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Abstract

The Karhunen-Loève transform (KLT) is a key element of many signal pro-
cessing tasks, including approximation, compression, and classification. Many
recent applications involve distributed signal processing where it is not generally
possible to apply the KLT to the signal; rather, the KLT must be approximated
in a distributed fashion. This paper investigates such distributed approxima-
tions to the KLT. First, we present explicit solutions to special cases, including
a partial KLT (where only a subset of the sources is observed), a conditional
KLT (where some sources act as side information), and the combination of these
two special cases. These results are used to derive an algorithm that finds the
best distributed approximation to the KLT.

Applications of our results to sensor networks and to distributed databases
are discussed.

1 Introduction

Distributed signal processing and communication is an integral part of many of the
crucial contemporary applications. Consider for example a scene filmed by multiple
cameras, or environmental data recorded by multiple sensors: the signals at the
sensors are correlated. In the non-distributed case, one would apply the KLT, thus
obtaining uncorrelated data streams which can now be compressed separately from
each other. Suppose however that communication between the sensors is expensive,
or that they cannot communicate at all. Then, signal processing must be done in a
distributed fashion, and the full KLT cannot be applied to the data. In this paper,
we show how the concept of the KLT extends to such a distributed scenario. For a
state of the art of the key results on the KLT in the non-distributed case, we refer to
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Figure 1: The distributed KLT problem: Distributed compression of multiple corre-
lated vector sources.

the excellent exposition in [1]. The importance of distributed source coding is further
elaborated e.g. in [2].

Section 2 formally states the problem leading to the distributed KLT. Section 3
then studies special cases of the general problem. Those special cases are called the
partial and the conditional KLT. Explicit solutions are found for both cases. For
the partial KLT, we show in Section 3.1 that it leads to an original rate allocation
problem. For the conditional KLT, it is shown in Section 3.2 that the problem splits
into separate Wyner-Ziv problems. Finally, the two solutions are combined in Section
3.3. In Section 4, we show that the results of this paper directly lead to an algorithm
to solve the distributed KLT problem. Finally, Section 5 discusses key applications
of the distributed KLT introduced in this paper.

2 The Distributed KLT Problem

The problem leading to the distributed KLT is shown in Figure 1: There are L
terminals, each of which samples a part of the random vector X of length N , with
zero mean and covariance matrix Σ.1 The terminals cannot communicate with each
other. Each terminal furnishes a certain approximation of its samples to a central
decoder. The goal of the central decoder is to produce an estimate X̂ in such a way
as to minimize the mean-squared error E||X − X̂||2.

For the approximation furnished by the terminals, two different scenarios are of
interest to us:

1. Approximation. Terminal i furnishes a ki-dimensional approximation of its sam-
pled vector. What are the best approximation spaces for the L terminals?

2. Compression. Terminal i furnishes a compressed description using Ri bits per

1Throughout the present paper, we assume for simplicity that Σ has full rank.
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Figure 2: The problem of the partial and the conditional KLT.

sample. For a required maximum average distortion D, what are the rate tuples
(R1, R2, . . . , RL) permitting to satisfy the constraints? In other words, the
goal of this consideration is to determine the achievable rate region for a fixed
distortion D.

To illustrate the point, suppose that X is a vector of jointly Gaussian random
variables. If there is only one terminal that senses all the components of the vector
X, the solution for both the approximation and the compression scenario is given
by first applying the KLT to the vector X, yielding a transformed vector Y with
independent components. For the approximation framework, the best k-dimensional
approximation is given by the eigenvectors corresponding to the k largest eigenvalues.
For the compression framework, the bit allocation between the components of Y is
determined by the eigenvalues.

If there are multiple terminals, each sensing only a part of the vector X, as
illustrated in Figure 1, then it is not possible to apply the KLT in general; rather, it
has to be approximated in a distributed fashion. What is the best such approximation
to the full KLT of the vector X? In our considerations, the “best” approximation is
the one minimizing the mean-squared error E||X − X̂||2.

3 Partial and Conditional KLTs

As a first part of the solution, consider the system of Figure 1 with only two terminals:
Terminal 1 senses XS = (X1, X2, . . . , XM), with covariance matrix ΣS, and Terminal
2 senses the rest of the vector X, namely XSc = (XM+1, XM+2, . . . , XN). The first
k2 components of XSc are available at the decoder, the remaining components are
discarded. This is illustrated in Figure 2. In this section, we present explicit solutions
for this problem. First, we discuss the partial KLT, i.e., the case k2 = 0. Then, we
examine the conditional KLT, i.e., the case k2 = M . Finally, we combine our results
to obtain the general case shown in Figure 2.
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3.1 The Partial KLT

In this section, we study the problem of partial observation or subsampling, as shown
in Figure 2 with k2 = 0, i.e., without side information. The presence of the hidden
part XSc — not observed, but to be reconstructed — alters the problem significantly.

The main tool of this section is the partial KLT:

Definition 1. The partial KLT of X is the KLT of its sampled part XS. It is denoted
by P .

The transformed version of XS is denoted by YS = PXS, and the variances of the
components of Y by σ2

i = V ar(Y 2
i ).

Properties of the partial KLT.
1. P is an orthonormal transform
2. The components of YS are uncorrelated.

The discussion of this section is limited to the case where XSc is related to XS by

XSc = AXS + V, (1)

where A is a constant matrix, and V is a random vector independent of XS.

Approximation Problem

The M-dimensional vector XS of correlated random variables is approximated in a k-
dimensional space. What is the best such space? If there is no hidden part (M = N),
the best choice is well known to be the eigenvectors corresponding to the k largest
eigenvalues of ΣS. But if there is a hidden part (M < N), it is not optimal simply to
take the k largest eigenvalues of ΣS since the non-sampled part may depend crucially
on some of the smaller eigenvalues, as we show next.

