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Abstract

We address the problem of designing optimal quantizers for distributed
source coding. The generality of our formulation includes both the symmetric
and asymmetric scenarios, together with a number of coding schemes, such as
the ideal coding achieving a rate equal to the joint conditional entropy of the
quantized sources given the side information. We show the optimality condi-
tions quantizers must satisfy, and generalize the Lloyd algorithm for its design.
Experimental results are shown for the Gaussian scalar asymmetric case.

1 Introduction

Consider a network of low-cost remote sensors sending data to a central unit, which
may also have access to some side information, for instance, previous data or data
provided by local sensors. Suppose that at each remote sensor the data acquired by the
other sensors and the side information is not available, but the statistical dependencies
are known. We can nevertheless exploit these dependencies to achieve more efficient
source coding. If lossy coding is allowed, a convenient coding implementation consists
of a quantizer and a lossless coder. In fact, rate-distortion theory, both for non-
distributed source coding and source coding with side information at the decoder [1, 2,
3], guarantees that block codes of sufficiently large length are asymptotically optimal,
and they can be seen as vector quantizers followed by fixed-length coders.

Clearly, both the quantizers and the lossless coders may benefit from exploiting
the statistical dependencies. Practical distributed lossless coding schemes have been
proposed (see, e.g. [4, 5]) that are getting close to the Slepian-Wolf bound [6]. As for
the design of optimal quantizers, some recent approaches are heuristic [7] or consider
only a subset of solutions, such as partitions with connected quantization regions [§].
A more general treatment of the problem of quantizer design is presented in [9],
where the Lloyd algorithm [10] is extended to distortion-only optimized quantizers
for network source coding. [11] (unpublished) is a further extension incorporating
Lagrangian rate-distortion cost functions. This latter work deals with rates defined
as expectations of functions of the quantization indices, mainly expectations of linear
combinations of actual codeword lengths, where the codebook is designed taking into
account the statistical dependencies among sources and side information.



In this paper, we study the design of quantizers for distributed lossless source cod-
ing, optimized in terms of distortion and rate. The main contribution is the inclusion
of the case in which the rate equals the joint conditional entropy of the quantization
indices given the side information, that is, optimal quantization for Slepian-Wolf cod-
ing. This work extends the framework for optimal quantizer design for non-distributed
sources [12, 13], especially the Lloyd algorithm. The formulation and the solution of
the problem studied here were developed independently of [9, 11}, and while there are
several similarities in the treatment of the distortion, our framework is more general
as far as rate measures is concerned. This greater generality turns out to be essential
for the practically important cases where the (low) dimensionality of the quantizer
is unrelated to the (large) block length of the lossless coder. Specifically, both the
case of actual codeword lengths and the case of joint conditional entropy are covered.
There are also important differences in the presentation of the overlapping part of
the theory, as well as in the implementation of the algorithm. On the other hand,
[9, 11] consider a general network, which includes in particular the symmetric and
asymmetric settings.

This paper is organized as follows. In Section 2 the problem of quantizer design is
formally stated, and illustrated with several examples of coding schemes. A solution
extending the Lloyd algorithm is presented in Section 3. Finally, Section 4 provides
simulation results for the Gaussian scalar asymmetric case.

2 Formulation of the Problem and Coding Cases

We study the optimal quantizer design for the distributed source coding setting de-
picted in Fig. 1. We follow the convention of using uppercase letters for random
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Figure 1: Quantizers for distributed source coding.

vectors, and lowercase letters for particular values these vectors take on. We wish
to quantize two vectors produced by two sources, modelled by the random vectors
X; and X, not necessarily of the same dimension. Define X = (X;,X,). Each
source vector is available only at its corresponding quantizer. Let the quantization



functions ¢; (1) and go(z2) map each source vector into a quantization index, )1 and
Q2, grouped as @) = (Q1,Q2). A random vector Y, of dimension possibly different
from X; and X5, plays the role of side information available only at the receiver. The
side information and both quantization indices are used jointly to estimate the source
vectors. Let X; and X, represent these estimates, obtained with the reconstruction
function Z(q,y).

