
Multi-resolution Adaptation of the SPIHT

Algorithm for Multiple Description

Nedeljko Varnica Michael Fleming Michelle E�ros1

Abstract

Multiple description codes are data compression algorithms designed with the goal of

minimizing the distortion caused by data loss in packet-based or diversity commu-

nications systems. Recently, techniques that achieve multiple description coding by

combining embedded source codes with unequal error protection channel codes have

become popular in the literature. These codes allow for data reconstruction with any

subset of the transmitted packets and achieve progressively better source reconstruc-

tions as more and more packets are decoded. The given methods may be applied to

any embedded source description. While applicability to all embedded source codes

provides great 
exibility, this separation approach begs the question of whether better

performance could be achieved by taking advantage of the internal structure of a par-

ticular embedded code. In this paper, we investigate an extremely simple method for

using an embedded source code's internal state information in the construction of a

multiple description code. In particular, we protect an embedded SPIHT bitstream by

adding to that bitstream periodic descriptions of state information from the encoder,

and we demonstrate how the state information can be used to recover lost bits. For

low probabilities of network packet loss, the proposed algorithm achieves performance

within 0.35 dB of the performance of a more sophisticated channel coding algorithm

when both algorithms are applied to same SPIHT embedded source code.

1. Introduction

In packet-based communication systems, packet losses are inevitable, due, for exam-
ple, to bu�er over
ows. The most common strategy to protect the compressed data
from packet loss is to request retransmission of lost packets. This ensures that all
data will be received by the decoder. However, retransmission requires the network
to employ a reverse channel (so that the receiver can notify the transmitter of the
losses), and retransmission often involves signi�cant delays. Moreover, since packet
loss often results from bu�er over
ows in times of high network tra�c, retransmitted
packets will often experience the same lossy network conditions that caused the initial
packet losses.

1N. Varnica is with the School of Electrical Engineering, University of Belgrade, Serbia, Yu-

goslavia, Ph:+381-11-310-2825. M. Fleming and M. E�ros are with the Department of Electrical

Engineering, MC 136-93, California Institute of Technology, Pasadena, CA 91125, Ph: 626-395-2219.

This material is based upon work supported by NSF Award No. CCR-9909026, the Pickering Fel-

lowship, the F.W.W. Rhodes Memorial Scholarship, a Redshaw Award, and the Intel Technology

for Education 2000 program.



Applications with high delay sensitivity or no reverse channel may require data
reconstruction without missing packets. For such applications, multiple description
(MD) source coding provides the most appropriate approach to dealing with the
problem of packet loss. An MD code is a code that generates multiple independent
representations of the data in such a way as to provide better and better recon-
structions as the number of received data descriptions increases. (In a packet-based
network, each packet is considered as a description). The aim of MD code design
is to yield good rate-distortion performance under a wide variety of information loss
scenarios.

The MD codes of [1, 2] combine forward error correction (FEC) techniques with
embedded or multi-resolution image descriptions. In an embedded image description,
low rate (high distortion) data descriptions are embedded within higher rate (lower
distortion) descriptions of the same data, i.e. the description information can be con-
sidered to be arranged in order of decreasing importance. An embedded description
is generally very sensitive to erasures or errors; a single bit error or erasure can cause
loss of synchronization in the decoder, resulting in sharp degradation in performance.
Indeed, in many cases it is better to stop decoding at the point the error occurred
than to continue decoding the corrupted bitstream. Thus, to be used in a multiple
description code, an embedded code must be protected from data loss. The schemes
of [1, 2] use FEC to protect an embedded bitstream against erasures, employing
unequal loss protection to protect the most important information (at the start of
the embedded description) most strongly, and apply progressively weaker protection
to subsequent bits in the embedded description. Unlike more direct FEC-based ap-
proaches, the MD codes of [1, 2] preserve the progressive reconstruction property of
their embedded code. That is, decoding of the entire image can begin once the �rst
packet is received, and each subsequent packet allows the image reconstruction to be
re�ned.

The FEC-based unequal loss protection algorithms of [1, 2] are designed to work
with any embedded source code. Separating the source and channel codes in this way
allows for independent optimization of the source and channel codes. However, the
constraint imposed by separation implies that such an algorithm cannot take advan-
tage of any information internal to the source coder. A code that takes advantage of
this information, and hence violates the separation principle, can, in theory, always
achieve performance at least as good as these existing FEC algorithms. However, it
is unclear how to build such codes in practice.

