
Towards Compressing Web Graphs

Citation
Adler, Micah and Michael Mitzenmacher. 2000. Towards Compressing Web Graphs. Harvard
Computer Science Group Technical Report TR-08-00.

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:24829611

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you. Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:24829611
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Towards%20Compressing%20Web%20Graphs&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=ee97b3234f6ba0db88031d0f9be37854&departmentEngineering%20and%20Applied%20Sciences
https://dash.harvard.edu/pages/accessibility

Towards Compressing Web Graphs

Micah Adler

�

Michael Mitzenmacher

y

Abstract

In this paper, we consider the problem of compressing graphs of the link structure

of the World Wide Web. We provide e�cient algorithms for such compression that

are motivated by recently proposed random graph models for describing the Web.

The algorithms are based on reducing the compression problem to the problem of

�nding a minimum spanning tree in a directed graph related to the original link graph.

The performance of the algorithms on graphs generated by the random graph models

suggests that by taking advantage of the link structure of the Web, one may achieve

signi�cantly better compression than natural Hu�man-based schemes. We also provide

hardness results demonstrating limitations on natural extensions of our approach.

�

University of Massachusetts, Department of Computer Science, University of Massachusetts, Amherst,

MA 01003-4610. E-mail: micah@cs.umass.edu.

y

Harvard University, Division of Engineering and Applied Sciences, 33 Oxford St., Cambridge, MA 02138.

Supported in part by a research grant from the Alfred P. Sloan Foundation, NSF grant CDA-94-01024, and

an equipment grant from Compaq Computer Corporation. E-mail: michaelm@eecs.harvard.edu.

1 Introduction

A snapshot of the World Wide Web can be thought of as a graph, with Web pages represented

by nodes and hyperlinks represented by directed edges. This representation has been used

for a wide variety of Web algorithms, including algorithms for ranking pages based on their

connectivity [11, 3] and �nding natural communities of pages on a shared topic [13]. Indeed,

at least one major search engine has designed a tool called the connectivity server for storing

the Web graph [2, 4].

Given this previous work, a natural question to ask is how well the Web graph and

Web-like graphs can be compressed, in order to save on the memory required to store or

transfer such graphs. Good compression requires using the structural properties of the Web

graph, and hence an important �rst step is understanding this structure. Previous work gives

us important insights. It is clear that the Web graph appears to be signi�cantly di�erent

from the likely graphs resulting from traditional random graph models. In particular, there

appear to be natural clusters of related pages with similar connections. Hence, in [12, 14],

a new random graph model was introduced with these clustering properties. The basis of

this model is that pages and links enter and leave the system dynamically, and new pages

may link to other pages by �nding one or more reference pages and copying links from these

references.

Recent studies of the Web graph suggest that the structure of the Web is actually more

complex than this random graph model; see, for example, a study based on a recent snapshot

of the Web from Altavista [4]. However, as a �rst approximation, this model captures

important high level behavior, and it may be especially suitable for the large components of

the Web graph, or for speci�c subdomains, such as all the pages within a given university.

Hence, in this paper we focus on variations of this graph model; experiments on complete

Web data will be covered in future work. Since achieving good compression is strongly

related to �nding structure, we expect our compression work eventually to yield further

insights into the structure of the Web graphs.

Our primary results are the following:

� We provide a compression algorithm based on �nding pages with many shared links.

This dependence on shared links makes our algorithm particularly well suited to graph

models that employ copying links from reference pages, but we also expect that our

algorithm will work well with any graph structure that involves signi�cant similarities

in shared links. The algorithm requires solving a directed minimum spanning tree on a

graph associated with the original graph. Under appropriate assumptions concerning

the degree distribution of the Web graph to be compressed, the running time of our

algorithm is O(n logn), where n is the number of nodes in the Web graph.

� We provide hardness results demonstrating that several natural extensions of our al-

gorithm are NP-Hard.

� We demonstrate the e�ectiveness of our approach on a testbed of random graphs

derived from the random graph models that motivate our approach. Our results appear

signi�cantly better than natural Hu�man-based alternatives.

1

1.1 Framework

When we discuss compressing Web-like graphs, there are actually a variety of distinct situ-

ations we may wish to consider:

1. Compressing the underlying graph for storage or transmission, up to isomorphism.

This setting would be useful if we want to store just the graph structure itself.

2. Compressing the underlying graph for storage or transmission, maintaining a given

ordering of the nodes. As an example of this setting, we might order the nodes accord-

ing to the sorted order of the URLs (so that the URLs can be compressed by delta

encoding, as in [2]).

3. Compressing the underlying graph for use in its compressed form. That is, we de-

sire a compressed form of the graph that still allows for e�cient computation on the

compressed form.

Our primary focus in the paper is the second setting, where we are given a node ordering

and are concerned solely with overall compression. However, the three problems are clearly

related, and we will suggest connections between the variations as they arise.

1.2 A Web graph model

We reiterate that in this paper, rather than compress actual subgraphs of the Web, our

focus is a recently proposed Web graph model that captures certain aspects of Web graphs.

We have thus far only tested the algorithm on a single subgraph of the real Web graph (on

which, as we show, performance is quite good); we expect to test our compression scheme

on more extensive real Web data in future work. We also believe our experiments on the

Web graph model we examine are interesting in their own right.

The model, taken primarily from [14], uses the following basic outline. The graph evolves

over time by associated node and edge creation and deletion processes. The intuition sug-

gested from [14] is the following: \A new page adds links by picking an existing page, and

copying some links from that page to itself." For example, a new page v might examine the

outedges from a page w and link to a subset of the pages that w links to; we call this copying

outedges. This intuition is based on the idea that a user decides what pages to link a new

page to based on a page or pages that the user already likes.

Given this framework, there are a variety of possible variations, depending on the speci�cs

of the edge creation and deletion process as well as the copy process. We specify the model we

use here. We begin with an initial graph of n

0

nodes, with each having d

0

outedges connected

to nodes chosen uniformly at random. There is no deletion process, only a node creation

process. One new node is created each time step to a total of n nodes. The creation process

is determined by probability distributions A;B; C;D; E ;F . The distribution A provides a

number a, such that v is given a outedges with each edge pointing to a node chosen uniformly

at random from all nodes existing at that time. Similarly, B provides a number such that

v copies outedges from b nodes, again chosen uniformly at random. The distribution C

yields a probability; for each of the b nodes w

1

; : : : ; w

b

chosen to copy from, a probability

2

is independently chosen from C, and each outedge from w

i

is copied independently with the

probability determined from C.

