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Abstract
Zador’s classic result for the asymptotic high-rate behavior of entropy-constrained
vector quantization is recast in a Lagrangian form which better matches the Lloyd
algorithm used to optimize such quantizers. A proof that the result holds for a general
class of distributions is sketched.

1 Introduction

In his classic Bell Labs Technical Memo, Paul Zador established the optimal tradeoff
between average distortion and entropy for entropy-constrained vector quantization
in the limit of high rate [6]. The history and generality of the result may be found in
in [4]. Optimality properties and generalized Lloyd algorithms for quantizer design,
however, require a Lagrangian formulation [1]. In addition, the Lagrangian form turns
out to be more convenient for problems involving multiple codebooks such as coding
for mixtures since it obviates the need for optimizing rate allocation, as Zador does
in his proof. We here recast Zador’s theorem in a Lagrangian form and sketch its
proof under the assumption that the distribution of the random vector is absolutely
continuous with respect to Lebesgue measure.

2 Vector Quantization

Consider the measurable space (€2, B(€2)) consisting of k-dimensional Euclidean space
Q) = R* and its Borel sets. Assume that X is random vector with a distribution
P; which is absolutely continuous w.r.t. Lebesgue measure V' and hence possesses
a probability density function (pdf) f = dP;/dV so that P;(F) = [ f(x)dV(z) =

[z f(z) dx. The volume of a set F' € B is given by its Lebesgue measure V (F') = [ dz.

We assume that the the differential entropy h(f) £ — [ dz f(z)In f(z) exists and is

finite. The unit of entropy is nats or bits according to whether the base of the
logarithm is 2 or e. Usually nats will be assumed, but bits will be used when entropies
appear in an exponent of 2 and in coding arguments. The relative entropy between
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two distributions Py and P, with pdfs f and g is given by Gelfand’s theorem as

_ Pi(S) /()
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where the supremum is over all finite partitions S = {5;}.

A vector quantizer ¢ can be described by the following mappings and sets: an
encoder a : Q¥ — T, where T = {0,1,2,...} is an index set, an associated partition
S = {S;; i € I} such that a(x) =i if x € S;, a decoder 3 : Z — QF, an associated
reproduction codebook C = {3(i); ¢ € T}, an index coder ¢ : T — {0, 1}*, the space of
all variable-length binary strings, and the associated length function ¢ : 7 — {1,2,...}
defined by (i) = length(¢)(7)). ¢ is assumed to be invertible (a lossless or noiseless
code). The overall quantizer is ¢(x) = f(a(x))

For simplicity we assume squared error distortion with average

Dy(a) = Byd(X,aX)) = X [ de f@lle ~ull =3 [ de 1) 3 o= wl®

The instantaneous rate is 7(a(z)) = ¢(¢(a(x))), the number of bits required to specify
the index i = a(x) to the decoder. The average rate is

Ri(q) = Er(a(X)) = Z Pr(S:)((1)).

The optimal performance is the minimum distortion achievable for a given rate:
0f(R) = inf.r (g<r Dy(q). The traditional form of Zador’s theorem states that under
suitable assumptions on f,

lim 2585 ,(R) = b(2, k)20 (1)
where b(2, k) is Zador’s constant, which depends only on k and not f. Zador’s ar-
gument explicitly requires that his asymptotic result for fixed-rate coding holds and
that h(f) is finite. Zador’s fixed rate conditions have been generalized through the
years (see, e.g., [3]), but his variable results have not been similarly extended and
there are problems with Zador’s proof which limit its applicability to densities with
bounded support.