This paper considers the questions of how state information from the source code
could be used for erasure protection if it were available and what gains might be
achieved through its use. To investigate this question, we propose an extremely
simple MD code based on the SPIHT embedded source coding algorithm [3]. Like
the unequal loss protection methods mentioned earlier, the new algorithm preserves
the embedded or multi-resolution property of SPIHT. The proposed MD code protects
SPIHT's encoded bitstream through periodic descriptions of partial state information
extracted from the encoder rather than by more traditional error correction methods.
The corrupted bitstream is corrected using an iterative algorithm based only on the
state information { which may itself be corrupted by erasures due to packet losses.

2



The proposed approach has some di�erent characteristics from those of multiple
description codes based on FEC protection. For example, with FEC methods, less
and less of the original description is decoded as more and more packets are lost. In
the proposed algorithm, the entire source data stream is always decoded, but as that
bitstream gets corrupted by more and more erasures, the quality of the reconstruction
based on that full data stream degrades.2

The paper is organized as follows. Section 2 presents background information
about the SPIHT algorithm and unequal loss protection schemes. In Section 3 we
present an algorithm that periodically adds state information to an unprotected source
bitstream and we describe how this state information can be used to reconstruct lost
source data bits. Section 4 presents performance results for the new algorithm, and
conclusions are drawn in Section 5.

2. Background

In this section we present background information on the SPIHT algorithm and on
unequal loss protection schemes.

The SPIHT Algorithm

The SPIHT algorithm [3] is extremely popular because it produces an embedded
image description with high e�ciency and low computational complexity. A key
feature of this algorithm is that it stores and updates state information as it encodes
an image. This state information is in the form of lists - the list of insigni�cant pixels
(LIP), the list of signi�cant pixels (LSP), and the list of insigni�cant sets (LIS). These
lists keep a record of the signi�cance of each wavelet coe�cient at each step of the
algorithm. Coe�cients or sets of coe�cients are said to be signi�cant with respect to
a given threshold if they exceed that threshold, and insigni�cant with respect to that
threshold otherwise. All signi�cant coe�cients are listed as the elements of the LSP.
All insigni�cant coe�cients accessed during the previous passes of the algorithm are
listed in the LIP. The sets of coe�cients that need to be checked for signi�cance are
kept as LIS entries.

According to their signi�cance, the wavelet coe�cients are added to and removed
from the lists during the four steps of the SPIHT algorithm. These steps are: initial-
ization, sorting, re�nement, and updating of the quantization-step. The sorting pass
can be further divided into two parts: one that deals with the LIP entries, and one
that deals with the LIS entries. We call these parts the LIP pass and the LIS pass
respectively.

The bits produced during the re�nement pass are unpredictable and do not change
the state of the encoder. Thus, it is impossible to use state information to correct
these bits. In the discussion that follows, these bits are treated separately from rest
of the source data and protected via a forward error correcting code.

The internal state of the SPIHT encoder is updated when any non-re�nement

2Here and subsequently, when we refer to source data or the source bitstream, we are referring

to the binary description created by the embedded source coder.

3



1 2 3 F F F
F

F
F
F

F
F

4 5 6 7
8 9 10 11

12 13 14 15 16
17 18 19 20 21
22 23 24 25 26
27 28 30 31 32

F

29

1

2

3

4

5

6

7

1 2 3 4 5 6

Packetized descriptions
B

lo
ck

s
Figure 1: Each of the rows is a block and each of the columns is a packet. A packet
consists of one byte from each block. Here, a message of 32 bytes of data (numbered
1-32) and ten bytes of FEC (F) forms seven blocks which are encoded into six packets.

source data bit is produced. Perfect knowledge of the state of the SPIHT encoder
at every point in the bitstream would allow us to correct an erasure of any such bit.
Describing the state of the SPIHT encoder at every point would take as many bits
as describing the source data itself. However, lost bits can be deduced with high
probability from only partial knowledge of the state information; a method to do this
is presented in Section 3.