1

Distributions D; E , and F are analogous to A;B, and C

respectively, except that they determine the inedges for a new page.

Graphs based on this copying procedure do not appear to have been given a general

name. The resulting graphs may have more speci�c structure than power-law graphs, such

as those suggested in [1]. We suggest the name copy graphs for families of evolving random

graphs using copying operations of this type.

2 A baseline Hu�man-based scheme

Experiments have demonstrated that the indegrees and outdegrees of Web pages follow a

Zip�an distribution [1, 14, 4]. That is, the fraction of pages with indegree j is roughly

proportional to 1=j

�

for some �xed constant �, and similarly the fraction of pages with

outdegree j is roughly proportional to 1=j

�

for some �xed constant �. One of the features

of the copy graph model is that it can yield graphs with such Zip�an distributions [14].

Given the large variance in degrees, it is natural to consider Hu�man-based compression

schemes. A simple such scheme would go through the nodes in order and list the destination

of each outedge directed from that node. Each page would be assigned a Hu�man codeword

based on its indegree. To separate the outedges of each node we could utilize a special

stop symbol, which would appear n � 1 times if there are n pages. An end of �le symbol

would denote the end of the edge list. In Appendix 1, we give an expression for the number

of bits required to represent a graph using this kind of compression, provided that the

indegree follows a Zip�an distribution with � > 2. The expression demonstrates that this

kind of compression requires asymptotically the same number of bits as not using Hu�man

compression.

Many simple variations are possible. The compression scheme could also be based on the

edges directed into each node instead of the edges directed out from each node. Whether

inedges or outedges is a better choice depends on which has higher variance. In the case

where we only need to store an isomorphism of the graph, we might avoid the stop symbol.

Instead we can send an implicit or explicit representation of the outdegree distribution, sort

the nodes by outdegree, and list the outedges for each node as before without the stop symbol.

Also, we note that an advantage of this compressed representation is that it is extremely

simple and convenient; it could naturally be used in the framework of the connectivity server

[2], or in any system that wanted e�cient computation on the compressed form of the graph.

This approach achieves signi�cant compression with little complexity, and thus we shall

use it as a baseline for algorithms that compress the Web graph. Note that this Hu�man-

based scheme ignores the natural clustering structure induced in copy graphs. We next

examine how to take advantage of this structure and show via experiments that this does in

fact yield substantially greater compression.

1

We note that another possibility is to use a distribution C to determine the number of outedges to copy

from each w

i

, as done in [14]. We believe that our approach may be easier to analyze in the future, as it

avoids the problem of choosing a number of links to copy that is greater than the number of outedges from

a page. Our results apply to both possibilities.

3

3 The Find-Reference algorithm

Our basic algorithm is based on the following insight: given the random graph model, a

natural approach to compress a Web graph is to try to reconstruct how the graph developed

according to that model. That is, if we knew the history of how the graph was created

(according to the random graph model), we might achieve a great deal of compression by

working with this history instead of the actual graph. In practice, we attempt to �nd nodes

that share several common outedges, corresponding to cases where one node might have

copied the links of another. Once an appropriate neighbor is identi�ed, the di�erence, or

delta, between the outedges of the two nodes can be identi�ed. When node i is compressed

in this way using node j, we say that node j is a reference for node i.

For example, if node i is labeled as a reference of node j, we can include a 0/1 bit vector

denoting which outedges of node j are also outedges of node i. Other outedges of i can then

be separately identi�ed, say using dlogne bits in an n node graph. Of course we must also

identify i, which is another dlogne bits. Let N(i) and N(j) represent the set of outedges for

node i and node j respectively. The cost of compressing node i using node j as a reference

with this scheme is then

cost(i; j) = out-deg(j) + dlogne � (jN(i)�N(j)j+ 1) :

Given a description of a graph in this kind of compressed format, consider how we would

determine where a link from node i encoded using node j as a reference actually points. If

the corresponding link from node j is encoded using another node k as a reference, then we

would need to determine where the corresponding link from node k points. Eventually, we

must reach a link that is encoded without using a reference node. In order to satisfy this

requirement, we shall not allow any cycles among references. For example, we shall not allow

i to be compressed using j as a reference, j to be compressed using k as a reference, and k

to be compressed using i as a reference.

An intermediate structure that Find-Reference uses is the a�nity graph G

S

for the

given Web graph G

W

. Speci�cally, the nodes of G

S

are the same as the nodes of G

W

. We set

w(i; j), the weight of the directed edge from node i to node j, to be the cost of compressing

node i using node j as a reference. We add to the a�nity graph a root node r to which every

other node has a directed edge and from which there are no directed edges. The weight of

the edge from i to r is the cost of compressing i without using any other node as a reference.

We assume that node i has a directed edge to node j if and only if w(i; j) < w(i; r).

Given a Web graph, the algorithm Find-Reference �rst computes the corresponding

a�nity graph for the given cost function, and then �nds an optimal set of references under

the restrictions that (a) each node has at most one reference, and (b) there are no cycles

among references. The problem of �nding the globally best mapping from nodes to references

(or to the dummy node) is equivalent to �nding the minimum weight directed spanning tree

with root r on the a�nity graph. Thus, a high level description of the compression algorithm

is as follows:

Algorithm Find-Reference

� Given a Web graph G

W

, compute the corresponding a�nity graph G

S

.

4

� Compute a minimum directed spanning tree D rooted at r for the graph G

S

.

� Compress the graph G

W

, where node i uses node j as a reference if and only if node i

points to node j in D.

Theorem 1 For a Web graph G

W

, let n be the number of nodes in G

W

, and let t

G

W

(i)

be the indegree of node i. Algorithm Find-Reference can be realized to run in time

O (

P

n

i=1

(t

G

W

(i)

2

) + n logn).

Proof: The a�nity graph G

S

can be computed from the original graph G

W

by using a

matrix multiplication. When G

W

is a Web graph, we expect it to be sparse, and so we

describe the algorithm in terms of a sparse matrix multiplication. Let M represent the

adjacency matrix of G

W

. It is easy to verify that (MM

T

)

ij

is the number of nodes that both

i and j have outedges to. The matrix (MM

T

) can be computed in time O (

P

n

i=1

t

G

W

(i)

2

),

assuming that we compute a list of the non-zero entries of (MM

T

). We also compute an

array R, where R[j] = out-deg(j). This requires time O(n + m), where m =

P

n

i=1

t

G

W

(i)

is the number of edges in G

W

. Given (MM

T

)

ij

and R[j], cost(i; j) can be computed in

constant time.

