruned back until the packet is �lled exactly
(see Figure 1). The encoder currently chooses between growing a smaller set of trees

3

65542 3 3 4

Packet 2

DC

rate
target

Packet 1 trees A and B are grown to fill packet

Original Bitstream

trees C and D are pruned to fit packet

2

2 6 6 6

4 5 5

62

11

1 1 2211

C

BABAA B A B A

not used

Data Header
14 bits

5 bytes

B A

Routing
Header

A D

DCDD C D C

CADCB B BADC

4

�����
�����
�����
�����

�����
�����
�����
�����

...... ...

���
���
���
���

Packet Payload
���
���
���

���
���
���

48 bytes

3322

Packet Payload
48 bytes

1 1

Figure 1: The encoder decides to put trees A and B into packet 1, and trees C and
D into packet 2. Because trees A and B do not quite �ll the packet, they are grown
by using additional bits from beyond the target rate. Trees C and D together over�ll
their packet, and so get pruned.

and pruning a larger set by taking whichever is closer to 48 bytes, but the decision
could be based on a distortion-rate trade-o�, or by using lookahead to see how well
future groups of trees will �t into future packets.
Growing and pruning lead to spatially varying image quality. Coe�cients are not

all coded down to the same bit plane (threshold). Each packet has its own terminating
threshold which is not told to the decoder. The decoder reads a packet by �rst reading
the 14-bit packet header (which tells how many trees are in the packet, and where
the �rst one is located spatially) and then repeatedly cutting the threshold in half
and marching through the bit planes until it reaches the end of the packet. Because
trees are grown or pruned to �t within the �xed-length segment, no trees span across
packet boundaries. Together with the small packet headers, this makes each packet
independently decodable and provides robustness against packet loss.
In transmission over packet switched networks, packets which are not received

within a speci�ed time because of network tra�c or mis-routing are considered \lost".
Those packets will not be available to the decoder. Also, a packet may be discarded by
the decoder (considered lost) if errors are found in the packet payload after arrival. By
dedicating 16 bits of the payload to a CRC, the decoder could have a high probability
of error detection over the payload. Because of the packet independence, in the event
of losses, the decoder �lls in as many positions as it can in the wavelet coe�cient array
using all successfully received packets; missing wavelet coe�cients are then replaced

4

by zeros. If errors were not detected, the wavelet coe�cients corresponding to trees in
the erroneous packet would not be replaced by zeros, but would be placed with wrong
values in the array; nonetheless the undetected errors cannot propagate beyond the
packet boundary, and trees of coe�cients in other packets would be una�ected.

2.1 Re�nements

In practice, re�nements to this basic idea are needed for the algorithm to work well:
� The e�ects of a lost packet can be mitigated by interpolation. We used a simple
averaging: the decoder interpolates missing coe�cients in the low-low band by aver-
aging together as many immediate 8-neighbors as are available. Missing coe�cients
in other bands are replaced by zeros prior to inverse transforming the entire group.
� A raster scan order for the 1024 trees packs neighboring trees of coe�cients to-
gether; there will be fewer 8-neighbors present for interpolation in the event of packet
loss. So we order the 1024 trees with a recursive tessellation technique [6] used to
generate dispersed-dot dither patterns, ensuring that trees in each packet come from
widely dispersed locations in the image (see Figure 2).
� If four bits specify the number of trees in the current packet, the system cannot
handle packets with more than 16 trees or less than one. The binary word 1111 is
reserved to signal that there are more than 15 trees in the packet, or that there is
less than one, or various other special conditions. Whenever the escape word is used,
it is followed by a �xed-length word which speci�es what kind of special condition
occurred. In practice, for the USC-database images tested, the number of trees per
packet remained strictly between 1 and 15 for the bit rates of interest (0.1 to 0.4 bpp),
but the algorithm can handle trees of any size.
� Header information such as the image size and the starting threshold can be han-
dled in a number of ways. If the system always operates on a �xed-size image, the
size does not need to be stated. Otherwise, that information can be provided redun-
dantly in several di�erent packets. Each packet could use its own starting threshold.
For example, two bits within each packet could specify one of four standard starting
thresholds. If the threshold for a given packet is not one of the standard four, the
1111 escape word would be used to indicate this special condition.