Unequal Loss Protection Schemes

Unequal loss protection (ULP) schemes are FEC based schemes that protect the
source bitstream without using state information. The source bitstream is divided
sequentially into blocks, the size of each block being determined by the importance
of its data. The �rst block, formed from the data at the beginning of the source
description, is protected most strongly, since this is the most important part of an
embedded image description { a lost bit in the �rst block would render almost the
entire description undecodable. The error protection on subsequent blocks is slowly
reduced, since the data becomes less and less important. Figure 1, reproduced with
permission of the author, shows the approach adopted in [1]. The amount of data
in each block is chosen so that the number of data and protection bytes combined
is constant for each block. Packets are then formed using corresponding bytes from
each block.

3. Algorithm

In this section we present a method for using state information to recover lost bits from
a source data stream. We incorporate this into a simple algorithm to demonstrate a
way in which this idea could be used to build an MD code.

Encoder

4



3
m

m
4

m

m
4

m

m m mk k k k1 1 2 2 3 3 4

1 2m m

Figure 2: Redundancy is added to the original SPIHT bitstream.

In order to protect the output bits of the SPIHT encoder, redundancy is added.
The redundancy consists of explicit descriptions of changes in the state information
comprising the encoder and is added to the SPIHT bitstream as shown in Figure 2.
For example, at the end of the �rst block of m1 bits, a block of k1 protection bits is
added. This block contains information about state changes during the encoding of
the previousm1 bits. The protection block of k2 bits corresponds to the previous block
of m2 bits, and so on. The numbers mi and ki can take arbitrary values, depending
on the amount of state information to be described (or, equivalently, the amount of
protection required). Appropriate values for mi and ki to be used when encoding an
image are found by optimizing these values on a training set of similar images. The
state information used for the redundancy is the number of list elements added (to
the LSP in both LIP and LIS passes, or to the LIP in the LIS pass) or the number of
elements removed (from the LIP in the LIP pass) or both numbers (for LIS). After
protection, the bitstream is packetized, as discussed in the following section.

Packetization

The packetization method produces an MD code while preserving the multi-resolution
property of SPIHT. We �rst deinterleave the SPIHT bitstream to separate the bit-
streams associated with di�erent wavelet coe�cient trees (zerotrees), since each of
these bitstreams can be encoded independently. The number of trees is equal to
the number of the coe�cients in the highest level of decomposition of the wavelet
transform, since the zerotree structure used is that of [4]. Next, these bitstreams
are further divided into N + 1 substreams, each corresponding to one bitplane of the
binary description of the wavelet coe�cients in a single zerotree. Here, N represents
the index of the most signi�cant bitplane. Each of the newly formed substreams cor-
responds to a di�erent bitplane, with index n = N;N � 1; N � 2; : : : ; 0. Bitstreams
from di�erent trees that correspond to the same n are aligned horizontally, and packe-
tized vertically, as shown in Figure 3: the �rst packet is formed from the �rst bit from
each bitstream, the second packet is formed from the second bit of each bitstream,
and so on. Note, however, that the bitstreams are not of the same lengths. So,
once the last bit from the shortest bitstream is put in the corresponding packet, this
method must be modi�ed. To deal with di�erent packet lengths, we �rst calculate
the average number of bits of the substreams that correspond to the same bitplane.
We then cut the tails of those substreams that have longer than average lengths and
append those tails to the shorter ones. This equalizes the lengths of the substreams
for transmission.

5



-1N

-1N

-1N

-1N

-1N

-1N

-1N

Packets Packets

Tree C

Tree B

Tree A

N

1 2 3 1 2 3

N

N

N

N

N

N

N

-1

A

B

C

A

B

C

N

ii

C C

BB

A A

Figure 3: Packetization of bitstreams from di�erent trees for the two highest values
of n. Packets 1 through in (in is the length of the shortest bitstream) are formed in
a straightforward fashion. Bitstreams are rearranged in order to form the rest of the
packets.

Given this approach, the length of each substream needs to be known for the
packetization process to be reversed once the packets reach the receiver. To this end,
we add bits to the start of each substream to specify that substream's length. Since the
loss of this information would leave some information undecodable, we aggressively
protect it through FEC coding. The length information can be protected heavily
since the overhead involved is a very small percentage of the total bitstream.

This approach provides us with the packets sorted in an embedded fashion, since
the groups of packets are arranged and transmitted bitplane by bitplane, from most
signi�cant to least.

