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Abstract

We present an algorithm to achieve good compression and classification
for images using vector quantization and a two dimensional hidden Markov
model. The feature vectors of image blocks are assumed to be generated by
a two dimensional hidden Markov model. We first estimate the parameters
of the model, then design a vector quantizer to minimize a weighted sum of
compression distortion and classification risk, the latter being defined as the
negative of the maximum log likelihood of states and feature vectors. The
algorithm is tested on both synthetic data and real image data. The extension
to joint progressive compression and classification is discussed.

I Introduction

The issue of joint compression and classification was considered and studied exten-
sively by Oehler, Gray, Perlmutter, Olshen, et al. [13, 14, 16, 17, 15, 18, 19, 11, 6]. A
vector quantizer aimed at combining compression and classification generates indices
that are mapped into both representative codewords and classes for original vectors at
the receiving end. This type of quantization has the potential for several applications
in the rapidly growing area of multimedia communication systems. For example, in
image databases, to retrieve efficiently a particular image type of interest, it may be
required that the codes of images indicate both pixel intensities and image classes. In
addition to practical motivation, there is theoretical interest in the study of such vec-
tor quantizers. It has been found that the two factors, compression and classification,
are not always in conflict; a vector quantizer that minimizes the sum of classification
error and a small portion of compression distortion may result in better classification
performance than a pure classifier, and vice versa [19, 15].

The joint compression and classification algorithm developed by Oehler, Gray,
Perlmutter, Olshen, et al. [13, 14, 16, 17, 15, 18, 19], is referred to as Bayes VQ.
The basic assumption is that a training sequence L = {(xi, yi), i = 1, 2, ..., L} is a
realization of a random process {(Xi, Yi), i = 1, 2, ...} with (Xi, Yi) obeying a common
but unknown distribution PXY on (X, Y ) ∈ AX × AY . Typically PX is absolutely
continuous and is described by a pdf fX on Rk, and PY is discrete, described by some
pmf pY . For a testing sequence, we observe {xi, i = 1, 2, ..., L}. The goal is to design
an encoder α̃, a decoder β̃, and a classifier κ to achieve good tradeoff among average
distortion, bit rate, and the Bayes risk entailed by guessing Y from the encoded X.
The encoder α̃: AX → Z, maps xi to an index m. The decoder β̃: Z → AX , maps the



index m into a representative vector x̂i (codeword). The classifier κ: Z → AY , maps
the index into a class. The Bayes VQ algorithm defines a new distortion measure as
a weighted sum of compression distortion and penalty for misclassification, which is
usually the classification error rate. Vector quantizers are then designed to minimize
the average distortion with respect to this measure.

For the Bayes VQ, and many other block based image classification algorithms

such as CARTTM [5], images are divided into blocks; and decisions are made inde-
pendently for the class of each block. In order to improve classification by incorpo-
rating context into the decisions regarding classes, a context dependent classification
algorithm [10] is developed by modeling images as two dimensional hidden Markov
models (HMM). The two dimensional hidden Markov model is extended from the
1-D HMM, that was developed in the 1960s by Baum, Eagon, Petrie, Soules, and
Weiss [1, 2, 3, 4]. The basic assumption of a two dimensional hidden Markov model
is that, at any block, the image exists in one of a finite set of states. A transition
to any state at a block is governed by a fixed probability depending on the states of
two adjacent blocks: above and to the left of the current block. Given the state of
a block, the feature vector of the block follows a Gaussian distribution with param-
eters depending on the state. A many to one mapping between states and classes is
assumed. Thus, each class may have several states. The classifier first estimates the
model based on training data. To classify a test image, the combination of states with
the maximum posterior probability given all the feature vectors is searched based on
the model. The states are then mapped into classes to obtain the classified image.

The algorithm we describe defines the penalty for misclassification as the negative
of the maximum log likelihood of states with feature vectors based on a 2-D HMM. As
with the Bayes VQ algorithm, the distortion measure is a weighted sum of compression
distortion, in particular, the mean squared error, and the penalty for misclassification.
As is discussed in [10], because image blocks are assumed to be statistically dependent,
decisions are made jointly for the blocks to classify them optimally. Consequently,
blocks with the same feature vector may be classified differently according to their
context. A vector quantizer designed with a 2-D HMM has the same property. Hard
boundaries between quantization cells vanish due to the context dependent encoding.