The formulation in this work is concerned only with the design of the quantizers
and the reconstruction function, not with the coding part. It assumes that the coding
of the indices )7 and (); with side information Y is lossless, or does not contribute
significantly to the distortion. Observe that in general the coding block length is
unrelated to the dimension of the vectors X; and X5.

The function d(z,2) denotes a distortion measure, and D = E[d(X, X)] the ex-
pected distortion. Let r(g,y) be a function representing some rate measure. Its role
consists in characterizing the coding scheme, as we shall see in this section. The
expected rate is then defined as R = E[r(Q,Y)].

Xy, Xy and Y are in general statistically dependent. We emphasize that each
quantizer only has access to its corresponding source, thus the values of the other
source and the side information are unknown. However, the joint statistics of X and
Y are assumed to be known, and exploited in the design of the optimal quantizers.
We consider the problem of finding the quantizers and reconstruction function that
minimize the expected Lagrangian cost J = (1—\) D+ AR, where A is a real number
in [0, 1].

We now illustrate the meaning of the rate measure r(q,y) with an example. Sup-
pose that we have the coding setting depicted in Fig. 1, in which each quantization
index )7 and ()5 is encoded separately and the side information Y is not available
at any of the encoders, but that the statistical dependencies between all of them
are known. A consequence of the Slepian-Wolf Theorem [6], specifically of its ver-
sion for three sources (see, e.g. [3]), is that the set of achievable rates to encode
the quantization indices is the same as if both sources were jointly encoded and the
side information were available at the encoder. The lowest achievable total rate is
H(Q1,Q2]Y) in both cases, which is precisely R when r(q,y) = —logpgpy (q|y). Since
both cases share a common definition for the rate measure r(q, y), the design problem
studied here is mathematically identical. The second case, however, provides a clearer
physical meaning for r(q, y). It represents the ideal codeword length required to code
the vector of indices ¢ when the side information takes the value y.

Our framework can be immediately generalized to more than two sources. It can
also be easily specialized to the symmetric distributed source coding case, in which
there is no side information, to the asymmetric case, where there is only one source,
or to the non-distributed case.

Alternative definitions of r(q,y) model different coding settings. Either prob-
abilities or actual codeword lengths can be used in its definition. Some examples
are shown in Table 1. In the first three, the Slepian-Wolf bound is assumed to be
achieved. These choices do not assume any statistical independence between @)1, Q2
and Y, they merely model different coding schemes.

Suppose that the coding part is carried out jointly on blocks of quantization



r(q,y) R Coding

—log(pgiy (aly)) H(Q,Q:2]Y) Distributed coding.
—log(pg(q)) H(Q4,Q2) Symmetric distributed coding,

side information ignored.
—log(pg, v (q1ly) H(Q1]Y) + H(Q2|Y) | Asymmetric distributed cod-

PQ.ly (2|y)) ing, source dependence ignored.

—log(pg, (q1) Po.(q2)) H(Q1) + H(Q2) Separate encoding, all depen-

dencies ignored.

(1 —p)li(qr) + pla(qe) | (1 —p) E[li(Q1)] + | Use of a specific codebook with

wE[ls(Qo)] codeword lengths [;(¢;). Rates
are weighted.
apo,(q1) + aH(Q) + Linear combination of previous

bpo,(q2) +cpolgly) | bH(Q2)+c H(Q|Y) | cases.

Table 1: Some examples of rate measures 7(q,y) and their applications.

indices. Then, each of the codeword lengths [; and l5 would depend on several samples
of the quantization indices ¢; and ¢, and r(q,y) could not be written simply as
li(q1) + la(q2). Grouping source vectors in blocks of the same size as those used in
the coding would solve this problem, but it would increase the dimensionality and
therefore the complexity of the quantizer design.