Note that there will never be an edge from i to j in G

S

unless nodes i and j in G

W

have

an outgoing edge to at least one shared neighbor. Thus, to compute the set of edges in G

S

,

we only need to compute cost(i; r) for every i, and then for every edge from i to j such that

(MM

T

)

ij

> 0, compute cost(i; j), and compare it to cost(i; r). The set of edges in G

S

is

f(i; j) s.t. cost(i; j) < cost(i; r)g and the set of edges from every other vertex to r. This also

gives us the weight of each edge in G

S

. Since there can be at most

P

n

i=1

t

G

W

(i)

2

nonzero

entries in (MM

T

), the total time required to compute the graph G

S

is O (n +

P

n

i=1

t

G

W

(i)

2

).

Computing a minimum directed spanning tree with root r in a directed graph is generally

referred to in the literature as a branching with root r.

2

For information on branchings, see

for example [6, 8, 10, 16]. Minimum spanning trees in directed graphs with x nodes and

y edges can be found deterministically in time O(x logx + y) [8]. A simpler algorithm

that runs in time O(y log x) is suitable for the case of sparse graphs [16, 6], which will

generally be the case in our context. Since the total number of edges in G

S

is at most

P

n

i=1

t

G

W

(i)

2

+ n, the total time required to compute the minimum directed spanning tree

in G

S

is O (n logn +

P

n

i=1

t

G

W

(i)

2

).

All that remains is to perform the compression using the computed directed tree to specify

a reference for each node. To do this, we compute for each node i with reference node j a

linked list of outedges that i and j have in common. This set of lists can be computed in

time O (

P

n

i=1

t

G

W

(i)

2

). With the list of edges that i and j have in common, the compressed

version of node i can be computed in time O(out-deg(i)). Thus, the entire algorithm runs

in time O (n logn+

P

n

i=1

t

G

W

(i)

2

). 2

Note that the performance of this algorithm is particularly good when G

W

is sparse, as

we expect of Web graphs. For example, if the distribution of indegrees in G

W

is Zip�an with

� > 3, then

P

n

i=1

t

G

W

(i)

2

= O(n).

2

Branchings generally refer to the (equivalent) maximum weight problem. They are sometimes also

referred to as arborescences.

5

We point out that we have found a similar idea to the algorithm Find-Reference

alluded to in [5], in the context of compressing tables of data, where one column can be used

to compress another. The authors mention that the problem can be reduced to a minimum

spanning tree problem (in their case, edges are undirected).

3.1 Additional improvements and related problems

In practice, after we have found the references via the directed minimum spanning tree, there

are various improvements that can be implemented. First, we may wish to �nd additional

references for greater compression. This can be done by stripping edges from the original

graph handled by the �rst references, re-calculating the cost function accordingly, and re-

running the algorithm. This algorithm is not optimal, however, since we may obtain better

compression if we choose the references of the �rst stage keeping in mind that we have

further stages coming. Although it appears that a better approach would be to �nd multiple

references simultaneously instead of in stages, in general �nding multiple references in an

optimal manner is a hard problem, as we show in Section 4. Hence the stage attack is likely

to be the most e�cient and e�ective in practice.

Once we have found the best references, we may again use a Hu�man encoding to handle

the edges not covered by references. Note that by doing this, we invalidate the cost function

we used to determine the references, so that the set of references may not be optimal.

However, until we choose the references, we cannot determine the cost of edges not covered

by references, so it seems di�cult to take this into account properly in the cost function. One

possibility is to attempt to approximate this e�ect in the cost function. Another is to apply

a heuristic approach such as hill-climbing to �nd the best references. Since this process is

likely to be time-consuming, starting with a good solution from our algorithm may prove

e�ective. The gain from this consideration is likely to be small, and so in practice it can

probably be ignored.

Other possibilities include using di�erent compressed representations. We have suggested

using a bit vector to denote which links a node has copied from its reference. These bit vectors

can be Hu�man encoded; alternatively, a run-length encoding might be applicable here. Also,

if a node only copies a small fraction of the links from its reference, a list of the copied links

may be more e�cient than a bit vector. As usual with compression schemes, there are

a variety of possible enhancements that may slightly improve compression. However, we

believe the main concept of using similar pages for compression provides the bulk of the

bene�t.

While our algorithm is described for the problem of storing Web graphs, we believe these

techniques can also be useful when we wish to compute or use the compressed form. The

main potential problem is that in order to �nd the inedges or outedges of a node, one may

have to go through multiple references in the directed minimum spanning tree, which may

take more time than is desired for fast computation. To bound the number of references to

pass through in our single-reference setting it is su�cient to bound the depth of the directed

minimum spanning tree we �nd on the a�nity graph. Unfortunately, �nding the optimal

directed minimum spanning tree of bounded depth is NP-hard; for example, if we allow

depth at most two, then the problem of �nding the optimal directed minimum spanning tree

6

is equivalent to the facility location problem. (Indeed, it is this connection to the facility

location problem that was used in the work on compressing tables of data mentioned earlier

[5].) In the terminology of [15], each page is a possible facility; a page that is not compressed

by a reference corresponds to an opened facility; and a page that is compressed using a

reference corresponds to a location receiving shipment from a facility corresponding to the

reference page. We believe the depth-bounded directed minimum spanning tree problem is

an interesting extension of previous facility location problems. In practice, we expect that

using the Find-Reference algorithm to initially �nd a directed tree and then \chopping

the tree" to maintain a depth bound (by changing some nodes to be compressed without a

reference and thus linking them to the root r) is a suitable solution.

4 Hardness results

Since we can �nd the optimal compression given an appropriate cost metric when we allow

a single reference node using branching algorithms, a natural question to ask is whether we

can similarly achieve optimality when we allow more than one reference node. We show

hardness results related to this question. We focus on the case where up to two nodes can be

used as references, but everything described is easily generalized to any number of reference

nodes.

For up to two reference nodes, the a�nity graph becomes the following kind of structure:

De�nition 1 A 2-supergraph is a directed hypergraph where each hyperedge is directed from

a single node to two other nodes. These two other nodes can be the same, but must be

di�erent from the source node.