In the decoder, the bitstreams are reconstructed using the received packets. The
depacketization method is shown in Figure 4; it is simply the reverse of the procedure
used for packetization. The tails of the bitstreams are �rst rearranged into their
original positions; this is possible since the exact lengths of the bitstreams are known
to the decoder due to the aggressively protected length information. The packets are
then aligned vertically (lost packets are colored gray) and the ith bitstream is made
of the ith bit from each of the packets. Lost packets are transformed into lost bits in
the bitstreams. Except for these lost bits, the depacketized bitstreams are identical
to the original ones.

Decoder

The SPIHT decoder is adapted in order to recover lost bits using the state information
added during the encoding process. The state information describes the lengths of
the LIP, LSP, or LIS at the point of the encoding where they were added into the

6



C

B

A

N

N

N

NC

B

A

N

1 2 3 i

N

N

N

N

Packets

T
re

e 
bi

ts
tr

ea
m

s

Figure 4: Depacketization of the bitstreams. The lost packets (the shaded regions on
the left) are transformed into the lost bits (the shaded regions on the right)

original SPIHT bitstream. The encoder and the decoder should have identical lists
at each step of the algorithm. When lost bits are encountered in a block, they are
replaced with values that ensure that the decoder lists are consistent with the state
information at the end of the block. (If the decoder lists are not consistent with the
state information at the end of a block, then the decoder must be in a di�erent state
than the encoder was at that position. This would imply that at least one of the
lost bits has been replaced incorrectly.) The approach is summarized in the following
algorithm:

Start at block i = 0. For each block i do:

1. Beginning with the all-zero combination, try each possible combination for the
lost bits. Replace the lost bits with the �rst combination of bits that is found
to satisfy the state information check.

2. After replacement, increment i.

3. If there is no bit combination that satis�es the state information check, decre-
ment i and continue searching for valid bit combinations, starting this time from
the combination directly after the one that was previously accepted.

The algorithm is illustrated in the example shown in Figure 5. In this example,
three bits in block i have been lost during transmission. The lost bits are colored in
light gray, and the redundant bits in dark gray. We start checking bit combinations
from '000', and continue until we �nd the �rst one that satis�es the state information
check; the lost bits are then replaced with this combination. In the example, this bit
combination is '010'. It is important to note that this combination is not necessarily
the correct one, it is just the �rst that was found to satisfy the state information
check. Nevertheless, after this replacement we increment i and move to the next
block. If the combination '010' was not the right one, then it is very likely that in the
next block (as in this example) or in one of the subsequent blocks, there will be no
combination of bits that satis�es the state information check for that block. When
this happens, we know that an incorrect choice has been made in one of the previous
blocks. The decoder goes back to the previous block (i is decremented) and continues
to search for a di�erent valid bit combination, starting this time from the �rst bit

7



i

All combinations fail check
’0’
’0’
’0’ x x

and continue searching from the ’011’ combination

’0’

’0’

’1’

’0’
’1’
’0’

Fails check
Fails check
Passes check

Increment

x

iDecrement

Figure 5: Example of decoding and recovering bits. The lost bits are �rst replaced
with the '010' combination, but since no combination is satisfactory for the next
block, the decoder backtracks and continues checking with the '011' combination.

combination that has not yet been checked; in this example, the '011' combination.
Once again, as soon as the next valid bit combination is found, the lost bits are
replaced, i is incremented, and so forth. It is possible that a decoding error occurred
in a block prior even to this one, yet passed all the intervening information checks;
in such a case the decoder may have to backtrack multiple times.

One of the important features of the decoding process is that the redundant in-
formation for a given block can allow correction of an error from any earlier block.
This di�ers from forward error correction, in which the redundant information for a
speci�c block can be used to correct errors in that block only.

The algorithm is guaranteed to �nd a combination for all of the lost bits that will
satisfy the state information check for every block; we know that such a combination
exists because the original bitstream contained such a combination. However, if this
combination is not unique, then the decoder may produce an incorrect reconstruction.
Both the average and worst-case complexity of the algorithm depend on the level of
detail contained in the state information. If the information allows a unique determi-
nation of the lost bits for each block, then the complexity is linear in the number of
blocks, but if the information allows multiple combinations of bits to be accepted for
every block, then the complexity will grow exponentially with the number of blocks.
Increasing the number of lost bits is likely to increase the number of combinations that
are accepted for each block, hence increasing complexity, but the exact relationship
will depend on the particular image being described. Thus the complexity is higher
than that of the algorithm in [2], which takes time linear in the number of packets
used. However, the running time is still typically less than 1 second on a Pentium
200.