2.2 Results

The PZW algorithm was used to compress the 512�512 8 bpp grayscale images Lena
and Peppers. The initial (progressive) wavelet coding target rate was 0.2 bpp. After
packetization, the actual rates achieved were 0.209 for Lena and 0.208 for Peppers.
These higher rates include the 14-bit overhead for each packet, as well as the e�ects
of growing and pruning trees within each packet. The PSNRs achieved at these rates
(for 4 cases: all packets arriving, 1%, 10%, and 20% packets erased) are shown in
Table 1 along with the PSNRs for the SPIHT algorithm with and without arithmetic

5

packet r

packet q

packet p

Figure 2: Position of tree heads in a low-low band of size 16x16. Packet p contains 14
trees, packet q contains 5 trees, and packet r contains 9 trees. Packets contain trees
that are not spatial neighbors. In the event of packet loss, more 8-neighbors of the
missing trees will be present, allowing for better interpolation.

Image SPIHT SPIHT PZW PZW PZW PZW
+arith. w/o arith no loss 1% loss 10% loss 20% loss

Lena 33.37 32.94 32.19 31.33 26.29 24.63
Peppers 32.83 32.35 31.75 30.85 26.38 23.31

Table 1: PSNR results for compressing Lena and Peppers to 0.21 bpp.

coding. In the case of no loss, the PZW algorithm pays a penalty of about 1.1
dB relative to the original SPIHT algorithm. With 1% loss, the quality remains
high, and even at loss rates as high as 20% to 40% the images remain recognizable
and catastrophic derailment is prevented. The PSNRs were obtained by averaging
the mean squared errors for 10,000 random realizations of the packet erasures. The
burstiness of the packet erasures makes no di�erence, since all packets are equivalent
a priori. Figure 3 shows a comparison between the original 512� 512 grayscale Lena
image and reconstructions compressed and packetized at 0.209 bpp for packet erasure
rates of 0%, 1% and 20%.

3 Region-Based Compression

We can take advantage of PZW's spatially varying quality to create a region-based
compression scheme in which a small region of interest (ROI) gets reproduced with
higher quality than the rest of the image. We discuss two methods for this; both
assume that a user has speci�ed the ROI and its desired (approximate) quality level.
In method 1, all trees with coe�cients in the ROI are coded to a high rate (to achieve

6

the desired quality), while trees outside the ROI are coded to a low rate (to provide
context). Because the �nal threshold (encoded bit plane) must be the same for all
trees within one packet, a packet which contains both trees from inside and outside
the ROI must increase the bit rate of the non-ROI trees in order to maintain the
speci�ed quality for the ROI trees. This spreads the higher quality to parts of the
image outside the ROI, an e�ect which can be minimized by changing the tree packing
order to a row and column interlaced raster scan (which is more likely to keep ROI
trees together in a packet, but still does not have any immediate neighbors in the
same packet). Because the decoder does not need to know the �nal threshold for any
tree, no side information is required to indicate the region of interest. The decoder
merely decodes some packets which contain only 1 or 2 trees (coded at high quality,
presumably from the ROI), and other packets with a dozen trees (low bit rate per
tree, presumably not from the ROI) but no vulnerable side information ever needs to
be sent to the decoder to explicitly state the location or quality of the ROI.
A second method for achieving this goal is a packetized version of Shapiro's region-

enhancement EZW algorithm [7]. All coe�cients in ROI trees are pre-multiplied by
some factor > 1:0, increasing their apparent signi�cance. They will be coded using
more bits. Side information required by the decoder includes the pre-multiplication
factor and the parameters necessary to specify the region. In this method, although
the actual terminating threshold for each tree in any one packet is the same, the
e�ective terminating threshold for trees within the ROI is larger (scaled by the pre-
multiplication). This allows for a better distribution of bits when packing trees from
both inside and outside the ROI in the same packet. Region-based compression and
packetization with method 2 are illustrated in Figure 4. At 0.06 bpp, the name of the
ship (the ROI) is illegible. With a scaling factor of 4.75 for ROI trees, the �nal rate
is 0.063 bpp, and we get high quality in the ROI (PSNR for ROI = 30.52 dB) while
maintaining context information. Table 2 shows numerical results of both methods
for the Ship image at di�erent overall bit rates. The results illustrate the problem
described for method 1; images have less overall distortion, but the quality of the
ROI is not as high. Method 2 more e�ectively dedicates bits to the ROI, giving it
higher quality and leaving the non-ROI area at low quality.