Consider now the method for coding a source vector X; with side information Y,
based on turbo codes, as reported in [5]. The technique works with extremely large
fixed-length sequences, and the rate is fixed by the convolutional code used. The
probability of decoding error increases steeply as the conditional entropy of the source
vector given the side information approaches this fixed rate. This particular coding
scheme can be seen as nearly lossless, with a rate close to the conditional entropy.
A first model would be a lossless coder with a rate R = H(Q1|Y"), or perhaps more
accurately, R = a H(Q1) + b H(Q1]Y).

3 Optimal Quantizer Design
The functions defined below represent the expected distortion, expected rate and

expected Lagrangian cost associated to a particular mapping of a source value into a
quantization index:

di(z1, 1) = E[d((z1, X2),2((q1, Q2), V)| X1 = 1]

d2 (2, ) = Eld((X1,22),2((Q1,¢2),Y))[ X2 = 25]

iz, q1) = Elr((qr,Q2),Y)| X1 = x4 (1)
fz(xz,ﬂb) = Elr((Q1,),Y)| X2 = 2]

21(951,%) = (1- )dl(xh%)‘i‘)\fl(%,%)

Jo(w9, qa) = (1 — ) da(wa, ) + Aia(a, go)



For instance, cil (z1,q1) is an estimate of the distortion when the source X; emits the
value z7, if the quantization index corresponding to this value, ¢(z1), is chosen to
be ¢, for a particular distortion measure and a particular reconstruction function.

In the entropy-constrained, non-distributed setting, the reconstruction functions
become reconstruction levels #1(q;). For a quadratic distortion measure, d; (x1,q1)
is simply the paraboloid ||z — &1(q1)|], and 71(z1,¢1) = —logpg,(¢1) is indepen-
dent from ;. In this case, the index ¢; minimizing the cost jl(xl, ¢1) is chosen. In
this section we shall discover how similar the distributed quantizer design is to the
non-distributed one. Observe also the similarity of our definitions with the mod-
ified distortion measures used in quantization of noisy sources [14, 13], where the
distortion between a noise-corrupted observation V' of an unseen original U and its
reconstruction U is defined as E[d(U, U)|V].

A fundamental property of the distortion, rate and Lagrangian cost functions (1) is
that their expectation is precisely the expected distortion, rate and cost, respectively:

D = E[d\(X1,Q1)] = E[da(Xs, Q2)]
R = E[r(X1,@Q1)] = E[r2(X2, Q2)] (2)
J = E[j1(X1,Q1)] = Elja(X2, Q2)]
This property plays a key role in the understanding of the necessary optimality con-
ditions for the quantizer, the reconstruction function and the rate measure, which we
shall now show.
For each i € {1,2}, consider all possible quantization functions ¢;(x;), leaving
fixed the other quantization function, the reconstruction function z(q,y) and the rate
measure 7(q,y). Then,

g; (z;) = argmin j;(x;, ;) (3)

di
defines an optimal quantization function, since it minimizes J over all choices of
the quantization function ¢;(z;). An essential difference with respect to the non-
distributed quantizer is that even if the distortion measure is quadratic, it turns out
that the estimated distortion functions are not paraboloids in general, and the quan-
tization regions might be disconnected, as it will be shown in Section 4. Consider
for instance the fixed-rate asymmetric case in which Xy is irrelevant, with a fixed
number of quantization indices for X;. Suppose that X; is of dimension one, and Y
is its noisy version, taking values very close to X; with very high probability. Then,
if two quantization intervals far away from each other are assigned to a common
quantization index, the reconstruction process should be able to determine —with
high probability— which interval X; belongs to. For a fixed number of quantiza-
tion indices, assigning multiple intervals to a common index allows the quantization
function to work with narrower intervals, thus reducing the distortion.
For some particular quantization functions ¢;(x;) and ga(x2),

(g, y) = argmin E[d(X, 2)|Q = ¢,V = ] (4)

is an optimal reconstruction function, since it minimizes D over all choices of the
reconstruction function Z (g, y). Furthermore, if d(z, ) = ||z — #||?, then

