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Abstract

We consider the design of lattice vector quantizers for the problem of coding

Gaussian sources with uncoded side information available only at the decoder.

The design of such quantizers can be reduced to the problem of �nding an ap-

propriate sublattice of a given lattice codebook. We study the performance of the

resulting quantizers in the limit as the encoding rate becomes high, and we eval-

uate these asymptotics for three lattices of interest: the hexagonal lattice A2, the

Gosset lattice E8, and the Leech lattice �24. We also verify these asymptotics

numerically, via computer simulations based on the lattice A2. Surprisingly,

the lattice E8 achieves the best performance of all cases considered.

1 Introduction

1.1 Rate Distortion with Side Information

Let f(Xn; Yn)g1n=1 be a sequence of independent drawings of a pair of dependent
random variables X and Y , and let D(x; x̂) denote a single-letter distortion measure.
The problem of rate distortion with side information at the decoder asks the question
of how many bits are required to encode the sequence fXng under the constraint
that ED(x; x̂) � d, assuming the side information fYng is available to the decoder
but not to the encoder [4, Ch. 14.9]. This problem, �rst considered by Wyner and
Ziv in [13], is a special case of the general problem of coding correlated information
sources considered by Slepian and Wolf [11], in that one of the sources (fYng) is
available uncoded at the decoder. But it also generalizes the setup of [11], in that
coding is with respect to a �delity criterion rather than noiseless.

In [12, 13], Wyner and Ziv derive the rate/distortion function R�(d) for this prob-
lem, for general sources and general (single letter) distortion metrics. Under similar
assumptions, a more general function R(d1; d2) was considered by Heegard and Berger
in [7], for the case when there is uncertainty on whether side information is available
at the decoder or not. In this work however we restrict our attention only to Gaussian
sources (in which Yn = Xn+Zn, where Z is also Gaussian and independent ofX), and
mean squared error (MSE) distortion. This case is of special interest because, under
these conditions, it happens that R�(d) = RXjY (d), the conditional rate/distortion
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function assuming Y is available at the encoder [13]. We are intrigued by the fact
that there exist coding methods which can perform as well as if they had access to
the side information at the encoder, even though they don't. Our main goal in this
paper then is to construct a family of quantizers which realizes these promised gains.

The design of quantizers for the problem of rate distortion with side information
{also referred to in this work as Wyner-Ziv Encoding{ was �rst considered recently
by Zamir, Verd�u and Shamai, where they present design criteria for two di�erent
cases: Bernoulli sources with Hamming metric, and jointly Gaussian sources with
mean squared error metric [10, 15]. The key contribution presented in that work is
a constructive mechanism for, given a codebook, using the side information at the
decoder to reduce the amount of information that needs to be encoded to identify
codewords, while at the same time achieving essentially the distortion of the given
codebook. However, the authors do not present any concrete examples on the appli-
cation of their technique to a particular codebook, the �rst of which is then worked
out by Pradhan and Ramchandran in [8], where they design and thoroughly analyze
the performance of trellis codes based on the codebook partitioning ideas of [10, 15].

1.2 Lattice Quantizers for Wyner-Ziv Encoding

High-rate quantization theory provides much of the motivation to consider lattices [6].
Under an assumption of �ne quantization, the performance of an n-dimensional quan-
tizer � whose Voronoi cells are all congruent to a polytope P is given by

d = C(P ) � e�2(H(�;pX )�h(pX)); (1)

where pX is the joint source distribution in n dimensions, H is the discrete entropy
induced on the codebook � by quantization of the source pX , h is the di�erential
entropy, and

C(P ) =
1
n

R
P jjx� x̂jj2 dx
(
R
P dx)1+

2
n

is the normalized second moment of P (using MSE as a distortion measure) [5, 14].
In the problem of rate distortion with side information, for Gaussian sources and

