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Abstract - We consider a joint source-channel coding system that protects an embedded
wavelet bitstream against noise using a finite family of channel codes with error detection and
error correction capability. The performance of this system may be measured by the expected
distortion or by the expected number of correctly received source bits subject to a target total
transmission rate. Whereas a rate-based optimal solution can be found in linear time, the
computation of a distortion-based optimal solution is prohibitive. Under the assumption of
the convexity of the operational distortion-rate function of the source coder, we give a lower
bound on the expected distortion of a distortion-based optimal solution that depends only on
a rate-based optimal solution. Then we show that a distortion-based optimal solution pro-
vides a stronger error protection than a rate-based optimal solution and exploit this result to
reduce the time complexity of the distortion-based optimization. Finally, we propose a fast
iterative improvement algorithm that starts from a rate-based optimal solution and converges
to a local minimum of the expected distortion. Experimental results for a binary symmetric
channel with the SPIHT coder and JPEG 2000 show that our lower bound is close to opti-
mal. Moreover, the solution given by our local search algorithm has about the same quality
as a distortion-based optimal solution, whereas its complexity is much lower than that of the
previous best solution.

1. INTRODUCTION

One of the most successful systems for the robust progressive transmission of embedded
wavelet image codes over memoryless noisy channels was introduced by Sherwood and
Zeger [1]. The basic idea is to protect the source bitstream, for instance the SPIHT code
[2], with a concatenation of an outer cyclic redundancy-check (CRC) coder and an inner
rate-compatible punctured convolutional (RCPC) coder and to stop the decoding when the
first error is detected. This system was also efficiently used by Banister, Belzer, and Fischer
([3]) for protecting JPEG 2000 [4] coded images (RCPC codes were replaced by punctured
turbo codes) and by Xiong, Kim, and Pearlman [5] for video transmission. In the original
setting [1, 6], the information bits were organized in packets of fixed-length, each of which
was protected by appending a variable number of extra bits. However, it is more convenient
to allow the blocks of information bits to have a variable length and to fix the size of the
channel codewords [3, 7].

A challenging problem is to find an allocation of the transmitted bits between the source
and the channel that minimizes the expected distortion subject to a target total bit rate. For
the fixed source packet length case, Lu, Nosratinia, and Aazhang [8] show that under some
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assumptions, the channel code rates of an optimal solution should be nondecreasing with
the packet number, which significantly reduces the complexity of an exhaustive search.
Also in the fixed source packet length case, Chande and Farvardin [6] provide a dynamic
programming solution to the optimization problem and report an

���������
time complexity,

where
�

is the target total transmission rate. In the fixed channel codeword length case,
however, no fast exact solution is known. To the best of our knowledge, the best approxi-
mation to an optimal solution was proposed in [3]. It is based on a Viterbi algorithm and
has

�����	�
�
complexity. However, this result holds only for particular sets of channel code

rates. For an arbitrary channel coder, the worst case complexity is exponential in the total
transmission rate.

An alternative to minimizing the expected distortion is to maximize the expected number
of correctly received source bits. Though suboptimal in the distortion sense, this rate-
based approach has two main advantages: an optimal solution can be computed with a
linear-time algorithm [6, 7], and it is independent of both the image and the source coder
performance; thus, it can be determined by the receiver, which avoids the need for side
information. In [9], experimental results show that the solutions to the two optimization
problems have a similar performance for the SPIHT coder and an RCPC channel coder (the
loss in peak-signal-to-noise ratio (PSNR) was less than 0.2 dB for the 512 � 512 gray-scale
Lenna image). Hedayat and Nosratinia [10] analytically confirm these results under many
assumptions, including an i.i.d. Gaussian source and a perfect progressive source coder that
achieves the rate-distortion function.

In this paper, we answer the following important questions: Is it possible to theoretically
estimate the loss in reconstruction quality when we replace the minimization of the ex-
pected distortion by the maximization of the expected number of correctly received source
bits? Can one decrease the time complexity of the distortion-based minimization? Finally,
can one rapidly find a better solution than the one obtained by the rate-based maximization?