In Section II, we introduce notation and define the distortion measure. Section
III describes the optimality properties of a vector quantizer with a 2-D HMM and the
design algorithm. Details on optimal encoding are provided in Section IV. Section V
presents simulation results on both synthetic data and real image data. In Section VI,
we discuss the extension of the algorithm to perform joint progressive compression
and classification by using 2-D multiresolution HMMs extended from 2-D HMMs.

II Distortion Measure

A training sequence of image data is represented by L = {(xk,l, yk,l), (k, l) ∈ N},
where N = {(k, l); 1 ≤ k ≤ K, 1 ≤ l ≤ L} denotes the collection of blocks in the
training image. The random vector Xk,l contains the intensities of pixels in block
(k, l), and Yk,l is the class of the block. The domain of Xk,l is AX , and the domain



of Yk,l is AY . We assume that there exists a random process {(uk,l, sk,l), (k, l) ∈ N}
associated with the training image. The random vector Uk,l is the feature vector for
block (k, l), which is a function of Xk,l. The random variable Sk,l is the underlying
state of the block. It is assumed that {(Uk,l, Sk,l), k, l = 1, 2, ...} is generated by a 2-D
HMM. Details about the assumptions of a 2-D HMM is in [10].

As the state process {sk,l, (k, l) ∈ N} can never be observed, the 2-D HMM is esti-
mated based on {(uk,l, yk,l), (k, l) ∈ N} obtained from the training image. We assume
that the 2-D HMM is already estimated from the training data. Readers are referred
to [10] for details about estimating the parameters of the model. In order to use
the 2-D HMM to classify images, feature vectors {uk,l, (k, l) ∈ N} are evaluated from
pixel intensity vectors {xk,l, (k, l) ∈ N}. We then apply the model to search for the
states {sk,l, (k, l) ∈ N} that yield the maximum posterior probability given the feature
vectors, i.e., max−1

sk,l
P{sk,l, (k, l) ∈ N | uk,l, (k, l) ∈ N}, which is equivalent to the maxi-

mization of the joint likelihood with the feature vectors max−1
sk,l

P{sk,l, uk,l, (k, l) ∈ N}.
The classes are then mapped from the states. We denote the mapping from states
to classes by C(sk,l). Although we cannot claim in general that the states with the
maximum posterior probability necessarily yield the classes with the maximum pos-
terior probability given the feature vectors, we use the likelihood of the states with
the feature vectors, P{sk,l, uk,l, (k, l) ∈ N}, as an indication of classification risk be-
cause the evaluation of P{yk,l, uk,l, (k, l) ∈ N} is computationally too intensive. It is
reasonable to make such a replacement due to the belief that the optimal decision on
the states should yield a good decision on the classes. As a result, for the encoder α̃,
given ŷk,l, the estimation of respective classes yk,l, the penalty for misclassification is
−maxsk,l:C(sk,l)=ŷk,l

log(P{sk,l, uk,l, (k, l) ∈ N}), i.e., the negative of the maximum log
likelihood of the feature vectors and states that can be mapped into classes ŷk,l. For
the classifier at the receiving end, to decide the optimal class of an index, the goal is
to minimize the classification error rather than the error rate of the states.

We define our distortion measure as a Lagrangian function formed in the manner
of [7, 19]. Suppose xk,l is encoded as ik,l. In our study, the compression distortion
d(xk,l, β̃(ik,l)) is assumed to be the mean squared error between xk,l and the code-
word to which it is decoded . The Lagrangian distortion between an input image
{xk,l, (k, l) ∈ N} and encoder output indices {ik,l, (k, l) ∈ N} is defined as

ρλ =
1

KL
[

∑

(k,l)∈N
d(xk,l, β̃(ik,l)) − λ max

sk,l:C(sk,l)=κ(ik,l)
log(P{sk,l, uk,l, (k, l) ∈ N})] ,

where KL is the number of blocks in the image.
The interaction between compression and classification is not as obvious as with