Given a Web graph, we shall consider the corresponding weighted 2-supergraph, where

w

ijk

, the weight of the hyperedge from i to j and k, represents the cost of encoding i using

both j and k as references. For a hyperedge w

ijj

where the two other nodes pointed to are

the same node, the weight of the hyperedge w

ijj

represents the cost of encoding node i using

only node j as a reference node. Note that w

ijk

will vary depending on the overlap between

the set of edges of the Web graph that nodes i and j have in common and the set of edges

of the Web graph that nodes i and k have in common. We call the resulting 2-supergraph

an a�nity 2-supergraph.

Given a Web graph, computing the a�nity 2-supergraph for a given link compression

scheme can easily be done in polynomial time. Using the a�nity 2-supergraph to compute the

best compression using up to two reference nodes is equivalent to the following generalization

of �nding optimal branchings:

De�nition 2 Given a 2-supergraph G and a designated root node r, a 2-branching is a

subset S of the hyperedges of G such that each node except the designated root has exactly one

outgoing hyperedge in S, and r has no outgoing hyperedges in S. In addition, the hypergraph

formed by the set of hyperedges in S has no directed cycles. The optimum 2-branching is the

2-branching that minimizes the total weight of the edges in S.

7

Unfortunately, in general �nding the optimal 2-branching is not only NP-Hard, it is hard

to approximate. In particular, we demonstrate an approximation preserving polynomial time

reduction from the problem of �nding the optimal directed Steiner tree to the problem of

�nding the optimal 2-branching. It is known that if P 6= NP , then no polynomial time algo-

rithm can �nd a logn-approximation to the directed Steiner tree problem [7]. Furthermore,

this reduction provides evidence that it may be di�cult to �nd a polynomial time algorithm

that provides better than an n

�

-approximation, since the directed Steiner tree problem has

thus far resisted e�orts to outperform this bound.

Theorem 2 Any polynomial algorithm that provides a k-approximation for the 2-branching

problem also provides a k-approximation for the directed Steiner tree problem.

Proof: We use the following reduction: given an input to the directed Steiner tree problem

consisting of a directed graph G = (V;E), a set S � V of required points, a weight function

W : E ! R, and a designated root r, we construct an input to the 2-branching problem as

follows. The input hypergraph is G

0

= (V

0

; E

0

), where V

0

= V [U , and U is an additional

set of nodes we describe. For each node v 2 V � S, let U(v) = fu

1

; : : : ; u

indeg(v)

g be the set

of nodes u 2 V such that (u; v) 2 E. For each u

i

2 U(v), U has a node denoted v

i

. Let

u(v

i

) be the node u

i

that corresponds to the node v

i

.

For each edge e = (u; v) in E, E

0

contains one hyperedge e

0

= (u; v; v), where w

uvv

is equal

to the weight of e. The edge set E

0

also contains a hyperedge (v; v

1

; u(v

1

)) of weight 0, and

for all i, 1 � i < indeg(v), E

0

contains a hyperedge (v

i

; v

i+1

; u(v

i+1

)) of weight 0. The edge

set E

0

also has a hyperedge (v

indeg(v)

; r; r) of weight 0. Finally, for all i, 1 � i � indeg(v),

E

0

has a hyperedge (v

i

; v; r) of weight 0. This completes the construction of the 2-branching

problem. The theorem now follows from the following two claims:

Claim 1 For any directed Steiner tree of weight z, there is a 2-branching with weight z.

Proof: The 2-branching consists of all the edges used by the directed Steiner tree. These

will be the only non-zero weight edges used in the 2-branching, and thus the 2-branching has

the same weight as the directed Steiner tree. This guarantees that every required node of

the Steiner tree problem has exactly one outgoing hyperedge. We divide the optional nodes

of the Steiner tree problem into two sets: S

1

, consisting of the nodes used in the Steiner

tree solution, and S

2

, consisting of the nodes not used in the Steiner tree solution. For each

node v 2 S

1

, there already is exactly one outgoing hyperedge for v, and thus we only need to

specify the outgoing hyperedges for the nodes v

i

. For each such v

i

, we include the hyperedge

(v

i

; v; r). Since there are no hyperedges pointing at the nodes v

i

, this will not create any

cycles.

For each node v 2 S

2

, we include the hyperedge (v; v

1

; u(v

1

)), and for all i, 1 �

i < indeg(v), we include the hyperedge (v

i

; v

i+1

; u(v

i+1

)). We also include the hyperedge

(v

indeg(v)

; r; r). Since there are no edges in the Steiner tree solution coming into or going out

of v, this will not create any cycles. We have speci�ed an outgoing hyperedge for every node

without introducing any cycles, and thus we have a valid 2-branching. 2

Claim 2 For any 2-branching of weight z, there is a directed Steiner tree with weight z.

8

Proof: The 2-branching must consist of exactly one hyperedge from each of the required

Steiner nodes. These hyperedges correspond exactly to edges in the Steiner tree problem,

and thus these edges are included in the Steiner tree solution. For each of the optional

Steiner nodes v, the hyperedge from v either points to another node in the original Steiner

tree problem, or it uses the hyperedge (v; v

1

; u(v

1

)). In the �rst case, we include that edge

and the node v in the Steiner tree solution, and since the 2-branching has no cycles, this

cannot create any cycles in the Steiner tree solution. In the second case, it is easy to show

by induction that the 2-branching must also contain all of the hyperedges (v

i

; v

i+1

; u(v

i+1

)).

Since there can be no cycles in the 2-branching, the only nodes with hyperedges pointing to

v are the nodes v

i

. Thus, we can leave the node v out of the Steiner tree solution. This gives

us a valid solution to the Steiner tree problem where the set of nonzero weight edges of the

Steiner tree solution is exactly to the set of nonzero weight hyperedges of the 2-branching.

2

The inapproximability result above demonstrates the hardness of the general problem of

�nding an optimal 2-branching. This result does not however directly imply that it is even

NP-Hard to �nd the best compression using at most two references, since the graphs that

we reduce the directed Steiner tree problem to may not correspond to actual a�nity graphs

that arise as a result of a Web graph.

We also provide a more direct reduction showing that it is in fact NP-Hard to �nd the

best compression of a Web graph based on using up to two reference nodes. In fact, even if we

ignore the additional di�culty imposed by taking into account the asymmetry of the a�nity

graph, the problem remains NP-Hard. In particular, we demonstrate that the problem of

�nding the assignment of reference nodes that maximizes the total number of edges in the

Web graph that are represented by a corresponding edge in a reference node is NP-Hard.