3 The Lagrangian Formulation
The Lagrangian formulation of variable rate vector quantization [1] defines for each

value of a Lagrangian multiplier A > 0 a Lagrangian distortion py(x,i) = d(z, 5(i)) +
M(1(7)), a corresponding performance

pfs A ) = Er (d(X, q(X)) + AEp($(a(X)))) = Dylg) + ARs(9),

and an optimal performance p(f,\) = inf, p(f, A, q). Each X yields a distortion-rate
pair on the operational distortion-rate function curve. Standard arguments imply
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that small \ corresponds to high rate and large A corresponds to small rate. The
Lagrangian formulation yields Lloyd optimality conditions for vector quantizers. In
particular, for a given decoder (satisfying the usual centroid condition) and index
coder, the optimal encoder is a(z) = argmin, (d(x,y;) + AM((7))). Optimal choice of
the index coder and the Kraft inequality ensure that H(g(X)) < Ef[l(¢(a(X)))] <
H¢(q(X)) + 1, where

H ZPf lnPfS)

This can also be achieved, e.g., by choosing lengths ¢(¢(i)) = [—log Pr(a(X) = )]
and hence it is common to make the approximation that

U((2)) = —log Pr(a(X) =), Ry(q) = Ept(v(a(X))) = Hp(q(X)),

resulting in entropy constrained vector quantization (ECVQ).
Our main result is the following.

Theorem 1 Assume that f is absolutely continuous with respect to Lebesque measure
and that h(f) is finite. Then

;g(”(’;AHgm):eﬁh(f) 2)
where Wk
A . plu1,

and uy is the uniform pdf on the k-dimensional unit cube C¥

Comment: It is shown in [5] that the that 1 holds if and only if 2 holds, in which
case 0 = gln %bz,k, so that the two formulations are indeed equivalent.
The following notation will be used:

007 20) = 22Dy g(x)) — h(p) + S
6(f,A) = t0(f, A q), 8(f) =limsup6(f, %), 6(f) = liminfo(f, ).

The quantization function 6(f, A, q) can be rewritten as a weighted sum of relative
entropies minus a constant kInz. The nonnegativity of relative entropy then yields
the following bound.

Lemma 1 For any f,\,q 0(f,\,q) > —kInw and therefore 0(f) > —kInm.
The following result is proved in [5]:

Lemma 2 The conclusions of Theorem 1 hold if and only if the limit of (1) exists,
in which case

ko 2
O = 5 In kb(2 k). (4)



Mixture sources play a fundamental role in the development. A mixture source is a
random pair { X, Z}, where Z is a discrete random variable with pmf w,, = P(Z = m),
m =1,2,... and conditional pdf’s fx|z(z|m) = fm(x) with support €2,,. The pdf for
x is given by

f@) = fx(@) = > wanfm(z)

In the special case where the €2, are disjoint, the mixture is said to be orthogonal.
For an orthogonal mixture define for each m the boundary of €2,,, 0€2,, as the closure
of €, minus the interior of €2,,. An orthogonal mixture is said to have the zero
probability boundaries property if Pr(9€,,) = 0 for all m.

Suppose that for each f,, we have a quantizer g,, defined on €2,,, i.e., an encoder
Q0 Qy, — I, a partition of Q,, {Si; ¢ = 1,2,...}, and a decoder 3, : T — Cp,.
The component quantizers {g,} together imply an overall composite quantizer ¢
with an encoder a that maps z into a pair (m,i) if z € Q,, and «a,,(z) = i, a
partition of Q {S,,;; i = 1,2,...,m = 1,2,...}, and a decoder ( that maps (m, 1)
into G,(1), ¢(x) = ¥, gm(x)lq,, (x). Conversely, an overall quantizer ¢ : @ — 7
can be applied to every component in the mixture, effectively implying a component
quantizers ¢, (z) = >, q¢(z)lq, (x) for all m. In this case the structure is not so
simple as quantization cells can straddle boundaries of €2,,. Here the partition of €2,
is {S;NQ,; i =1,2,...} and many of the cells may be empty.