4. Results

The following results were obtained using a 5-level pyramid wavelet transform con-
structed with the 9/7-tap �lters of [5] on monochrome, 8 bits per pixel, 512 � 512
standard images, at a total rate (including redundancy) of 0.201 bits per pixel. The
algorithm was trained on the Lena image and tested on the Goldhill image. The
training determined the block length and amount of state information to be added

8



0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
28

28.2

28.4

28.6

28.8

29

29.2

29.4

29.6

29.8

30
Performance comparison

Probability of packet loss

P
S

N
R

 (
db

)

ULP w/o arith. coding
State info. decoding

Figure 6: The PSNR (in dB) achieved by the two methods at di�erent packet loss
probabilities.

by the encoder, and these values were �xed at both the encoder and the decoder.
Results are presented at packet losses ranging from 0 to 3%. For simplicity, we

assume that each packet has the same probability p of being lost.
The performance of the new method is compared with that obtained by the ULP

scheme of [1] applied to the output of the SPIHT algorithm. Note that the perfor-
mance of the ULP scheme could be increased by approximately 0.3 dB if the output
of the SPIHT algorithm is arithmetically encoded before protection; this was not
done here so that the e�ciency of correcting lost bits via state information could be
compared directly to that of correcting them via direct forward error protection.

Figure 6 shows the experimental performance in PSNR. The PSNR is calculated
as PSNR = 10 log

10
(2552=MSE) dB, where MSE denotes the mean squared-error be-

tween the original and the reconstructed images. We see that the the simple state
information based algorithm achieves performance close to that of the more sophis-
ticated ULP scheme, although the performance gap increases as the probability of
packet loss increases. At 3% loss, the performance gap is 0.35 dB.

5. Summary

We consider the question of how to incorporate state information from an embedded
source coder together with the source data to create a multiple description code.
The motivation for this consideration is that, in theory, a code that does not obey
the separation principle could achieve better performance than one that does. Thus,
the use of state information may allow the development of a code with performance
surpassing that of existing separation-based schemes. However, the optimal way to
use state information in such a code is not obvious. As a �rst step towards solving
this problem, we develop a method by which source data bits lost in transmission
can be recovered through the use of partial state information. As an illustration, we

9



develop a simple multiple description code in which correction of lost source data
bits is performed using state information. A comparison of this method to that of
directly protecting the source bits using FEC techniques, as in unequal loss protection
schemes, shows that the simple code achieves within 0.35 dB of the more sophisticated
FEC-based scheme for low probabilities of packet loss. This suggests that more
sophisticated approaches using state information, perhaps employing some of the
ideas behind unequal loss protection algorithms, might yield very e�cient multiple
description codes. More work is required to discover the most e�ective use of state
information.

6. Acknowledgments

The authors would like to thank Alex Mohr for providing experimental results using
his unequal loss protection simulator, his discussion of the results, and his permission
to reproduce an illustration from one of his published works.

References

[1] A. E. Mohr, E. A. Riskin, and R. E. Ladner. Graceful degradation over packet
erasure channels through forward error correction. In Proceedings of the Data

Compression Conference, pages 92{101. IEEE, March 1999.

[2] R. Puri and K. Ramchandran. Multiple description source coding using forward
error correction. In Conference Record, Thirty-Third Asilomar Conference on

Signals, Systems and Computers, Paci�c Grove, CA, October 1999.

[3] A. Said and W. A. Pearlman. A new, fast, and e�cient image codec based on set
partitioning in hierarchical trees. IEEE Transactions on Circuits and Systems for

Video Technology, 6(3):243{250, June 1996.

[4] J. M. Shapiro. Embedded image coding using zerotrees of wavelet coe�cients.
IEEE Transactions on Signal Processing, 41:3445{3462, December 1993.

[5] M. Antonini, M. Barlaud, P. Mathieu, and I. Daubechies. Image coding using
wavelet transform. IEEE Transactions on Image Processing, 1:205{220, April
1992.

10