The paper is organized as follows. In Section 2, we set up our notations and state the
two optimization problems in the context of fixed-length channel codewords. In Section 3,
we provide a theoretical upper bound on the difference in expected distortion between the
solutions of the two optimization problems under the assumption of the convexity of the
operational distortion-rate function of the source coder. We also show that the number of
source bits included in the packets of a distortion-based optimal solution is smaller than that
of a rate-based optimal solution. Then we use this result to reduce the complexity of the
distortion-based minimization by pruning the set of candidates. In Section 4, we propose a
fast local search algorithm that starts from a rate-based optimal solution and iteratively tries
to reduce the expected distortion by modifying at each step the protection of one packet. In
Section 5, we present numerical results for the SPIHT and JPEG 2000 coders. We show in
particular that the local search algorithm yields comparable solutions to that obtained with
the Viterbi algorithm of [3], but at a much lower complexity. In the last section, we discuss
our results and suggest future work.

2. OPTIMIZATION CRITERIA

We consider a system that protects an embedded source code using a finite family of
channel codes with error detection and error correction capability. The channel encoder



transforms the information bitstream into a sequence of channel codewords (packets) of
fixed length � . If the decoder detects an error, then the transmission is stopped, and the
image is reconstructed from the correctly received source bits. We assume that all errors
can be detected. Given � channel codes �����������	����
 , let � be the set of corresponding
code rates 
�����
 � ����������
	
 . For �������������	��� , let � � 
� � denote the probability of a
decoding error in a packet protected by code �	 . We may assume without loss of generality
that � � 
�� � � �����!�"� � 
	
 � � � . Suppose now that we want to send # packets of �
bits each. Then an N-packet error protection scheme (EPS)

� � � 
�$�%�����������
�$'& � assigns
to each packet �'�(�)� ���������*��# , a channel code rate 
+$-,)./� . For �)� ���������*��#102� ,3  ��� � � 4  5'6 � � �708� � 
�$:9 � � � � 
�$-,<; % � is the probability that no errors occur in the first �
packets with an error in the next one,

3>= � � � ��� � 
�$�% � is the probability of an error in
the first packet, and

3>? ��� � �@4
?
5A6 � � �B0C� � 
�$:9 � � is the probability that all # packets are

correctly received. For an # -packet EPS
� � � 
+$�%��������*��
�$A& � .D�

?
, the expected distortion

is given by

EF?HGJI�K � 
�$�%��������	��
�$A& � �
?
L
 6 =

3  � � � I  � � � � (1)

where
IM= ��� � � IM= is a constant, and for �ONP� , I  � � � is the reconstruction error using the

first � packets. Since the number of possible # -packet EPS’s is equal to �
?

, brute force
cannot be used to minimize (1) when # is large. However, if we replace the minimization
of (1) by the maximization of the expected number of correctly received source bits

EF?HG 
 K � 
�$�%��������	��
�$A& � �
?
L
 6 =

3  � � �'Q  � � � � (2)

where
Q = ��� � �SR and for �TNU�V� Q  � � � �XW  5'6 �ZY � 
�$[9 � with Y � 
�$[9 � �S�\
�$[9 being the

number of source bits in the ] th packet, then an optimal solution can be computed in
��� # �

time [7]. Maximizing (2) is reasonable for an efficient embedded coder because we expect
the average distortion to decrease when the average number of correctly received source
bits increases. Note, however, that the two optimizations do not necessarily yield the same
EPS (see Section 5). In the following, we say that an EPS that minimizes (1) is distortion
optimal and that an EPS that maximizes (2) is rate optimal. In [3], a Viterbi algorithm is
used to find an approximation to a distortion-optimal EPS. However, the reported

� � # � �

time complexity is valid only for some particular sets of channel code rates. In many
important cases, the number of nodes in each stage of the Viterbi trellis does not grow
linearly, and the complexity of the algorithm is exponential in the number of packets # .