Lemma 3 If f is an orthogonal mizture {fp, w,} and q is a composite quantizer
formed from component quantizers q,,. Then

Hy(q(X)) = h(f) = > wmlHy, (0 (X)) = h(fin)], (5)
0(f, X\ q) Zwm (frns A @), O(f,A) < Zwmg(fma ) Z g (fm). (6)

m

Proof: If g, has partition {S,,;}, then P¢(S,;) = X, wn Py, (Sni) = wn Py, (Sn)
since the mixture is orthogonal. Since fIn f is mtegrable with respect to Lebesgue
measure,

Hy(q(X)) = h(f) = > walHy,, (gn(X)) = h(fin)]-

Proving (5). The remaining relations follow from conditional expectation Ey||X —
q(X))? = X winEy, || X — @ (X)||?, the fact that for a given A and € > 0, ¢,, can be
chosen so that 0(fy, A\, gm) < 0(fm, A) + € for all m and hence

D Wl frs A) + € 2 D wnl(fns Ay am) = 0(f, X, 0) > 0(f, ),

9(f)=hrilj(1)1p9(f, <Zwmhmsup9 Sms A) Zwm (fm)-
Lemma 4 Given an overall quantizer q. Then

Hy(@(X) = h(f) = 2 walHy, (a(X)) = hi£)) = H(Z]a(X)) (7)
0(f. N q) = ;wn (fn: A @) — H(Z]q(X)) (8)



Proof: Suppose that ¢ is a quantizer defined for the entire space 2 = J,, §2,,. Let
{S;} be the corresponding partition. Then

Hy(q(X)) = h(f) =
> walHy, (a(X)) = h(fa)] + >3 P(Z =n,q(X) =1)In

no

P(Z =n,q(X)=1)
PX)=1)

Proving (7), which in turn implies (8). Zador is missing the H(Z|q(X)) term in his
analogous formula on p. 29 in the proof of his Lemma 3.3(b), he tacitly assumes it is
0.

Lemma 5 Suppose \,, q, n — oo satisfy lim,,_,., A, = 0, where the \,, are decreasing,
and lim, o O(f, Ay qn) = 0(f). Suppose also that f is a finite orthogonal mixture
{fmsWm; m=1,2,..., M} which has the zero probability boundaries property. Then
limy, 0o H(Z]q, (X)) = 0.

Proof: Define the sets G,, = {x : ¢,(x) € Qz} and the random variables ¢(z) =
1g, (). Then

H(Zlqn) < H(Z, ¢nlqn) = H(¢nlqn) + H(Z|on, 4n) < H(on) + H(Z|dn, 4n)-
Define p, = P¢(G¢) = Pr(¢,(X) = 0). Then

H(an) = h2(pn) = —pplnp, — (1 _pn> ln(l - pn)v (9>

and
H<Z|¢n7Qn) = Z H(Z‘¢n = OaQn = y)Pf(¢n = 07Qn = y)

yECn

since H(Z|p, = 1,q, = y) = 0 for all y (Z is a deterministic function of ¢, given
¢n =1). Thus H(Z|bn, qn) < ppln M so that H(Z|q,) < ha(p,) + pnIn M. Thus the
lemma will be proved if p, — 0 as n — oo. Define A = |J,, 9¢2,,,. Since assumed
boundaries have zero probability, Pf(A) = 0. Define ||z, A|| = inf,ca ||z — a|| and let
€, — 00 be a nonnegative decreasing sequence. Then U2 {x : ||z, A|| > €,} = A°.
For any 6 > 0 {z : ||z, A|| > 6} N{z : ||z — ¢.(2)|] < §/2} C G, since if x is at
least ¢ from the nearest boundary point and less than ¢/2 from ¢, (z), then from the
triangle inequality ||g.(z), A|| > §/2 and ¢,(z) must be in the same €2, as x. Thus
GS CH{z ||z, Al <YWz ||z — gn(x)|| > 6/2} and hence from union bound

pn < Pr({z - ||z, All < 0}) + Pr({ : [le — gu(@)[| > g})-

From the Tchebychev inequality Py({x : ||z — gu(2)|] > §/2}) < 4Dy(gn)/d*. Define
§ =6, by % = /Ay Then p, < Pr({x : ||z, Al| < 2A8}) + Dy(gn)/v/An- Since A4 is