MSE distortion, the goal is to attain a distortion value d using RXjY (d) < RX(d)
nats/sample. In (1) this means that, at �xed bit rate R0, we want to design quantizers
that achieve distortion

d0 � cn � e�2(R0�h(pXjY ))

when codingX, where cn � C(P ) is the coeÆcient of quantization in n dimensions [5].
But since we do not have access to Y (we only know pXjY ), using classical quantizers
we can only attain a distortion value

d � cn � e�2(R0�h(pX)) > d0

(because h(XjY ) < h(X)), or equivalently, we need to use some extra rate � � RX �
RXjY such that

d0 � cn � e�2(R0+��h(pX)):
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What makes this problem interesting is that we are only allowed to use R0 nat-
s/sample, not R0 + �. One way to do that has been proposed by Shamai, Verd�u
and Zamir in [10, 15], which consists of: (a) taking a codebook with roughly 2n(R0+�)

codewords and distortion d0, (b) partitioning this codebook into 2nR0 sets of size 2n�

each, (c) encoding only enough information to identify each one of the 2nR0 sets, and
(d) using the side information Y to discriminate among the 2n� codewords collapsed
into each set. In that construction however, two problems need to be dealt with.
First, the codebook partitions need to be designed in a way such that the ability of
the decoder to discriminate among codewords within each set is maximized. Second,
the fact that partitions which \maximize discriminability" result in a roughly uniform
distribution for the symbols to be encoded (we will see later why), thus sacri�cing
whatever gains may be possible due to entropy coding.

Lattice structures provide an intuitively appealing framework in which to design
quantizers for the Wyner-Ziv problem, for a number of reasons:

� Certain interesting lattices have an algebraic structure which is useful in the
design of the sought codebook partitions, as well as fast encoding algorithms
which make them attractive from an implementation viewpoint [3, Ch. 20].

� The Asymptotic Equipartition Property (AEP) for stationary ergodic sources
implies the existence of typical sets [4, Ch. 3]. These are sets of sequences of
source symbols, which contain almost all the probability mass, and in which
all sequences are roughly equally likely. This is particularly relevant for us,
since it provides a way to cope with our inability to take advantage of whatever
entropy coding gains may be possible for this particular source: since lattices
are vector quantizers, we are e�ectively coding points in the typical set, for
which no entropy coding is needed anyway due to their uniform distribution.

� Since we are only changing the encoding procedure to take advantage of the
side information at the decoder, but not the shape of the quantization cells, we
still need quantizers with cells having good second moment properties. This is
a condition met by many known lattices [3, Ch. 2 & 21].

� As pointed out in [15], good codes for Wyner-Ziv encoding must be simultane-
ously good quantizers as well as good channel codes. And in many cases, the
best known lattice quantizer is also the densest known sphere packing, which
under certain conditions is equivalent to the channel coding problem [3, Ch. 3].

We should also mention among the reasons to consider lattices our wish to answer
a challenge recently posed by Zamir and Shamai in [15]. They present an encoding
procedure very closely related to the one we propose here, they argue the existence of
good lattices to use with that procedure, they study their distortion performance, but
they do not present any examples of concrete constructions: their paper concludes
by saying that \beyond the question of existence, it would be nice to �nd speci�c

constructions of good nested codes" (sic). Finding those speci�c constructions is one
of the original contributions in this work.
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1.3 Main Contributions and Organization of the Paper

In this paper we construct lattice quantizers for the problem of rate distortion with
side information, for jointly Gaussian sources with MSE distortion. Our main contri-
bution is that of presenting speci�c examples of pairs of nested lattices, the computa-
tion of their resulting distortion at high rates, and numerical simulations to verify the
computed asymptotics in one simple case. Since our goal is to present a systematic
and constructive approach, we have chosen to restrict our attention to lattices with
a rich algebraic structure, like those studied in [3]. To design these quantizers we
search for an appropriate sublattice of a given lattice, and in this search the algebraic
structure of the lattice is helpful.

The rest of this paper is organized as follows. In Section 2 we de�ne and give
some intution on the structure of the proposed quantizers. In Section 3 we study the
asymptotic performance of these quantizers at high rates, and we present some ex-
perimental results consistent with these asymptotics. Finally, we present conclusions
in Section 4.

2 Structure of Wyner-Ziv Lattice Quantizers

2.1 De�nitions

A Wyner-Ziv Lattice Vector Quantizer (WZ-LVQ) is a triplet Q = (�; �; s), where:

� � is a lattice.

� � : Rn ! Rn is a linear operator such that �u � �v = c u � v, and such that

�0 �
= �(�) � �. Essentially, � de�nes a similar sublattice of �.1

� s 2 (0;1) is a scale factor that expands (or shrinks) � and �0.