Whereas the channel code rates used by a rate-optimal solution are nondecreasing with
the packet number [7], this is not necessarily true for a distortion-optimal solution as
shown by the following counter-example. Suppose that we have two packets ( # �_^ )
and two channel code rates 
��`�a
 � ( �_�@^ ). Then

� 
V�*�'
�� � � � 
����'
 � � � � 
 � �'
�� � , and
� 
 � ��
 � �

are the four possible ^ -packet EPS’s. Suppose now that � � 
M� � �"Rb�<R�c and � � 
 � � �dRb�e� .
Let

IM= � ��R�Rb� I � � 
��*�'
�� � � I � � 
��*��
 � � �1cMfg� I � � 
 � ��
�� � � I � � 
 � ��
 � � �Uf�Rb� I � � 
�����
�� � �
^VRb� I � � 
��*�'
 � � � I � � 
 � ��
�� � �XRb�<R�Rb� , and

I � � 
 � �'
 � � �hRb�<R�R�R�f . Then it is easy to check
that

Ei?iGJIMK � 
 � ��
�� � � EF?jGJI�K � 
 � ��
 � � � Ei?iGkI�K � 
�����
 � � � EF?jGJI�K � 
�����
�� � . Thus, the EPS� 
 � ��
�� � is distortion optimal. An # -packet EPS that minimizes (1) under the constraint




�$�%�� �������h
�$'& will be called constrained distortion optimal. In the above example,� 
 � ��
 � � is a constrained distortion-optimal EPS. Note that the constrained minimization
reduces the number of candidates from �

?
to � 
�� ?�� �& � .

3. ERROR BOUND

Because the number of # -packet EPS’s is too high, we do not know the approximation
error made if we use a rate-optimal solution instead of a distortion-optimal one. However, if
we assume that the operational distortion-rate function of the source coder is nonincreasing
and convex, then we can compute an upper bound for this error as follows.

Proposition 1 Let 	 be the operational distortion-rate function of the source coder. Sup-
pose that 	 is nonincreasing and convex. Let 
�� be a distortion-optimal # -packet EPS and
let

� � be a rate-optimal # -packet EPS. Then we have
(i)
EF?jGJI�K � 
 � � N�	 � EF?jG 
 K � � � � � .

(ii)
Q ? � 
 � � � Q ? � � � � and the inequality is strict if 
 � is not rate optimal.

Proof. Let
�

be an # -packet EPS. Because W
?
 6 = 3  ��� � �1� , we know that

Ei?jGJI�K � � �
(respectively

Ei?HG 
 K ��� � ) is contained in the interval
GkIg? � � � � IM='K (respectively

G Rb� Q ? ��� � K ).
(i) Let 
 = and 
 ? � � � denote the points on the distortion-rate curve whose coordinates
are

� Rb� IM= � and
�:Q ? ��� � � I ? ��� � � , respectively. Since 	 is convex, the chord

G 
 = 
 ? � � � K is
above the arc

� 
 = 
 ? � � � � . Thus,
Ei?HG 
 K ��� � � EF?HG 
 K ��� � � gives the inequality

Ej?jGkI�K ��� � N	 � Ei?iG 
 K ��� � � N�	 � Ei?iG 
 K ��� � � � .
(ii) Suppose that

Q ? ��� ����Q ? ��� � � . Let 
 ? ��� � � denote the point on the distortion-rate
curve whose coordinates are

�[Q ? ��� � � � I ? ��� � � � . Since
EF?HG 
 K ��� � � EF?jG 
 K ��� � � and the

slope of the chord
G 
 = 
 ? ��� � � K is strictly smaller than the slope of the chord

G 
 = 
 ? ��� � K ,
we obtain

Ei?HGJIMK ��� ��� EF?iGkI�K ��� � � . Thus,
�

cannot be distortion optimal. This proves thatQ ? � 
 � � � Q ? ��� � � . Moreover, a similar slope argument shows that if
�

is not rate optimal
and

Q ? � � � � Q ? � � � � , then
�

cannot be distortion optimal, which completes the proof. �
Note that the lower bound on the optimal expected distortion given in (i) can be effi-

ciently computed because the algorithm of [7] finds a rate-optimal EPS in
� � # � time. On

the other hand, Proposition 1 (ii) allows us to reduce the complexity of the distortion-based
optimization by discarding many schemes. We first introduce a definition.