Bayes VQ [8, 16] because the encoder and the classifier affect each other indirectly
through the choice of states. For each xk,l encoded as ik,l, its class κ(ik,l) determined
by the classifier restricts the possible states for block (k, l) to be those satisfying
C(sk,l) = κ(ik,l). We have defined the Lagrangian distortion for the entire image
because the likelihood cannot be separated into independent items for each block.
Usually we do not encode an entire image jointly; instead, we simplify by dividing
the image into subimages that contain a set of image blocks. The distortion ρλ is the



distortion for one subimage. The expected value of ρλ quantifies the performance of
the vector quantizer. We define the expected distortion for the vector quantizer as
in [8]:

Jλ(α̃, β̃, κ) = E(ρλ) = D(α̃, β̃) + λB(α̃, κ) ;

D(α̃, β̃) = E(d(X, α̃(X)) ;

B(α̃, κ) = − 1

KL
E[ max

sk,l:C(sk,l)=κ(ik,l)
log(P{sk,l, uk,l, (k, l) ∈ N})] .

III Optimality Properties and the Algorithm

As with Bayes VQ [8], there are necessary conditions for overall optimality of a
vector quantizer with a 2-D HMM. They lead to an iterative algorithm for designing
the quantizer. The conditions for the optimal decoder and the optimal classifier are
the same as those stated in [8] for the particular case of classification error rate being
the penalty for misclassification.

• Given α̃ and κ, the optimal decoder is β̃(i) = minz∈ÂX

−1E[d(x, z) | α̃(X) = i].

• Given α̃ and β̃, the optimal classifier is κ(i) = maxk
−1P̂ (Y = k | α̃(X) = i),

that is, a majority vote on the classes of all the vectors encoded to the index.
The P̂ (·) denotes the empirical frequency for a class based on all the vectors
encoded to the index.

• Given κ and β̃, then the optimal encoder is

α̃(xk,l; (k, l) ∈ N) = min
ik,l

−1{
∑

(k,l)∈N
d(xk,l, β̃(ik,l)) −

λ · max
sk,l:C(sk,l)=κ(ik,l)

log P{sk,l, uk,l; (k, l) ∈ N}} .

The algorithm iterates the three steps in succession. Since we cannot claim the
penalty for misclassification used in the encoder is a increasing function of the clas-
sification error rate, the algorithm is not guaranteed to be descending. However,
simulations that we have performed on both synthetic data and real image data with
a wide range of λ have always provided descending Lagrangian distortions.

To design the initial quantizer, we first apply a pure classification with the 2-D
HMM on the training data. Based on the classification result, we design a codebook
for each class using standard Lloyd algorithm. Bit allocation is used to decide the
initial number of codewords for each class. The combination of all the codebooks
forms the initial decoder. The classes for the codebooks form the initial classifier.



IV Optimal Encoding

According to the iterative algorithm presented in the previous section, it is simple to
update the decoder and the classifier. Recall that the optimal encoder is

α̃(xk,l; (k, l) ∈ N) = min
ik,l

−1{
∑

(k,l)∈N
d(xk,l, β̃(ik,l)) −

λ · max
sk,l:C(sk,l)=κ(ik,l)

log P{sk,l, uk,l; (k, l) ∈ N}} .

Consider

min
ik,l

{
∑

(k,l)∈N
d(xk,l, β̃(ik,l)) − λ · max

sk,l:C(sk,l)=κ(ik,l)
log P{sk,l, uk,l; (k, l) ∈ N}}

= −max
sk,l

max
ik,l:κ(ik,l)=C(sk,l)

[λ log P{sk,l, uk,l; (k, l) ∈ N} −
∑

(k,l)∈N
d(xk,l, β̃(ik,l))]

Since for fixed sk,l, (k, l) ∈ N,

max
ik,l:κ(ik,l)=C(sk,l)

[λ log P{sk,l, uk,l; (k, l) ∈ N} −
∑

(k,l)∈N
d(xk,l, β̃(ik,l))]

= λ log P{sk,l, uk,l; (k, l) ∈ N} −
∑

(k,l)∈N
min

ik,l:κ(ik,l)=C(sk,l)
d(xk,l, β̃(ik,l)) ,

and minik,l:κ(ik,l)=C(sk,l) d(xk,l, β̃(ik,l)) is simply the minimum mean squared error with
a codeword that is classified as C(sk,l), the critical step is thus to find {sk,l} that
maximize

λ log P{sk,l, uk,l; (k, l) ∈ N} −
∑

(k,l)∈N
min

ik,l:κ(ik,l)=C(sk,l)
d(xk,l, β̃(ik,l)) .