This proof can easily be extended to the case where the objective is to minimize the total

cost of the reference nodes used.

Theorem 3 The problem of �nding an encoding for a graph G

W

, with each node encoded

using up to two reference nodes, that maximizes the total number of edges that are encoded

using a reference node is NP-Hard.

The proof, which is somewhat lengthy, is a reduction from 3SAT, and is given in the

Appendix. Note that this does not imply that the problem of maximizing the number of

edges encoded using a reference node is hard to approximate. In fact, it is clear that we can

�nd a 2-approximation to this problem by using at most a single reference node to encode

each node. Achieving better than a 2-approximation is an interesting open problem.

5 Experiments

We present the results from a preliminary prototype running on arti�cial random copy graphs

and one subset of a snapshot of the Web graph. We emphasize that these experiments are

meant as a preliminary proof of concept. In particular, the prototype does not output a

compressed �le, but rather the compressed size of the �le. Moreover, when using Hu�man

coding, the compressed size does not include the size of any associated Hu�man tables; we

9

chose not to include this as the size of the Hu�man table depends on whether one compresses

it further.

We �rst describe the graphs we tested. For the random copy graphs, our tests all had

131072 nodes. (Smaller test graphs had similar performance, so we present results for the

largest graphs we tested.) Each graph began with 1024 seed nodes with three outedges,

where the end of the outedge was chosen uniformly at random from all nodes. When new

nodes were added, they were given only outedges. The outedges were determined by copying

edges from some number of nodes and by generating edges with endpoints chosen uniformly

at random from all present nodes. We show the parameters for the copy graphs tested in

Table 1. The �eld # random copies denotes the number of nodes whose outedges were

copied. A range such as [1; 2] denotes that an integer value was chosen uniformly over that

range. Each edge was copied with a �xed probability, listed as the copy probability. The �eld

random edges gives the number of edges that were generated with random destinations;

again, a range denotes that an integer value was chosen uniformly over that range. We note

that for the large graphs G

3

and G

4

, we were forced by memory considerations to limit the

a�nity graph to allow edges between nodes i and j only if their outedges share at least

three destinations. This can only hurt our compression e�orts. (Further testing suggests

that the the di�erence is minimal if two shared destinations can be handled in constructing

the a�nity graph.)

We also tested our compression scheme on real Web data from from the TREC-8 (Text

REtrieval Conference 8) Web track [9]. Our data set was the WT2g data set

3

, which was

chosen as a small subset of the Web for testing information by the TREC retrieval conference.

This data set is larger than our random sets; hence again to construct the a�nity graph on

the TREC database we only created edges between pages with at least three shared links.

Table 2 presents the compression results. Here we have taken the average of ten di�erent

trials for the random graphs, where a di�erent random graph is produced for each trial. We

note that there is little deviation between the runs. The average number of edges is given;

the uncompressed size given is simply the number of edges multiplied by log

2

(#nodes), which

is an underestimate of the uncompressed size. Compression for other methods is given as a

percentage of the uncompressed size.

As seen in graph G

1

, when the amount of copying is low, and thus the average degree is

very small, the reference algorithm alone does slightly worse than the Hu�man algorithm,

although using a Hu�man code in conjunction with the reference algorithm leads to better

performance. When the amount of copying is larger, as for G

2

, G

3

, and G

4

, our Find-

Reference algorithm greatly outperforms Hu�man coding. We expect repeated passes

might allow even greater compression. The Hu�man algorithm compresses the outedges

for each edge, so the code words are based on the indegree. For the Find-Reference

algorithm, we test both the straightforward algorithm as well as one which �rst determines

the references and then uses Hu�man coding on the remaining outedges.

Our results are actually best for the TREC database, demonstrating that our approach

should be e�ective on real Web data as well. Our belief is that our good results on the

TREC data set arise because links appear to have signi�cant locality, due to the heuristic

principles by which the data set was chosen [9]. We believe much greater testing is required

3

Our copy has sixty-three fewer pages than stated in [9]; we are not aware of the reason for the discrepancy.

10

to determine our performance on larger scale Web data sets, although this preliminary result

is promising.

Name G

1

G

2

G

3

G

4

TREC

Nodes 131072 131072 131072 131072 247428

Random Copies 1 1 [1,2] [0,4] NA

Copy prob. 0.5 0.7 0.5 0.5 NA

Random Edges 1 1 [1,2] [1,2] NA

Table 1: Parameters of the test graphs.

Name G

1

G

2

G

3

G

4

TREC

Edges 273787.3 426294.6 668338.8 1339779 1166702

Uncompressed 4654384.1 7247008.2.1 11361759.6 22776243 21000636

Hu�man 87.75 83.93 85.15 79.47 83.31

Find-Reference 88.68 67.49 69.96 61.65 49.15

F.Ref. + Hu�. 81.58 63.63 65.35 54.13 46.36

Table 2: Results from the test graphs.

6 Future Work

We have initiated study into how to compress Web graphs. We have considered the copy

graph model, introduced elsewhere as a random graph family with properties similar to Web

graphs. Using this structure, we have designed a compression algorithm based on �nding

similarity among the links of the pages and tested it on simple copy graphs. We have also

shown that various generalizations of this idea lead to NP-Hard problems.

There are several directions remaining to pursue, including further tests of our algorithm

on real Web data. It would also be interesting to learn how our approach works in conjunction

with others. For example, another idea that would clearly be useful in compressing Web

graphs is locality. If we assume that we store our graph with pages listed alphabetically by

URL, we would expect a good percentage of the links to be between pages that are near each

other in the list, since pages in the same domain are likely to reference each other. Thus,

even before using our reference-based algorithm, it seems likely that a �rst pass algorithm to

handle local links would be useful. One natural approach would be to split the Web graph

into two subgraphs, one with local links (say, within distance 256 in the sorted URL list)

and non-local links and compress them separately. Although designing such a system can

be done via experimentation, developing an appropriate model that allows us to understand

the tradeo�s would be an interesting problem.

Another interesting issue is understanding what our compression algorithm tells us about

the structure of graphs. For example, a natural technique to test how accurately a proposed

random graph model captures the structure of real Web graphs would be to run our compres-

sion algorithm (or any other compression algorithm) on both kinds of graphs, and compare

11

the compression obtained. A feature more speci�c to our algorithm is that our algorithm

attempts to reconstruct the evolution of a copy graph when choosing reference nodes for each

edge. Preliminary results seem to indicate that the algorithm is able to correctly identify

a large fraction of the history, and thus an interesting line of research would be to quatify

this, and to understand its implications for real Web graphs.