PSNR (dB)
Rate (bpp) ROI factor overall within ROI outside ROI

Method 1 0.086 0.40 28.44 30.86 28.41
Method 1 0.116 0.40 30.29 31.61 30.26
Method 2 0.086 4.75 28.06 32.04 28.02
Method 2 0.116 4.75 29.66 33.68 29.62

Table 2: PSNR results inside and outside the region of interest for the Ship image.
The region of interest included pixels [300�380; 300�370]. The ROI factor represents
the ROI rate (bpp) for method 1, and the multiplicative factor for method 2.

7

4 Conclusions

The wavelet zerotree compression and packetization algorithm presented here is ro-
bust against packet erasure without a requirement for retransmission or FEC. This
might be useful for channels with long round-trip delays, or for real-time interac-
tive systems. By grouping and interleaving coe�cient trees of adjusted lengths, the
method produces �xed-length segments that provide resynchronization points for the
decoding algorithm at �xed intervals, preventing catastrophic derailment. A con-
trolled degradation in image quality results as more packets are dropped. The algo-
rithm also is easily extended to perform region-based compression. The additional
rate required is low, and little or no side information is required by the decoder.
PZW may be useful in a non-packet-based network as well, since the sequence of

48-byte payloads can be streamed together and would guarantee re-synchronization
between the decoder and encoder after any bit errors. The method could be com-
bined with FEC to provide both error correction and also prevention of derailment
when the error correction capability is exceeded. By adjusting the payload length
(resynchronization interval), the number of decomposition levels, and the amount of
FEC, a variety of trade-o�s between compression performance, noise robustness, and
resilience to error burstiness could potentially be obtained.

References

[1] J.M. Shapiro. Embedded image coding using zerotrees of wavelet coe�cients.
IEEE Transactions on Signal Processing, 41:3445{3462, December 1993.

[2] A. Said and W.A. Pearlman. A new, fast, and e�cient image codec based on set
partitioning in hierarchical trees. IEEE Transactions on Ciruits and Systems for

Video Technology, 6(3):243{249, June 1996.

[3] H. Man, F. Kossentini, and M.J.T. Smith. Robust EZW image coding for noisy
channels. IEEE Signal Processing Letters, 4(8):227{229, August 1997.

[4] C.D. Creusere. A new method of robust image compression based on the embedded
zerotree wavelet algorithm. IEEE Transactions on Image Processing, 6(10):1436{
1442, October 1997.

[5] V.J. Crump and T.R. Fischer. Intraframe low bitrate video coding robust to
packet erasure. In J.A. Storer and M. Cohn, editors, Proceedings: DCC '97,

Snowbird, Utah, page 432, Los Alamitos, CA, 1997. IEEE Computer Society.

[6] R. Ulichney. Digital Halftoning. MIT Press, Cambridge, Mass, 1987.

[7] J.M. Shapiro. US Patent # 5563960: Apparatus and method for emphasizing a
selected region in the compressed representation of an image, October 1996.

8

(a) (b)

(c) (d)

Figure 3: (a) Original Lena image. (b), (c) and (d) are compressed and packetized at
0.209 bpp with 0%, 1% and 20% of packets erased, respectively. The corresponding
PSNRs are 32.2, 31.1, and 25.4 dB.

9

(a) (b)

(c) (d)

Figure 4: (a) Original image, (b) PZW compressed at 0.06 bpp, (c) PZW compressed
at 0.5 bpp, (d) region-based PZW results: ROI = [300� 380; 300� 370] is enhanced
with a multiplier of 4.75, requiring an overall rate of 0.063 bpp

10