The first item is what an image classifier based on a 2-D HMM normally maxi-
mizes [10]. Let Tm denote the sequence of states on diagonal m, i.e., Tm = {sk,l, (k, l) :
k + l = m}, as shown in [10], and m = 0, 1, ..., w + z − 2, where w is the number of
rows and z is the number of columns. It can be shown that

λ log P{sk,l, uk,l; (k, l) ∈ N} −
∑

(k,l)∈N
min

ik,l:κ(ik,l)=C(sk,l)
d(xk,l, β̃(ik,l))

=

w+z−2∑

m=0

[λ log(P (Tm | Tm−1)P (um | Tm)) −
∑

(k,l):k+l=m

min
ik,l:κ(ik,l)=C(sk,l)

d(xk,l, β̃(ik,l))] . (1)

Equation (1) demonstrates the one-step memory of the Lagrangian distortion in
terms of Tm; we can apply the Viterbi algorithm to find the optimal sk,l. This is the
same method used to search for the optimal states by a pure classifier based on a
2-D HMM. The only difference caused by the compression distortion is an extra cost
at each step of the Viterbi transition diagram. A detailed discussion of the Viterbi
algorithm as it applies to minimize logP{sk,l, uk,l; (k, l) ∈ N} is in [10].



V Examples

V.1 Synthetic Data

We simulated the algorithm on an extended form of Kohonen Gaussian mixture
source [9]. As with an ordinary Kohonen Gaussian mixture, there are two classes.
Given the class k, k = 0, 1, the random vector X is Gaussian N (0, σ2

k). In particu-
lar, σ2

0 = 1,σ2
1 = 4. An ordinary Kohonen Gaussian mixture assumes that classes of

blocks are iid with equal probabilities for class 0 and 1. We assume, however, that
the classes are produced by a 2-D HMM. In this case, the classes are the same as the
underlying states because we only assign one state to each class. We also assume that
the feature vectors are the same as the vectors to be encoded, i.e., x. The specific
transition probabilities are as follows

aq,n,r = 0.5, if q 6= n; aq,n,r = 0.8, if q = n = r; aq,n,r = 0.2, if q = n 6= r; ,

that is, if the classes of two adjacent blocks are different, then the transition probabil-
ities are the same for both classes. If the classes of two adjacent blocks are consistent,
the probability of remaining in the same state is higher than that to move to the
different state.

λ MSE Pe

0.1 0.601 0.265
1 0.617 0.251
5 0.722 0.240
10 0.746 0.238

Algorithms MSE Pe

BVQ: Inverse halftone estimator 0.655 0.269
BVQ: CART-based estimator 0.653 0.274

Cascade 0.598 0.295
BVQ: TSVQ pmf estimator 0.630 0.270

Table 1: Left: MSE and Pe for Kohonen’s Example of vector quantizers with 2-D
HMM. Right: MSE and Pe for Kohonen’s Example of several algorithms.

Using this model, we generated a training data set of size 256 × 256. We then
used the training data to estimate a 2-D HMM. Based on the estimated HMM, we
have designed vector quantizers with different distortion weights λ. A test set of size
128×128 is generated to evaluate the performance of the quantizers. If the dependence
among blocks is ignored, the source we are considering is simply an ordinary Kohonen
Gaussian mixture. The Bayes decision rule yields an error probability of 0.264. Our
classifier with the 2-D HMM obtains an error rate of 0.243 for the test data. We have
decreased the error rate of the Bayes rule by exploiting the dependency among vectors.
The error rate of the Bayes rule is only a lower bound for the performance of classifiers
that make decisions independently on each block. At 1.5 bpp, the compression and
classification performance versus λ are listed in the left part in Table 1. We see
the tradeoff between compression and classification with variable λ. At λ = 5, 10,
the vector quantizer achieves better classification than a pure classifier based on the
HMM. Results at the same bit rate for Bayes VQ with different density estimators
are provided in [8]. We list some of them in the right part in Table 1. By taking
advantage of the inter-block dependencies, the vector quantizer with the 2-D HMM
improves both compression and classification.



Figure 1: An image and its hand labeled classes. White: man-made, Gray: natural.