References

[1] W. Aiello, F. Chung, and L. Lu. A random graph model for massive graphs. In

Proceedings of the 32nd Annual ACM Symposium on Theory of Computing, pages 171-

180, 2000.

[2] K. Bharat, A. Broder, M. Henzinger, P. Kumar, and S. Venkatasubrama-

nian. The Connectivity Server: fast access to linkage information on the

Web. In Proceedings of the 7th World Wide Web Conference, 1998. Available at

http://www7.scu.edu.au/programme/fullpapers/1938/com1938.htm.

[3] S. Brin and L. Page. The anatomy of a large-scale hypertextual Web search en-

gine. In Proceedings of the 7th World Wide Web Conference, 1998. Available at

http://www7.scu.edu.au/programme/fullpapers/1921/com1921.htm.

[4] A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata, A.

Tomkins, and J. Wiener. Graph structure in the Web: experiments and mod-

els. In Proceedings of the 9th World Wide Web Conference, 2000. Available at

http://www9.org/w9cdrom/index.html.

[5] A. L. Buchsbaum, D. F. Caldwell, K. W. Church, G. S. Fowler, and S. Muthukrishnan.

Engineering the compression of massive tables: an experimental approach. In Proceed-

ings of 11th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 175-184,

2000.

[6] P. M. Camerini, L. Fratta, and F. Ma�oli. A note on �nding optimum branchings.

Networks, 9:309-312, 1979.

[7] M. Charikar, C. Chekuri, T. Cheung, Z. Dai, A. Goel, S. Guha, and M. Li. Approx-

imation algorithms for directed Steiner problems. In Proceedings of the Ninth Annual

ACM-SIAM Symposium on Discrete Algorithms, pages 192-200, San Francisco, Califor-

nia, 25-27 January 1998.

[8] H. N. Gabow, Z. Galil, T. Spencer, and R. E. Tarjan. E�cient algorithms for �nding

minimum spanning trees in undirected and directed graphs. Combinatorica 6(2):109-

122, 1986.

[9] D. Hawking, E. Voorhees, N. Craswell, and P. Bailey. Overview of the TREC-

8 Web Track. In The 8th Text Retrieval Conference, 2000. Available at

http://trec.nist.gov/pubs/trec8/t8 proceedings.html.

12

[10] R. M. Karp. A simple derivation of Edmonds' algorithm for optimum branchings.

Networks, 1:265-272, 1972.

[11] J. Kleinberg. Authoritative sources in a hyperlinked environment. In Proceedings of 9th

Annual ACM-SIAM Symposium on Discrete Algorithms, pages 668-677, 1998.

[12] J. Kleinberg, R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins. The Web

as a graph: Measurements, Models, and Methods. In Proceedings of the International

Conference on Combinatorics and Computing, 1999.

[13] R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins. Trawling the Web for

emerging cybercommunities. In Proceedings of the 8th World Wide Web Conference,

1999.

[14] R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins. Extracting large scale

knowledge bases from the Web. In Proceedings of the 25th VLDB Conference, 1999.

[15] D. B. Shmoys, E. Tardos, and K. Aardal. Approximation algorithms for facility location

problems. In Proceedings of the 29th ACM Symposium on Theory of Computing, pages

265-274, 1997.

[16] R. E. Tarjan. Finding Optimum Branchings. Networks, 7:25-35, 1977.

Appendix 1

In this section we give a brief asymptotic analysis of the Hu�man-based compression scheme

described in Section 2 using some simplifying assumptions. The argument we present can be

made more rigorous by using concentration bounds; for simplicity, we work with expectations.

If we ignore the stop and end of �le symbols, we may obtain an approximate expression

for the asymptotic average encoding length by computing the entropy per edge. Let us

assume that the fraction of pages with indegree j is proportional to 1=j

�

with � > 2; note

in particular we simplify by assuming no node has indegree 0. Let �(�) =

P

1

j=1

1=j

�

. The

probability that a node with non-zero indegree has indegree j is then 1= (j

�

P

1

k=1

1=k

�

) =

1= (j

�

�(�)). Hence the expected number of total edges is

n

P

1

j=1

j=j

�

P

1

j=1

1=j

�

=

n�(�� 1)

�(�)

;

where n is the number of nodes in the graph. Ignoring the problem of fractional length

symbols, the length of a Hu�man symbol for a node that has indegree j would be chosen

as log

n�(��1)

j�(�)

. The expected number of nodes with indegree j is n=�(�)j

�

. Hence, assuming

that the number of nodes with indegree j equals its expectation, the total number of bits

used is

1

X

j=1

n

�(�)j

�

� j log

n�(�� 1)

j�(�)

=

n�(�� 1)

�(�)

log

n�(�� 1)

�(�)

�

n

�(�)

1

X

j=1

log j

j

��1

:

13

With � > 2, the above expression is
(m logn), where m is the number of edges in the

graph. Hence, this kind of compression requires asymptotically the same number of bits as

not using Hu�man compression.

Appendix 2

In this appendix we provide the proof of Theorem 3, restated here for convenience:

Theorem 3 The problem of �nding an encoding for a graph G

W

, with each node encoded

using up to two reference nodes, that maximizes the total number of edges that are encoded

using a reference node is NP-Hard.

Proof: We describe a process such that given a 3SAT formula �, constructs a web graph

G

W

(�), and a value K(�), such that G

W

(�) has an encoding using two reference nodes per

node which encodes K(�) pointers using the reference nodes if and only if � is satis�able.

Given any web graph G

W

, let the simpli�ed a�nity graph G

S

corresponding to G

W

be a

weighted graph such that the nodes of G

S

are the same as the nodes of G

W

, and w(n

1

; n

2

),

the weight of the edge between n

1

and n

2

in G

S

, is the number of nodes that are pointed

to by both n

1

and n

2

in G

W

. Note that this implies that G

S

is an undirected graph. Since

we are interested in compression using two reference nodes, another quantity of interest is

w(n

1

; n

2

; n

3

), which can be thought of as the weight of the (undirected) hyperedge between

n

1

, n

2

, and n

3

, and is de�ned to be the number of nodes that are pointed to by all of n

1

, n

2

and

n

3

in G

W

. Note that if n

1

is encoded using n

2

and n

3

as reference nodes, then the number of

pointers that are encoded using the reference nodes is w(n

1

; n

2

) + w(n

1

; n

3

)� w(n

1

; n

2

; n

3

).