Intuitively, the lattice � is the �ne codebook, the one whose codewords are to
be partitioned into equivalence classes. We choose to implement this partition by
considering a sublattice �0 � �, and then considering the resulting quotient group
�=�0. Since the �ne lattice is partitioned into j�=�0j equivalence classes, the rate of
the resulting quantizer is 1

n
ln(j�=�0j) nats/sample (n is the dimension of the lattice),

irrespective of the scale factor s. And s is a constant that multiplies the genera-
tor matrices of the lattices considered, which is to be adjusted as a function of the
correlation between the source X and the side information Y : small s leads to �ne
quantization but poor ability to discriminate among codewords within each partition
of �, large s leads to good discrimination ability but coarse quantization.

The question of the existence of similar sublattices arose recently in connection
with another vector quantization problem [9], and also in the study of symmetries of

1Two lattices �1 and �2 (with generator matrices M1 and M2) are said to be similar when there
exist a constant c 6= 0, a matrix U with integer entries and jdet(U)j = 1, and a real matrix B
with BB> = I , such that M2 = c UM1B [3]. Intuitively, similar lattices \look the same", up to a
rotation, a re
ection, and a change of scale.
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quasicrystals [1]. The subject is thoroughly covered in [2], where necessary (and in
some cases suÆcient) conditions are given for their existence.

2.2 Encoding/Decoding

For a lattice � of dimension n, let Q� : Rn ! � be its nearest neighbor map (i.e.,
Q�(x) = argmin�2� jjx��jj2), and let �=�0 denote the corresponding quotient group.
LetX denote a block of n source samples, and Y a block of n side information samples.
The encoder and decoder are maps f : Rn ! �=�0 and g : �=�0 ! �, de�ned by

~X = f(X) = Q�(X)�Q�0(X); X̂ = g( ~X) = Q�0+ ~X(Y );

whose operation is illustrated in Fig. 1, with an example based on the lattice A2.

X

Y

Origin

Q(X)-Q’(X)

Q(X)

Q’(X)

X

Y

Origin

Q(X)-Q’(X)

Q(X)

Figure 1: To illustrate the mechanics of the proposed quantizers (left: encoding, right:
decoding). A sublattice similiar to the base lattice is chosen (circled points), matched to
how far X and Y are expected to be: in this example, with high probability X and Y are
in neighboring Voronoi cells of the �ne lattice. Then X is quantized twice (using the �ne
and the coarse lattice), and the di�erence between these two is sent to the decoder, as a
representative of the set of all codewords collapsed into the same equivalence class. At the
decoder, the entire class is recreated (all the points with a thick arrow in the right picture),
and among these, the point closest to the side information Y is declared to be the original
quantized value for X. Note that there is always a chance that a particular realization of
the noise process may take Y too far away from X, in which case a decoding error occurs.

Now it should become clear why earlier we said that the proposed encoding pro-
cedure results in uniformly distributed symbols at the output of the encoder. Under
a �ne quantization assumption, the Voronoi cells of the sublattice will be small, and
therefore the source density will be roughly constant within these cells (assuming a
continuous source density, true in the Gaussian case considered here). But our par-
tition of the �ne lattice into equivalence classes results in a split of each one of these
large cells into j�=�0j smaller cells of equal area, and therefore equally likely.
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3 Asymptotics of Wyner-Ziv Lattice Quantizers

In this section we study the distortion performance of the proposed quantizers, asymp-
totically as their encoding rate becomes high.

3.1 Derivation of the Distortion Equation

When applied to a WZ quantizer (�;�0; s), equation (24) of [5] takes the form:

Ds =
h
(1� pe(�;�

0; s; �Z))C(�) + pe(�;�
0; s; �Z)�

2
X

i
� e�2[H(s�;pX)�h(pX)]; (2)

where:

� Xn � N (0; �2X) is the source sequence, Zn � N (0; �2Z) is a noise sequence
(independent of Xn), and Yn = Xn +Zn is the side information at the decoder.