V.2 Image Data

Aerial images were segmented into man-made and natural regions as is shown in
Figure 1. The images are 512× 512 gray-scale images with 8 bits per pixel. They are
the aerial images of the San Francisco Bay area provided by TRW (formerly ESL,
Inc.) [12]. The application of BVQ to aerial images has been discussed in [12, 19, 15].
Four images were used to train a model and quantizers. The test image is the one
shown in Figure 1.
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Figure 2: Compression and classification performance at λ = 500.0.

We divided the images into 4 × 4 blocks and used DCT coefficients or averages
of some of them as features. Denote the DCT coefficients for a 4 × 4 block by
{Di,j, i, j ∈ (0, 1, 2, 3)}. The features used are f1 = D0,0, f2 = |D1,0|, f3 = |D0,1|,
f4 =

P3
i=2

P1
j=0 |Di,j |
4

, f5 =
P1

i=0

P3
j=2 |Di,j |
4

, and f6 =
P3

i=2

P3
j=2 |Di,j |
4

. The vectors xk,l are
16 dimensional, with each component being the intensity of a pixel. For λ = 500.0,
compression and classification as they vary with bit rate are shown in Figure 2.
Performance is compared with a cascade system with standard Lloyd vector quantizer
followed by a classifier. The VQ with the 2-D HMM achieves much lower classification
error rates while keeping the PSNR about 0.05dB worse (sometimes even better) than
that of the cascaded system. In [15], the same image data set is used to test BVQ.
Performance is evaluated by cross-validation. At 0.525 bits per pixel, BVQ achieves



about 24.1dB PSNR and about 21% classification error rate. To show the effect of λ
on the tradeoff between compression and classification, we present the performance
for a variety of λ’s at three bit rates in Figure 3. The λ’s at the experiment points,
ranging from 10 to 105, are in an increasing order with the increase of PSNR. As
is shown in the figure, some tradeoff with compression can actually improve the
classification performance. This is consistent with comments in [5] to the effect that
to be greedy for reduction in Bayes risk alone leads to poor classifiers. The differences
of the compression distortion between the rates at all the λ are about the same. For
λ below 1000, the classification error rate decreases with the bit rate. But for λ above
1000, the classification error rate converges, and higher bit rate does not necessarily
lead to lower classification error rate.
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Figure 3: Tradeoff between compression and classification at rates: 0.327bpp,
0.384bpp, and 0.441bpp. The λ’s are in an increasing order with the increase of
PSNR; and λ = 10.0, 50.0, 5.0× 102, 5.0 × 103, 1.0 × 104, 5.0 × 104, 1.0 × 105.

VI Extension to Joint Progressive Compression and

Classification

As we can extend the 2-D hidden Markov model for image classification to a multires-
olution model in which it is assumed that an image is represented by feature vectors
across several resolutions. Images at different resolutions are first obtained using
wavelet transforms or other filtering techniques. The feature vectors at a particular
resolution are then evaluated based only on the image at that resolution. At each
resolution, the model is similar to an HMM except that transition probabilities de-
pend on both adjacent blocks and blocks at the same spatial location in the previous
resolution. Since one block at a lower resolution corresponds to several blocks at the
same spatial location in the higher resolution (e.g., a quadtree structure), the block in
the lower resolution may contain several classes. Consequently, except for the highest



resolution, there exists an extra “mixed” class besides the original classes. Based
on the multiresolution model, the classification is progressive in the sense that, at
low resolutions, some blocks are classified and the others are marked as the “mixed”
class and are subdivided in higher resolutions with a class assigned to each subblock
separately. By incorporating the multiresolution model with a progressive vector
quantizer, we can perform progressive compression and classification jointly.

Acknowledgments
The authors gratefully acknowledge the helpful comments of the reviewers, which

improved the clarity of the paper.

References

[1] L. E. Baum, “An Inequality and Associated Maximization Technique in Statistical
Estimation for Probabilistic Functions of Finite State Markov Chains,” Inequali-
ties III, pp. 1-8, Academic Press, New York, 1972.

[2] L. E. Baum and J. A. Eagon, “An Inequality with Applications to Statistical
Estimation for Probabilistic Functions of Markov Processes and to a Model for
Ecology,” Bulletin of American Math. Stat., pp. 360-363, Vol. 37, 1967.

[3] L. E. Baum and T. Petrie, “Statistical Inference for Probabilistic Functions of
Finite State Markov Chains,” Annals of Math. Stat., pp. 1554-63, Vol. 37, 1966.