Definition 1 An # -packet EPS
�

provides a stronger protection than an # -packet EPS �
if
Q ? � � � � Q ? � � � .
Given an # -packet EPS

�
, one can consider the finite set ��� ��� � �*��������� ��������� �

?
of all # -packet EPS’s that provide a stronger protection than

�
and such that for � N

��� Q ? ���   � � � � Q ? � �  � . For example, suppose that �_�!�+
�����
 � � . Let
� � � 
����'
 � ��
 � � .

Then �"� consists of the four schemes
� � � � 
��*��
 � ��
�� � � � � � � 
�����
����'
 � � � �$# � � 
 � �'
�����
�� � ,

and
�&% � � 
�����
�����
�� � . We now have

Proposition 2 Suppose that the distortion-rate function of the source coder is nonincreas-
ing and convex. Then the following algorithm finds a distortion-optimal # -packet EPS 
 � .
1. Set �F� � . Use the algorithm of [7] to compute a rate-optimal # -packet EPS

� � . Let



� ��� be the number of elements in ����� . Set 
 � � � � .
2. Let

�  be the � th EPS in ����� . If
EF?jGJI�K � �  � � EF?iGkI�K � 
&� � , set 
$� � �  .

3. If
I ? � �  � � EF?jGJI�K � 
&� � , stop.

4. Set � � � � � . If � � � ��� , stop. Otherwise, go to Step 2.

4. LOCAL SEARCH ALGORITHM

The algorithm of Proposition 2 significantly accelerates the computation of a constrained
distortion-optimal EPS. However, the computation time may be unacceptable for some
applications where speed is a priority. In this section, we propose a local search algorithm
that rapidly finds a local minimum of (1). Experimental results in Section 5 show that this
local minimum is near a global one. We first define the neighborhood of a solution.

Definition 2 Let � be a set of code rates and let
� . �

?
be an # -packet EPS with non-

decreasing rates. Then the neighborhood of
�

is the set of EPS’s � . � ? such that
(a)
Q ? � � � � Q ? ��� � .

(b)
�

and � differ in only one code rate.
(c) The rates of � are nondecreasing.

We now need to precise an indexing of the solutions contained in a neighborhood. We de-
fine the � th neighbor of

�
as the one whose new code rate (according to (b) in Definition 2)

is the � th largest one. For example, let � ��� and
� � � 
��*��
 # �'
 # ��
 %
� be a four-packet EPS.

Then the neighborhood of
�

consists of the set of schemes � � 
M�*��
 � ��
 # ��
 % � � � 
�����
�����
 # �'
 % � �� 
�����
 # �'
 # ��
 #
� � which are ordered as follows:
� 
��*��
 # ��
 # �'
 #
� � � 
����'
 � ��
 # ��
 % � � � 
�����
�����
 # ��
 % � .

The local search algorithm works by iterative improvement. We start from a rate-optimal
solution. Then we consider the first neighbor of the current solution. If the expected distor-
tion of this neighbor is smaller than that of the current solution, then we update the current
solution; otherwise we consider the next neighbor and repeat the procedure. Note that the
neighbors of a given EPS

�
provide a stronger protection than

�
. This is in accordance

with Proposition 1 (ii). A pseudo-code for the local search algorithm is given below.

Local search algorithm
1. Set � �_�����`� � , and � �XR . Use the algorithm of [7] to compute a rate-optimal

# -packet EPS
�&�

.
2. Let 
 be the � th highest rate used by

�"�
. Let ] be the index of the first packet that

�"�
protects with 
 . If 
 � 
�� , stop. Otherwise, let 

	 . � be the � th highest rate smaller than 

and define

� 	 to be the EPS obtained from
�$�

by protecting packet ] with 
�	 .
3. If

Ei?iGkI�K ��� 	 � � Ei?jGkI�K ���&� �
, set

�&� � � � � 	�� � � � � �����7� ����� � � , and go to Step 2.
4. If ]�
� � and 
�	 is greater than the rate of packet ]!0 � , set � ��� � � . If ]�
� � and 
�	
is equal to the rate of packet ] 0 � , set �O�d� and �C��� � � . If ] �d� and 
�	�
� 
�� , set
� ��� � � . If ]`� � and 

	>� 
�� , stop.
5. Go to Step 2.