� pe is the probability of a decoding error:

pe(�;�
0; 1; �Z) =

1

(�Z
p
2�)n

Z
V (�0)

ex�x=2�
2
Z dx =

�

2
erfc

 
� eR

�Z
p
2

!
(3)

where � is the kissing number of �, and � is half the norm of a shortest vector
in � [3, Ch. 3.1].2;3 By a simple change of variables we also get, for general s,

pe(�;�
0; s; �Z) = pe

�
�;�0; 1; �Z

s

�
.

� C(�) is the normalized (and hence scale-independent) second moment of the
Voronoi cells of the lattice �.

� h(pX) is the di�erential entropy of the source to encode.

� H(s�; pX) is the discrete entropy induced on the points in s� when this one is
used as a vector quantizer for the source X. Under a �ne quantization assump-
tion, we have that

H(s�) � h(pX)� 1

n
ln (Vol(s�))

Equation (2) has a simple interpretation: if no decoding error is made, the MSE
is that of the �ne codebook; else, the error is bounded by the source variance. And
using the above simpli�cations, it can be rewritten as:

Ds = �2Ze
�2R

("
1� �

2
erfc

 
� s eR

�Z
p
2

!#
C(�) +

"
�

2
erfc

 
� s eR

�Z
p
2

!#
�2X

) 
s eR

�Z

!2

det(�)
1
n

(4)

2The index j�=�0j is given by cn=2, where c is the norm of the similarity � [2]. Hence, half the

length of a shortest vector in �0 is �
p
c = �j�=�0j 1n = �eR, and where R = 1

n ln (j�=�0j) is the rate
of the quantizer.

3The last equality holds only under the assumption that �Z � �
pj�=�0j.
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Equation (4) is a high-SNR approximation of equation (2), obtained by replacing
the integral in (3) by its closed form expression under the assumption of small noise
variance. Written in this form, issues that make the problem of rate distortion with
side information interesting (and di�erent from the classical rate distortion problem)
become clear:

� Whereas in the classical lattice quantization problem speci�cation of the coding
rate uniquely determines the volume of the Voronoi cells of the lattice quantizer,
in this problem it does not, it only speci�es the index j�=�0j. This means that
the scale parameter s remains to be determined.

� In determining the best value of s, two contradicting goals are pursued. On
one hand, we want to make s as large as possible, because in this way pe will
be small and the distortion will be mostly due to quantization noise: that is,
the construction must be a good channel code. On the other hand, we want
to make s as small as possible, to achieve low quantization noise: that is, the
construction must be a good source code.

3.2 Scale Selection

To complete our design procedure, we still need to specify criteria for the selection of
the scale factor s, for which a natural choice is the minimization of Ds as a function
of s. At this point, we could proceed simply by solving @D=@s = 0 and checking the
appropriate sign-inversion condition around the solution found. But since we have not
been able to do this analytically (only numerically), this solution is not particularly
useful in terms of gaining understanding on this problem. To get some intuition then,
we �rst plot Ds {as de�ned by eqn. (4){, for three lattices of interest: A2, E8 and
�24. The resulting plot is shown in Fig. 2.
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Figure 2: Distortion of the proposed WZ quantizers, for a �xed rate of 1 nat/sample and for
a source with �2X = 1 and �2Z = 0:01, as a function of the scale factor s. The curve denoted
\�24 (wrong �)" in the right plot refers to the performance that would be attained by the
WZ quantizer based on the Leech lattice, if the kissing number of this lattice were 240 (like
in the case of E8) instead of 196560. All lattices are normalized to have determinant 1.
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We observe some interesting properties of the MSE function:

� In all cases, there is a local minimum of the error. This minimum corresponds
to a point s� where, if s < s�, the MSE is dominated by a high probability of
error, whereas if s > s� it is dominated by quantization noise.

� In this problem, (1 � pe)C(�) + pe�
2
X plays a role analogous to that of the

coeÆcient of quantization cn in the classical problem. A remarkable property of
cn is that it depends only on the geometry of the quantizer, but is independent
of the encoding rate and of the shape of the source [5, 14]. However, that
property does not hold in the presence of side information, since pe depends
essentially on the noise variance �2Z .