Thus, given a simpli�ed a�nity graph, it is trivial to compute the corresponding a�nity

2-supergraph.

In our reduction from 3SAT, we describe the web graph G

W

(�) by �rst describing a

process of mapping � to a simpli�ed a�nity graph G

S

(�) such that G

S

(�) has a 2-branching

of weight K(�) if and only if � is satis�able. We then demonstrate how to construct the

web graph G

W

(�) such that the simpli�ed a�nity graph corresponding to G

W

(�) is G

S

(�).

This will complete the proof of the theorem.

In the graph G

S

(�), the maximum weight of any edge is �, where the value of � will

be set below. Let the set of edges that have this weight be called the set of full edges. We

refer to any pair of edges (n

1

; n

2

) and (n

1

; n

3

) where w(n

1

; n

2

; n

3

) = 0 as a non-overlapping

pair. If w(n

1

; n

2

; n

3

) = 1, then (n

1

; n

2

) and (n

1

; n

3

) are a lightly-overlapping pair, and if

w(n

1

; n

2

; n

3

) > 1, then (n

1

; n

2

) and (n

1

; n

3

) are a fully-overlapping, or overlapping pair.

We next describe how to construct G

S

(�) from �. In what follows, we shall describe the

edges of G

S

(�) in terms of its full edges; all other edges have weight less than �. We also

assume that the 2-branching problem is de�ned in such a manner that there is a given node

r

0

that is required to be the node that does not use any reference nodes, and another given

node r

1

that is required to use at most one reference node. Removing this assumption is not

di�cult.

For each variable X

h

in the formula �, the graph G

S

(�) has a copy of the following

structure:

14

'

& %

$

d d

dd

d

d

,

,

,

,

,

l

l

l

l

l

l

l

l

%

%

%

�

�

�

�

�

T

T

T

T

T

r

0

r

1

^

X

T

h

^

X

F

h

X

T

h

X

F

h

The node X

T

h

is connected to the clause structures that the literal X

h

appears in, and

X

F

h

is connected to the clause structures that

�

X

h

appears in. In particular, let L

i

be one of

the nodes X

T

h

or X

F

h

. The graph G

S

(�) has a node L

j

i

for the jth appearance of the literal

L

i

in a clause. We use L

j

i

to denote both the appearance of the literal in the formula, as

well as the corresponding node in the graph. The nodes are connected as follows, where k

i

is the number of appearances of L

i

:

 #

$'

$'

d d d d d d

L

i

L

1

i

L

2

i

L

3

i

L

k

i

r

0

There is also a structure for each clause. In particular, a clause containing the three

literals L

j

1

i

1

, L

j

2

i

2

, and L

j

3

i

3

results in the following structure:

�

'

&

�

d

d

d

d d

d

d

�

�

J

J

J

L

L

L

L

L

�

�

�

�

�

c

c

r

0

L

j

1

i

1

L

j

2

i

2

L

j

3

i

3

The �nal edge we add to the graph is (r

0

; r

1

). These are all of the full edges of the

graph G

S

(�). To complete the description, we need to specify which pairs of edges are

overlapping. All of the pairs of edges incident to L

i

are overlapping, except for the pair

of edges (L

i

;

^

L

i

); (L

i

; L

1

i

), which is non-overlapping and the pair (L

i

; r

0

); (L

i

; r

1

), which is

lightly-overlapping. Of the three pairs of edges incident to

^

L

i

, two are overlapping: the

non-overlapping pair is (

^

L

i

;

�

L

i

); (

^

L

i

; r

0

), where

�

L

i

is the complement of L

i

. All other pairs

of edges are non-overlapping.

This construction is easily seen to be polynomial time. We see that it is a reduction from

the following two claims.

15

Claim 3 If � is satis�able, then G

S

(�) has a 2-branching of weight (2N � 3)�� v, where

N is the total number of nodes in the graph, and v is the number of variables in �.

Proof: We describe how to construct such a 2-branching B, given a satisfying assignment.

For each true literal L

i

, B contains the (directed) edges (L

i

; r

0

), (L

i

; r

1

), (

^

L

i

;

�

L

i

), and (

^

L

i

; r

0

).

For every false literal

�

L

i

, B contains the edges (

�

L

i

;

�

L

1

i

), (

�

L

i

;

^

�

L

i

), (

^

�

L

i

; L

i

), and (

^

�

L

i

; r

0

). In

addition, B contains the edges (L

1

i

; L

i

); (L

1

i

; L

2

i

); (L

2

i

; L

i

); (L

2

i

; L

3

i

); : : : ; (L

k

i

i

; L

i

); (L

k

i

i

; r

0

), as

well as the edges (

�

L

1

i

;

�

L

2

i

); (

�

L

2

i

;

�

L

3

i

); : : : ; (

�

L

k

i

i

; r

0

), plus the edge from each node

�

L

j

i

to the

corresponding clause structure.

It is easy to verify that in the description of B thus far there are no cycles and every

node other than the three in each clause structure has exactly two outgoing edges. The

2-branching B also contains an edge from each of the three nodes in each clause structure to

the node r

0

. Finally, we need to specify the second outgoing edge from each of these three

nodes. However, each clause has at least one true literal, and thus there is at least one node

L

j

c

i

c

such that the edge from L

j

c

i

c

to the clause structure was not included in B. We include the

edge from the clause structure to such a node L

j

c

i

c

. The outgoing edges in B from the other

two nodes in the clause structure are the clockwise edges along the triangle of the clause

structure. These additional edges mean that every node has exactly two outgoing edges, and

we have guaranteed that we do not have a cycle going around the clause structure.

Before adding the edge from the clause structure to the node L

j

1

i

1

, it was easy to verify that

there were no cycles, since there were no directed paths between the nodes corresponding

to di�erent variables. However, this additional edge does introduce such paths. To see that

these edges do not introduce any cycles, note that they can only introduce paths from an L

i

representing a false literal to a L

j

representing a true literal. It is also possible to go from

the node L

i

to the node

�

L

i

, but only in the case that L

i

is the false literal. Thus, any path

that goes from a node L

i

to a node L

j

(which may be

�

L

i

) must go from a false literal to a

true literal. Therefore, there can be no cycles in the resulting set of edges B. The �nal edge

we add is (r

1

; r

0

). Since r

0

has no outgoing edges, this does not create a cycle.