Simulations show that the above local search algorithm can be slightly improved by
removing � � �V��� � � from Step 3. We use this variant in our experimental results.



5. RESULTS

In this section, we numerically compare the mean-squared error (MSE) performance
and the time complexity of a rate-optimal solution, a constrained MSE-optimal solution,
the solution computed by the Viterbi algorithm of [3], and the solution of the local search
algorithm. The test image was the standard 8 bits per pixel (bpp) fZ�+^ � fZ�+^ gray scale
Lenna. Results are given for Fowler’s implementation of the SPIHT coder [11] and for a
Java implementation of JPEG 2000 [12]. Note that the operational distortion-rate functionI � 	 � 
 � (where

I
is the MSE) of the SPIHT coder can be modeled as a convex function

[13]. We recall that # and � denote the target number of packets and the length of a
channel codeword, respectively. Thus, the total transmission rate was

��� ��#D� � � � bpp
for � � � images. The packets were sent over a binary symmetric channel and protected
with a concatenation of a CRC-32 coder and a rate compatible punctured turbo coder [14].
The generator polynomial of the CRC code was (32,26,23,22,16,12,11,10,8,7,5,4,2,1,0).
The turbo coder consisted of two identical recursive systematic convolutional encoders
with memory length � and generators

��� ����^�� � (octal). The mother code was ^VR ��� R�� � � � ,
and the puncturing rate was 20, yielding � � possible channel code rates. The length of a
packet was equal to � � ^VR �
	 bits, consisting of a variable number of source bits, 32 CRC
bits, 4 bits to set the turbo encoder into a state of all zeroes, and protection bits. We used
iterative maximum a posteriori decoding, which was stopped if no correct sequence was
found after 20 iterations. The bit error rate of the binary symmetric channel was 0.1. The
probability of a packet decoding error for each code rate was computed with 50000 Monte
Carlo simulations. Only the channel code rates that may be selected by a rate-optimal EPS
were considered in MSE-minimization. Thus, � � � with 
��)� � =�
� ��
 � � � =� � ��
 # � � =� = ,
and 
 % � � =%�� [7]. The corresponding numbers of source bits per packet were Y � 
 � � �� cMfg� Y � 
 � � ����fZ��� Y � 
 # � ����	 � , and Y � 
 % � ��	b��� . The probabilities of packet decoding
failure were � � 
V� � � Rb� RVR�R�Rb���[� � 
 � � � Rb�<R�R�RM^g�:� � 
 # � � Rb�<R�Rb�V��� , and � � 
 %
� � Rb� RVR � �Mc .

Figure 1 shows the bound predicted by Proposition 1, the expected MSE performance of
a constrained MSE-optimal solution and that of a rate-optimal solution. We point out that
we did not consider the side information that must be sent to the decoder to specify an MSE-
optimal solution. Because the difference between the lower bound and the performance of
a constrained MSE-optimal solution is very small, we conclude that a constrained MSE-
optimal solution is near MSE-optimal. For the two coders the rate-optimal solution was a
good approximation to the constrained MSE-optimal solution. However, the approximation
error was larger for JPEG 2000.

Figure 2 (a) shows for the SPIHT coder the difference in expected MSE between a so-
lution found by rate optimization and a constrained MSE-optimal solution, and the dif-
ference between a solution found by the local search algorithm and a constrained MSE-
optimal solution. Figure 2 (b) shows the difference in expected MSE between respectively
a rate-optimal solution, a local search solution, a constrained MSE-optimal solution and
the bound of Proposition 1. The results show that except for one transmission rate where
the initial rate-optimal solution was poor, the solution found by local search was very close
to optimal.