� e2R

�2
Z

Ds(R) depends on s, R and �Z only through s eR=�Z . Therefore, knowledge

of the location and value of the local minimum s� for one �xed value of R
uniquely determines its location and value at all rates and noise levels.4

Based on the above considerations, we de�ne the distortion of a WZ lattice quan-
tizer D(R) = minsDs(R), and the optimal s� as that value of the scale factor s which
attains the minimum in the de�nition of D. D(R) is plotted in Fig. 3, where it is
compared to other applicable performance bounds.
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Figure 3: Predicted performance of the proposed lattice quantizers: (a) DX : Shannon's
distortion/rate function for X; (b) evaluation of D for the lattices A2 and �24 (negligible
di�erence among these two); (c) evaluation of D for E8; (d) DXjY : Wyner-Ziv's distor-
tion/rate function. This plot is for �2X = 1, and �2Z = 0:01. All lattices are normalized to
have determinant 1 (which in the case of A2 involves scaling it so that its shortest vectors
have norm 2=

p
3).

A surprising result is that the quantizer based on the lattice E8 comes much
closer to the Wyner-Ziv bound than the 24-dimensional Leech lattice does, whose
performance is a negligible improvement over that of the two-dimensional hexagonal
lattice. This result can be explained however in terms of the kissing numbers of
these lattices. The equivalence between the channel coding problem and the sphere

4This is particularly helpful in the numerical minimization of Ds, since it means the minimization
needs to be done only once, for a �xed rate and noise variance.
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packing problem for lattices depends heavily on a high SNR assumption: when the
variance of the noise is not negligible compared to the minimum separation between
lattice codewords, the probability of error is dominated by the kissing number of the
lattice. But in our minimization of Ds, we essentially search for the smallest scale of
the shortest lattice vectors which does not result in too high a probability of error,
i.e., we reduce the lattice SNR as much as we can. Under these circumstances the
Leech lattice, having many more neighbors at close distance than the Gosset lattice
does, necessarily performs worse. This is further corroborated by the fact that, if the
kissing number of �24 were identical to that of E8, then it would indeed attain the
best performance, as it follows from the fact that the curve denoted \�24 (wrong �)"
in Fig. 2 has the lowest local minimum; at higher SNRs though, the Leech lattice
attains the least MSE, as was to be expected.

3.3 Numerical Simulations based on the Hexagonal Lattice

To conclude this section, we present preliminary results obtained in a computer imple-
mentation of the proposed WZ quantizer, based on the hexagonal lattice. Although
we are currently working on implementing these quantizers using other lattices, we
feel it is important for us to back our asymptotic analysis with at least one case of
experimental validation, and these results {shown in Fig. 4{ are relatively simple to
obtain using the hexagonal lattice.
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Figure 4: Computation of the distortion performance by Monte Carlo methods: 108 samples
are quantized and dequantized, at bit rates in the range of about 1-6 bits/sample. Observe
how the experimental curve approaches the theoretical curve as the bit rate increases.

C code implementing the WZ hexagonal quantizer, �gures for a few large index
sublattices of the hexagonal lattice, and the latest results are available from our
webpage, at http://lcavwww.epfl.ch/~servetto/.

4 Conclusions

In this paper we presented an overview of our work on the design of lattice quantizers
for the problem of rate distortion with side information. We showed how the nested
codes studied by Zamir and Shamai in [15] can be implemented as a a standard lattice
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and a similar sublattice. We studied the asymptotic behavior of the distortion that
results from applying our construction to three lattices, and we presented numerical
simulations whose results are consistent with the predicted distortion at high rates.

Perhaps the most important conclusion that follows from our results is related
to those properties which make certain lattices better than others for this problem.
Speci�cally, we �nd that dense lattice packings with high kissing numbers (such as
the Leech lattice) are not well suited to this problem. Instead, good quantizers with
small kissing numbers are to be preferred.

An interesting question that still requires further work is that of �nding a concise

way of presenting the performance of our quantizers at high rates. For classical quan-
tizers, one such representation is given by e2RD = C(�)e2h, since premultiplication
by e2R makes the distortion a rate-independent quantity. But this trick does not work
for WZ quantizers, since we saw in eqn. (4) that the optimal scale factor also depends
on the encoding rate. We hope to be able to �nd one such short description by taking
advantage of the fact that Ds(R) depends on s, R and �Z only through s eR=�Z (i.e.,
rate changes result only in a change of scale for the error function).
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