[4] L. E. Baum, T. Petrie, G. Soules, and N. Weiss, “A Maximization Technique
Occurring in the Statistical Analysis of Probabilistic Functions of Markov Chains,”
The Annals of Math. Stat., pp. 164-171, Vol. 41, No. 1, 1970.

[5] L. Breiman, J. H. Friedman, R. A. Olshen and C. J. Stone, Classification and
Regression Trees, Chapman & Hall, 1984.

[6] N. Chaddha, K. Perlmutter, and R. M. Gray, “Joint Image Classification and
Compression Using Hierarchical Table-lookup Vector Quantization,” Proc. Data
Compression Conference (DCC), pp. 23-32, Snowbird, Utah, March 1996.

[7] P. A. Chou, T. Lookabaugh, and R. M. Gray, “Entropy-constrained Vector Quan-
tization,” IEEE Trans. Acoust. Speech & Sig. Proc., vol. 37, pp. 31-42, Jan. 1989.

[8] R. M. Gray, K. O. Perlmutter, and R. A. Olshen, “Quantization, Classification,
and Density Estimation for Kohonen’s Gaussian Mixture,” Proc. Data Compres-
sion Conference, pp. 63-72, Snowbird, Utah, March 1998.

[9] T. Kohonen, G. Barna, and R. Chrisley, “Statistical Pattern Recognition with
Neural Networks: Benchmarking Studies,” IEEE International Conference on
Neural Networks, pp. I-61-68, July 1988.



[10] J. Li, A. Najmi and R. M. Gray, “Image Classification by the Two Dimensional
Hidden Markov Model,” Proc. IEEE Int. on Conf. Acoust. Speech & Sig. Proc.,
to appear, Arizona, March 1999.

[11] C. L. Nash, K. O. Perlmutter, and R. M. Gray, “Evaluation of Bayes Risk
Weighted Vector Quantization with Posterior Estimation in the Detection of Le-
sions in Digitized Mammograms,” Proc. of the 28th Asilomar Conf. on Circuits
Systems and Computers, vol. 1, pp. 716-20, Pacific Grove, CA, Oct. 1994.

[12] K. L. Oehler, “Image Compression and Classification Using Vector Quantiza-
tion,” Ph.D thesis, Stanford University, 1993.

[13] K. L. Oehler and R. M. Gray, “Combining Image Classification and Image Com-
pression Using Vector Quantization,” Proc. Data Compression Conference, pp.
2-11, Snowbird, Utah, March 1993.

[14] K. L. Oehler and R. M. Gray, “Combining Image Compression and Classifica-
tion Using Vector Quantization,” IEEE Trans. on Pattern Analysis and Machine
Intelligence, vol. 17, pp. 461-73, May 1995.

[15] K. O. Perlmutter, “Compression and Classification of Images Using Vector Quan-
tization and Decision Trees,” Ph.D thesis, Stanford University, 1995.

[16] K. O. Perlmutter, R. M. Gray, K. L. Oehler, and R. A. Olshen, “Bayes Risk
Weighted Tree-structured Vector Quantization with Posterior Estimation,” Proc.
Data Compression Conference, pp. 274-83, IEEE Computer Society Press, March
1994.

[17] K. O. Perlmutter, R. M. Gray, R. A. Olshen, and S. M. Perlmutter, “Bayes Risk
Weighted Vector Quantization with CART Estimated Posteriors”, Proc. IEEE
Int. Conf. on Acoust. Speech & Sig. Proc., vol. 4, pp. 2435-8, May 1995.

[18] K. O. Perlmutter, C. L. Nash, and R. M. Gray, “A Comparison of Bayes Risk
Weighted Vector Quantization with Posterior Estimation with Other VQ-based
Classifiers,” Proc. IEEE Int. Conf. on Image Proc., vol. 2, pp. 217-21, Austin,
TX, Nov. 1994.

[19] K. O. Perlmutter, S. M. Perlmutter, R. M. Gray, R. A. Olshen, and K. L. Oehler,
“Bayes Risk Weighted Vector Quantization with Posterior Estimation for Image
Compression and Classification,” IEEE Transactions on Image Processing, vol. 5,
no. 2, pp. 347-60, February 1996.