Figure 3 presents similar results for JPEG 2000. Here, for clarity of display, we give the
difference in PSNR of the expected MSE. That is, for two solutions

� � and
� � , the figure
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Figure 1: Bound of Proposition 1, expected MSE of a constrained MSE-optimal solution,
and expected MSE of a rate-optimal solution for the SPIHT coder (a) and JPEG 2000 (b).
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Figure 2: SPIHT coder. (a) Difference in expected MSE between, respectively, a rate-
optimal solution, a local search solution and a constrained MSE-optimal solution. (b)
Difference in expected MSE between, respectively, a rate-optimal solution, a local search
solution, a constrained MSE-optimal solution and the bound of Proposition 1.

shows the difference

��R������ � = ^�f�f �Ei?iGkI�K ��� � � 08��R������ �
= ^Vf�f �EF?jGJI�K � � � � �

In the above experiments, the constrained MSE-optimal solution was computed with a
brute-force algorithm. However, one can speed-up this minimization by using the algo-
rithm of Proposition 2 with the same monotonicity constraint. For the SPIHT coder, our
algorithm found the same solution as the brute force algorithm. For JPEG 2000, the ex-
pected MSE of the two solutions was identical up to the second decimal. This indicates
that the convexity assumption was acceptable for both coders.

Finally, Table 1 compares for the SPIHT coder the CPU time and the expected MSE
of, respectively, a rate-optimal solution computed with the algorithm in [7], a constrained
MSE-optimal solution computed with the algorithm of Proposition 2, a solution found by
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Figure 3: JPEG 2000. (a) Difference in PSNR of the expected MSE between a constrained
MSE-optimal solution and a rate-optimal solution, and a local search solution, respectively.
(b) Difference in PSNR of the expected MSE between the bound of Proposition 1 and
a rate-optimal solution, a local search solution, and a constrained MSE-optimal solution,
respectively.

the Viterbi algorithm of [3] (this algorithm also uses the monotonicity constraint on the
channel code rates), and a solution computed with our local search algorithm. The CPU
time was measured on an SGI O2 having four 270 MHz MIPS R12000 processors and a
main memory size of 1536 Megabytes. The local search algorithm found a solution with
about the same quality as the constrained distortion-optimal solution. Moreover, the time
complexity of local search was much lower than that of the Viterbi algorithm. We obtained
similar results for JPEG 2000.

Total rate CDO RO LS Viterbi
(bpp) MSE Time (s) MSE Time (s) MSE Time (s) MSE Time (s)
0.25 70.42 2.39 74.90 � 0.01 70.52 0.2 70.42 6.85
0.5 36.27 40.9 37.28 � 0.01 36.28 0.22 36.34 72.42

0.75 24.40 189.64 25.34 � 0.01 24.44 0.23 24.53 288.57
1.0 18.02 577.9 19.20 � 0.01 18.03 0.3 18.13 777.68

Table 1: Expected MSE and CPU time in seconds at various transmission rates for a con-
strained MSE-optimal solution (CDO), a rate-optimal solution (RO), a solution found by
the local search algorithm (LS), and one obtained with the Viterbi algorithm [3].

6. CONCLUSION

For the original system of Sherwood and Zeger [1], in which the packets of information
bits have a fixed length, a distortion-optimal EPS can be computed with dynamic program-
ming in

� � � �
�
time where

�
is the transmission rate [6, 9]. However, in the fixed channel

codeword length setting, there is no algorithm that computes a distortion-optimal EPS in



reasonable time. The best previous approximate solution is based on a Viterbi algorithm
[3].

We showed that for a source coder whose operational distortion-rate function is non-
increasing and convex, a sharp lower bound on the performance of a distortion-optimal
solution can be quickly computed. This lower bound is useful to evaluate the quality of
approximate solutions. We also proved that a distortion-optimal solution is either rate op-
timal or provides a stronger protection than a rate-optimal solution. Then, we proposed a
local search algorithm that starts from a rate-optimal solution and converges to a locally
distortion-optimal solution. Experimental results with the SPIHT coder and JPEG 2000
showed that both the local search algorithm and the Viterbi algorithm found comparable
high-quality solutions; however, the local search algorithm was much faster.

In this paper, our goal was to minimize the expected distortion. If we prefer instead to
maximize the expected PSNR, then, by assuming that the operational PSNR-rate function
is nondecreasing and concave, we can use results similar to those in Propositions 1 and 2.

Finally, we point out that Proposition 2 can be used to speed-up the
�������
�

dynamic
programming algorithm of [6, 9] in the context of fixed-length information packets.
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