*(q,y) = E[X|Q =¢,Y =y]. (5)



Let pgpy (q|y) denote the conditional PMF of @ given Y, and let pgpy (s|y) denote
the conditional PMF of a certain random vector S = (S, S2) given Y. Here S is in
general different from @), but it also assumes values in the set of possible quantization
indices. Fixing both quantization functions ¢;(z1) and g2(zs),

(¢, y) = —log poyy (qly) (6)

is an optimal rate measure, since it minimizes R over all choices of rate measures
r(q,y) of the form —logpsy(qly) (evaluated at g, not at s). Furthermore, R* =
H(Q|Y). There are analogous results for each of the alternative definitions of (g, y)
in terms of logarithms of probabilities shown in Table 1.

The following result gives an important simplification for the estimated rate func-
tions when [y and [ are actual codeword lengths, or ideal codeword lengths as in

r(q,y) = —log(pq, (41) Po,(42)), (7)

where [;(g;) = —log pg,(¢;) and R = H(Q1) + H(Q2). Suppose that the rate measure
is of the form 7(q,y) = li(q1) + l2(g2) for some functions l;(q1) and l5(gz2). Then for
each i € {1,2} the estimated rate functions can be redefined as

Ti(zi, qi) = Ti(@;) = li(q:) (8)

without affecting the resulting optimal quantization functions as given in Equation 3.
Having seen the optimality conditions, we are now ready to extend the Lloyd
algorithm for the special case of distributed source coding:

(1)

1. Choose some initial quantization functions ¢;’(x;). Set the iteration counter k

to 1.
2. Find the optimal reconstruction function #*) (¢, /) for the quantization functions
k) (,..
g ().
3. Find the optimal rate measure 7*)(q, ) = — log Powy (qly) for the quantization

indices ng) = qi(k) (x;). Alternative definitions for r(q,y) can also be used, as
the ones in Table 1.

4. Compute the expected cost J*) associated to the current quantization, rate and
reconstruction functions. Depending on its value with respect to the previous
one, continue or stop.

(k+1)

5. Find the next optimal quantization functions ¢; ' ’(x;) for the current recon-

struction and rate measure. Increase counter k£ and go back to 2.
The algorithm defined above satisfies the following properties:
1. The cost is non-increasing, that is, Vk> 1 J* ) < 7% and it converges to
a limit.

2. Any quantizer satisfying the optimality conditions, in particular an optimal
quantizer, without ambiguity in any of the minimizations involved, is a fixed
point of the algorithm.



3. At the step before finding the new quantization functions the expected rate is
the conditional entropy, that is, R*®) = H(Q®|Y).

Note that these properties imply neither that the value of the cost J the algorithm
converges to is a minimum, nor that this cost is a global minimum.

So far we have assumed that the joint statistics of the random vectors X, X, and
Y were known. Instead, a training set of samples {(X1, Xs,Y"),} can be provided.
If the general form of the PDF or PMF is also unknown, non-parametric statistical
techniques (see [15] for an introduction) can be applied to estimate the conditional
expectations involved in the generalized Lloyd algorithm, especially if any of the
random vectors X, X, or Y is continuous. Even if the joint statistics are available,
since the conditional expectations themselves can be seen as estimates, nonparametric
regression techniques, based or not on kernel functions, such as local mean, local
linear regression, smoothing splines, wavelets or projection pursuit regression, are
particularly useful. These techniques may be combined with, or already include,
dimensionality reduction methods of the variables we condition on, such as principal
component analysis or vector quantization.

4 Experimental Results for the Gaussian Scalar
Asymmetric Case

In this section, the previous analysis is illustrated with simulation results for the case
of scalar quantization of a Gaussian random variable for asymmetric source coding.
Let X ~ N(0,0% = 1) and Z ~ N (0, 0%) represent the source and independent noise
respectively, and let the side information be Y = X 4+ Z. The notation used here is
equivalent to the previous one except for the subindex of X; and ()1, which is omitted.
X5 and @9 are irrelevant, for instance constants. Define the input signal to noise
ratio as SNRiy = 0% /0%, and the output signal to noise ratio as SNRoyr = 0% /D.
Whenever the number of bins is referred to, only those in [-6 ox, 6 0x] are counted.