Thus, B is a valid 2-branching. Every node except r

0

and r

1

has two outgoing full edges

in B, and for every node except the nodes L

i

corresponding to true literals, these two edges

are non-overlapping. The two outgoing edges from the L

i

are lightly overlapping. Since we

have exactly v true literals, the total weight of this 2-branching is (2N � 3)�� v. 2

Claim 4 If G

S

(�) has a 2-branching of weight (2N � 3)�� v, then � is satis�able.

Proof: For any variable X

i

, if all four of the nodes in the variable structure for X

i

had

two full, non-overlapping edges, this would lead to a cycle. Thus, for each of the v variable

structures, there is at least one node whose outgoing edges contribute at most 2�� 1 to the

total weight of the 2-branching. In order to have a 2-branching of weight (2N � 3)� � v,

there must be exactly one such node per variable structure, and it must contribute 2�� 1

to the branching. The only way for this to be possible is if there is one literal L

i

that has

the edges (L

i

; r

0

), (L

i

; r

1

), and the other literal

�

L

i

has the edges (

�

L

i

;

�

L

1

i

) and (

�

L

i

;

^

�

L

i

). In

order to satisfy the formula �, it is su�cient to set the literal L

i

to true, and the literal

�

L

i

to false.

16

To see that this produces a true literal in every clause, note that every other node in

G

S

(�) must have two full and non-overlapping outgoing edges, and consider any clause

structure C. For C to not have a cycle around the triangle, and every node in C to have

two outgoing edges, there must be some edge in the 2-branching from C to some node L

j

i

,

corresponding to a literal in the clause represented by C. However, if the edge (L

i

; L

1

i

) is in

the 2-branching, and every node has two outgoing edges, then each L

j

i

must have an edge

to its corresponding clause structure. Thus, the edge from C to L

j

i

implies that the edge

(L

i

; L

1

i

) is not in the 2-branching, and thus L

i

must be set to true in �. Thus, � is satis�ed

by our assignment. 2

Finally, we describe how to construct G

W

(�) from G

S

(�). It is su�cient that the con-

struction of G

W

(�) preserves the following aspects of our de�nition of G

S

(�):

� All described full edges have weight �.

� All other edges have weight at most �=2.

� All pairs of full edges are overlapping, lightly-overlapping, or non-overlapping, as de-

scribed.

Note note that for any pair of edges such that at least one of the edges is not full, it does

not matter if that pair is overlapping or not. In the graph G

W

(�), there is a node for every

node of G

S

(�). In addition, G

W

(�) has a set of nodes V

1

which do not have any outgoing

edges. The weights of the edges of G

S

(�) will be achieved by placing edges from the nodes

in G

W

(�) corresponding to the nodes of G

S

(�) to the nodes in V

1

. Since the nodes in V

1

have no outgoing edges, the weight of all the edges incident to those nodes in the graph

G

S

(�) will be 0, and thus the nodes in V

1

can be ignored in the graph G

S

(�).

Let d be the maximum degree of any node in G

S

(�). We set � = 4d. For every full edge

(n

1

; n

2

) in G

S

(�), n

1

and n

2

in G

W

(�) have edges to exactly � of the same nodes in V

0

.

Call this set of nodes in V

0

the target of (n

1

; n

2

). There are no other edges in G

W

(�), and to

start with, the targets of each full edge in G

S

(�) are disjoint. This gives us a graph G

0

W

(�)

such that the corresponding G

0

S

(�) has the correct set of full edges, each with weight �, and

all other edges have weight 0. However, all pairs of edges are non-overlapping.

To make some of the edges overlapping, we shall merge some pairs of nodes in V

0

into

a single node (with edges to it from all of the places where the original two nodes had

pointers to them). In particular, for every pair of edges (n

1

; n

2

) and (n

1

; n

3

) in G

S

(�) that

is overlapping, we merge two nodes from the target of (n

1

; n

2

) with two corresponding nodes

in the target of (n

1

; n

3

) (resulting in two new nodes). The two merged nodes in the target

of an edge (n

1

; n

2

) are di�erent for every edge that (n

1

; n

2

) is merged with. We apply the

same process with all lightly-overlapping pairs of edges, with the di�erence that only one

pair of nodes is merged. Note that the edge (n

1

; n

2

) has at most d�1 overlapping or lightly-

overlapping edges incident to each of n

1

and n

2

, and thus after the merger, there will still

be at least 2d+ 2 nodes that haven't been merged in the target of (n

1

; n

2

).

Consider the merger de�ned by a pair of overlapping (full) edges (n

1

; n

2

) and (n

1

; n

3

).

No node other than n

1

; n

2

and n

3

points to nodes in the targets of (n

1

; n

2

) and (n

1

; n

3

), and

thus this merger cannot e�ect the weight of any edge in W

S

(�) other than (n

1

; n

2

), (n

1

; n

3

),

17

or (n

2

; n

3

). Furthermore, since the targets of these two edges are distinct, the merger does

not e�ect the weight of (n

1

; n

2

) or (n

1

; n

3

), but it does ensure that those two edges become

overlapping.

The only edge weight that is changed in W

S

(�) by the merger is (n

2

; n

3

), which is

increased by either 1 or 2, depending on whether the merger resulted from an overlapping

pair or a lightly-overlapping pair. If (n

2

; n

3

) is a full edge, then this increase is o�set by

removing one or two (depending on the increase) of the nodes from the target of (n

2

; n

3

)

that were not involved in any mergers. Otherwise, no further changes are required. Since

the only pairs of edges that can increase the weight of (n

2

; n

3

) via a merger are pairs of full

edges of the form (n

i

; n

2

) and (n

i

; n

3

), for some i, and since the maximum degree of G

S

(�)

is d, we see that the weight of any edge (n

2

; n

3

) can be increased by at most d mergers.

Thus, no edge that was not full increases in weight past 2d = �=2, and each edge that is

full has enough nodes left in its target after its mergers to account for the e�ects of all other

mergers, and thus remains at weight �.

Thus, we have constructed a graph G

W

(�) such that the corresponding graph G

S

(�)

satis�es all three of our su�cient conditions. Determining the maximum number of nodes

that can be encoded using reference nodes in an encoding of G

W

(�) using two reference

nodes per node is equivalent to deciding if the formula � is satis�able. This completes the

reduction, and the proof. 2

18