1
decreasing, the sets {z : ||z, A|| < 2\i} are decreasing to

N {z: ||z, Al <208} = (U{{E |, Al > 2)&}) = A,
n=1 n=1
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1
which has zero probability by assumption, hence lim,, o, Pr({z : ||z, A|| < 2Ai}) = 0.
The assumptions of lemma imply that

Dy(0n) < MB(T) — A Tog A+ Adh() + Asoln) (10)

and hence D¢(g,)/v/An — 0 as A, — 0, completing the proof of the lemma.

Lemma 6 Assume a possibly infinite mizture { fp, Qm, wm; m = 1,2,...} which
satisfies the zero probability boundary condition and has the property that H(Z) < oo.
Suppose \,,q, n — oo satisfy lim, . A\, = 0, where the \, are decreasing, and

limy, oo O(f, A, @) = 0(f). Then lim,,_.o H(Z|q,(X)) = 0.

Proof: Given an orthogonal mixture {f,,, 2, w,; m = 1,2,...}, for any M form

[ Qs m= 1,2, M +1} by f1,(x) = f(2)/ Py(2,) ey, (x) with

m

o _{Qm m=12,...,M , {wm m=12,...,M
ClUZn & m=M+1 » Wm SM+1 = Li=Mp1 Wm m=M+1

Fix € > 0 and assume that M is chosen large enough to ensure that

o0

ho(Sma1) < €, —Spyyr1lnsy <€ — Z w,Inw, <e.
z=M+1
Define
ifxeQ,, m=1,.... M 1 xelUz Q;
Z/ — {m 1 my ) ) — { i=M+1 "%
(@) M +1 otherwise U 0 otherwise

and note that Pr(¢Ypy = 1) = sp41 and Py(¢y = 0) = 1 — Sy,,41 From the previous
lemma, lim,, . H(Z};]¢.(X)) = 0 so that

< H@®um) + H(Z1Yum, qn) = ha(sarr1) + H(Z| Y, qn)
S €+H<Z|’l/}M7Qn)7
H(ZWJMa(Zn) = SM+1 Z Pf(Qn - y|¢M = 1) X H(Z|¢M = 17Qn = y)
y€Cn
+(1 = sar41) Y, Prlgn = ylosr = 0)H(Z|p = 0,40 = y).

y€Cn

If ¢y = 0, then Z = Z},; and hence

H(Z|¢M7Qn) = SM+1 Z Pf(Qn :yW)M = 1)H(Z|1/}M = an :y>

yeln

+(1 - 5M+1) Z Pf(Qn = y|¢M = O)H(Zj\/lhbM = O7qn = y)

yeCn

st H(Z[Yn = 1) + (1 = sy H(Zy [¥m = 0, g,),

IN



since conditioning decreases entropy, and

since given ¢y = 1, Z), = M + 1 and hence H(Z}/ /Yy = 1,¢,) = 0. Thus
H(Z\Ynsqn) < s H(Z|Yy = 1) + H(Z)y|gn). The conditional pmf for Z given

Uy =118 Wy /Spreq for m= M +1,... and 0 otherwise. Hence
> w, W, 1 0
HZlYyy=1)=— > In =Insyq — w, Inw,
2= M41 SM+1 SM41 SM+1 211

so that combining the pieces yields
H(Z|gn) < e+ H(Z|ar, qn) < 3¢ + H(Z'|qn) —n—o 3e,

proving the lemma.
Combining the lemmas yields the following corollary.

Corollary 1 Suppose that f is an orthogonal mizture { fu, Qm, Wy} which satisfies
the zero probability boundary condition and for which H(Z) < oo (Z =m if x € Q)
(e.g., the mizture is finite). Then

Thus if f,, € Z for all m, then also f € Z.