Two examples of quantizers obtained with the algorithm are represented in Fig. 2.
Observe that in both cases there are disconnected quantization regions, as we men-
tioned in Section 3, and that the entropy-constrained quantizer is almost uniform.
Fig. 3 shows an example of reconstruction function and estimated cost function. The
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Figure 2: Optimized quantizer for A = 0, 4 quantization indices, and SNR;x = 5 dB (left plot), and
A=.037, R = H(Q|Y) and SNRyy = 10 dB (right plot).
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Figure 3: Example of reconstruction functions (left plot) and cost functions (right plot) for A = 0,
2 quantization indices and SNRyy = 5 dB. The quantization boundaries are also shown.

experiments carried out indicate that if the initial quantization function has a number
of intervals and quantization indices larger than the optimal, the algorithm converges
to the optimal quantizer or to one with nearly optimal cost.

Next, we compare the performance of the following quantization schemes with the
Wyner-Ziv bound [2]:

e Ideal quantization according to the Wyner-Ziv bound.

e Scalar quantization of the conditional random variable X |Y. The side infor-
mation is available at the quantizer.

e Asymmetric scalar quantization according to the framework presented here.

e The scalar quantizer is designed as if the source were independent from the
side information, that is, the optimal non-distributed quantizer for X is used.
The reconstruction still takes into account the side information.

e The side information is ignored both in the design of the scalar quantization
and in the reconstruction.

e A uniform quantizer is obtained from the optimal, asymmetric quantizer by
averaging the interval width according to the PDF of X, and using the same
number of indices. The reconstruction takes into account the side information.

Fig. 4 shows the variation in the distortion with the correlation between the source
input and the side information, when only the distortion is optimized (A = 0) and
4 quantization indices are used (left plot), along with the number of intervals per
quantization index. In Fig. 5, distortion-rate curves for minimum Lagrangian cost
scalar quantizers are plotted. The rate R has been set to H(Q) (left plot) and H(Q|Y)
(right plot), and the input SNR to 5 dB. Both in the distortion optimized case and the
case in which the rate is the unconditional entropy, the quantizer obtained with our
generalization of the Lloyd algorithm yields a distortion significantly lower than the
quantizer designed using the non-distributed Lloyd algorithm, despite the fact that
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Figure 4: Comparison of distortion optimized quantization schemes using 4 quantization indices
(A =0) (left plot), and number of intervals per quantization index vs. input SNR.
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Figure 5: Comparison of quantization schemes with R = H(Q) (left plot) and R = H(Q|Y") (right
plot), for SNRixy = 5 dB.

both reconstruction functions use the side information. In the conditional-entropy-
constrained case, however, there is no room for improvement, since having the side
information available at the quantizer or ignoring it for its design produce almost
the same distortion, as long as the coding is ideally efficient. In all cases, when the
number of intervals is large, the uniform version of the optimal quantizer performs
almost as well. We mentioned in Section 3 that the optimized quantizers might map
several bins into a common quantization index. In the distortion optimized case, the
number of intervals per quantization index grows with the input SNR (see Fig. 4).

5 Conclusions

A framework for rate-distortion optimized quantizer design for the distributed source
coding setting in Fig. 1 has been presented. Along with a distortion measure, a rate



measure has been introduced to model a variety of coding scenarios, including the
case of joint conditional entropy of the quantization indices of the sources and the
side information (Slepian-Wolf coding), and the case of actual codeword lengths.

The conditions an optimal quantizer must satisfy have been established. The

Lloyd algorithm to design a locally optimal quantizer has been generalized, and com-
pared to other schemes in the scalar Gaussian case, showing its better performance.
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