Proof of theorem: First Step: Uniform pdfs on cubes Define a cube in QF as
Co={r:0<z;,<a;i=0,1,...,k — 1} (or any translation of a set of this form).
Define the corresponding uniform pdf u,(z) = V(C,) ¢, (z). Then V(C,) = d*,
h(ug) =InV(C,) = klna, and ue(x) = a Fuy ().

Lemma 7 0(uq, A, q.) = 0(u1,a %X\, q1), 0(uq, \) = 0(ug,a 2N).

Proof: Suppose have a quantizer ¢; with encoder «y : C; — Z and decoder 3, : Z — C
defined for the unit cube. Define a quantizer g, with encoder «, and decoder (3, for
C, by straightforward variable changes o, (z) = 1(2), Bu(l) = aBi(), qu(z) = 7q1(%).
Then Hy,(60) = Huy (1), hlta) = —Ina* + ), B, 1X — qu(X) P = 2 Euy || X~
q1(X)||? and hence 0(uq, A) = 0(ui, \/a?). Hence we can focus on uy(x) = 1¢, (),
uniform pdf on unit cube.

Lemma 8 lim)_0(ug, \) = 6.

Proof: Partition the unit cube C} into m* disjoint unit cubes C; /m- For each of the
small cubes have a uniform pdf f/,(z) = m”* on the cube. All of the small cubes
have the same p(fi/m,A). From Lemma 7, 0( f1/m,A) = 0(u1, m*A). From Lemma 3,
O(uy, \) < 3™ 0 f1/m> A) = O(f1/m, A), which with the previous equation implies
O(u1, A) < 0(uy, m*N). Replacing m?\ by A, 6(ui, ) > 0(u;, m™2)). Fix A and note
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that (0, \] = fn":l(m, 23] so for any X between 0 and X there is an integer m

such that A/(m + 1) < X < A/m?. p(f, \) is nondecreasing with decreasing \, hence
2m +1 k

)iln)\/

plenX) ko mAl,
> ") = (= R R a——
9(u17)\) - (m’,:l)QA/ + 2 n)\ ( m ) e(ul’)\)+<m2+2m+1

Choose any subsequence of X' tending to zero. The largest possible value is 6(u;)
and hence 6(u;,\) > 6(u;) which means that 6 2 inf, O(uy, A) > O(u;). Hence
O(u1) > 0 > 0(uy) and hence the limit limy_6(u;, \) must exist and equal 6.
Second step: Piecewise constant pdfs on cubes Suppose that C'(n) is a collec-
tion of disjoint unit cubes, w,, is a pmf, and

@) = gy o @)

Combining the previous result and Corollary 1 using the fact that the boundaries of
cubes have zero volume and hence also zero probability implies that f € Z.

Third step: Distributions on the unit cube Let C¥ denote the k-dimensional
unit cube and assume that Py(CT) = 1. For any integer M can partition C¥ into M%
cubes of side length 1/M, say C(m); 1,2,..., M*. Given a pdf f, form a piecewise
constant approximation

Fo0) = 32 T 1 o).

This is an orthogonal mixture source with w,, = P¢(C(m)) and component pdfs
fm(x) = M*1cgny(z). If Py denotes the distribution induced by f™) ie., Py(F) =
[ fOD () dz, then fOD = dPy,/dV ().

Lemma 9 limy/ FM(2) = f(z), V —a.e., limy_o || fOD = f||1 = 0,

Proof: The first two results follow by differentiation of measures and Scheffé’s lemma
(See, e.g., [3], p.88.) The third result follows from the convergence of entropy for
uniform scalar quantizers, e.g., [2].

Fix A > 0. Suppose ¢; is a quantizer with corresponding encoder oy, decoder (3,
index coder 11, and length function ¢;. Assume that ¢; is optimal for a design pdf g
(which will be either f or f*)) S; = {z: oy () = i}, Lin = L(11(7)), and p; = Py(S;),
which are assumed nonincreasing in ¢. Optimality of the index coder implies that [;
are nondecreasing. Given any node n in the code tree, define W,, = all x contained in
an S; C W,. Choose a node n* in the code tree that is not a leaf with the property

Pg(Wn*) = Z Pi SG.

Call the node n the flag node and let L. — 2 denote the depth of the code tree of
this node. A second quantizer ¢, is a uniform k-dimensional quantizer with side-
width A = 1/N where N = |VA] so that N < A2 A < VA1 -V, A% <
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A (1—=2VX) = X+ o(N\*?). Each cell is represented by its Euclidean centroid so
every input point is within A/2 of a reproduction and hence

AQ

Use a fixed rate lossless code for go, to specify the centroid selected, this will require
Ly=[InN¥] <InNF+1< —gln)\ + 1. For reasons to be seen, we instead use a
longer fixed rate code with length l;p = Le — 1+ Ly < L, — gln A. Form a code ¢
by merging ¢; and ¢y as follows: Given an input vector x, find the code and index
yielding the smallest Lagrangian distortion:

(m, ) = (m(x),i(x)) = argmin (d(z, (7)) + AG(7))

5]

Let B = {z : m(z) = 2} (uniform quantizer best). If z € B°NWY., then the encoded

sequence is that produced by ¢i: ¥(@(z)) = ¥1(aq(x)). Otherwise, either z € B or
x € Wy« Send the pathmap to n* (length=L, — 2) and (1) if z € W+, send a 0
(one bit) followed by the remainder of the binary sequence according to ¢;. In this
case the final codeword has an additional bit, [; = lin + 1, or (2) otherwise send a 1
(one bit) followed by the fixed rate log N bit word designating the uniform quantizer
output for a total of [;5. By construction,

d(z,q(x)) + N(Ya((z))) = min (d(z, A7) + A6 (7)) + 1w,.npe(2)
and hence

min (d(z, 41(7)) + Ma() < da, A()) + Ma() + Twgerpe(@) 1= 1,2 (12)

In particular, the upper bound for [ = 2 implies

— k k .
d(z,q(x)) + M(Ya(z)) < (Z + L)X — FAmA o(X¥/?) (13)
which after some algebra yields

007, 0,3) ~ 670 A 3)| < (G + Lot oWRDIS = FOI1+ [h(F) — (FO)] (14)

For any ¢; with ¢, and § constructed in this way using a design pdf g = f (M)

O(F,0) < 0(£.0,) < 0(fw, ) a) + <§ + Le + o(VA)[f = FM|| + [h(f) = h(F)

Using (12) with [ =1,
) = o o) (T @) + fa+ o)

< /d:c FOD (2) (M +0,(5) + 1WMBC<;U)) + gm + h(f™M)



since ¢; was assumed approximately optimal for f (M) " Thus

Wﬁ”SHGW%v+%+€+LAquMU—ﬂWwﬂmn—h@wm

— k A A
O(f) < 0+ 26+ (5 + LIS = FOON + [n(F) = (FOD).

Since f'(M)ihas the Zador property, letting M — oo 0(f) < ), + 2¢. Since € > 0 was
arbitrary, 0(f) < 6. The converse inequality is proved in a similar fashion.
Final step: Proof of theorem Carve O into disjoint unit cubes C(n) and write

the pdf f as the orthogonal mixture

f@zZﬂ@W%@%M@zM&%ﬁWM)

To apply Corollary 1 it must be shown that the boundaries of unit cubes have zero
probability and that H(Z) is finite. The first property follows since the boundaries
have zero Lebesgue measure and f is absolutely continuous with respect to Lebesgue
measure. The second property follows from the limiting properties for uniform quan-
tizers [2], the finiteness of h(f), and the fact that refining partitions increases entropy.
Thus the previous lemma and Corollary 1 yield 8(f) = >, Pf(C1(n))0(f,) = 6k, which
proves the theorem.
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