The goal is to minimize the estimation error E||X−X̂||2. Simply by the definition
of the symbol || · ||2,

E||X − X̂||2 = E||XS − X̂S||2 + E||XSc − X̂Sc||2
= E||XS − X̂S||2 + E||AXS + V − X̂Sc||2 (2)

The minimum mean-square error estimate satisfies X̂Sc = AX̂. The key step is to
apply the (partial) KLT to XS. Denote YS = PXS and note that the best estimate
of YS is simply ŶS = PX̂S. Hence,

E||X − X̂||2 = E||YS − ŶS||2 + E||AP−1YS − AP−1ŶS||2 + E||V ||2

=
M∑
i=1

(1 + ai)E|YS,i − ŶS,i|2 + E||V ||2, (3)

where ai =
∑M

j=1 |(AP−1)ji|2, i.e. ai is the sum of the squares of column i of the

matrix AP−1.
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Theorem 1. The best k-dimensional approximation space for the subsampling prob-
lem of Figure 2 (with k2 = 0) is composed of the k eigenvectors of ΣS corresponding
to the k largest modified eigenvalues (1 + ai)σ

2
i .

Example 1. A toy example illustrating the basic issue is the following:

Σ =


 σ2

1 0 0
0 0.1 0.25
0 0.25 1


 . (4)

Suppose that the first two components are sampled by the terminal, i.e., M = 2. The
terminal is asked to provide a 1-dimensional approximation. If σ2

1 ≤ 0.1, both the
partial KLT and the usual KLT suggest the same choice of a 1-dimensional space,
hence they achieve the same distortion. However, if σ2

1 > 0.1, choosing the approxi-
mation space according to the usual KLT is sometimes suboptimal. For example, for
σ2

1 = 0.11, the usual KLT results in a distortion of Dklt = 1.1, while the partial KLT
achieves a distortion of Dpklt = 0.485.

Compression Problem

The M-dimensional vector XS of correlated random variables is compressed using
a total of R bits. What is the optimal compression for a decoder that wants to
minimize the distortion E||X−X̂||2 =

∑N
k=1 E|Xk−X̂k|2? We consider only the case

where X is a vector of jointly Gaussian random variables. If there is no hidden part
(M = N), the best compression is well known: apply the Karhunen-Loève transform
(KLT), and compress each component separately, the rate allocation being given by
the eigenvalues of the covariance matrix. If there is a hidden part (M < N), this
is no longer optimal: some otherwise unimportant part of XS may be vital for XSc .
The following theorem is proved in [3, 4]:

Theorem 2 (rate-distortion function of the subsampled Gaussian). The rate-
distortion function for the subsampled Gaussian, illustrated in Figure 2 (with k2 = 0),
is given by

RS(D) = min
Di

M∑
i=1

max

{
1

2
log2

σ2
i

Di

, 0

}
, (5)

where the minimum is over all Di satisfying
∑M

i=1(1 + ai)Di ≤ D − E||V ||2.
Remark 1. The theorem says that in spite of the hidden part, the first stage of the
source coding scheme remains the same: simply take the KLT of the sampled part.
The rate allocation, however, depends on the hidden part: through the coefficients
ai.

Remark 2 (best sensor placement). For given statistics Σ and desired distortion
D, what is the best “placement” of M sensors? In other words, what choice of M
components of X minimizes the rate RS(D) at the desired distortion D? The solution
to this problem is given by Theorem 2: Compute RS(D) for all sets S with cardinality
M .
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3.2 The Conditional KLT

In this section, we study the scenario of Figure 2 with k2 = N − M , i.e., without a
hidden part. The main tool of this section is the conditional KLT:

Definition 2. The conditional KLT of XS with respect to XSc exists if

{Cov(Xi, Xj|XSc = xSc)}i,j = ΣS|Sc , (6)

i.e., Cov(Xi, Xj|XSc = xSc) does not depend on the value of xSc . In that case, the
conditional KLT C of XS with respect to XSc is the eigendecomposition of ΣS|Sc, i.e.,
CΣS|ScCT = diag(λ1, . . . , λM).

Remark 3. If Cov(Xi, Xj|XSc = xSc) depends on the value of xSc , one can define a
conditional KLT of XS with respect to the event XSc = xSc . For the scope of this
paper, however, we restrict to cases according to the above definition.

The transformed version of XS is denoted by YS = CXS, and λ2
i = V ar(Yi|XSc =

xSc), which by assumption does not depend on xSc .
Properties of the conditional KLT:
1. C is an orthonormal transform
2. The components of the vector YS are conditionally uncorrelated given XSc .

The discussion of this section is limited to XS for which the conditional KLT with
respect to XSc exists. This is true for the interesting case where XS and XSc are
related by

XS = BXSc + U, (7)

where B is a constant matrix, and U is a random vector independent of XSc , with
covariance matrix ΣU . In that case, ΣS|Sc = ΣU .

Approximation Problem

The M-dimensional random vector XS is approximated in a k-dimensional space.
What is the best such space if at reconstruction time, we know a random vector XSc

which is correlated with XS? This best k-dimensional space can be determined easily
using the conditional KLT.

The goal is to minimize the conditional distortion E
[
||XS − X̂S||2

∣∣∣ XSc = xSc

]
.

The key step is to rewrite this in the conditional KLT domain, which eventually
permits the following shape:

E
[
||XS − X̂S||2

∣∣∣ XSc = xSc

]
=

∑
i∈T c

V ar (Yi|XSc = xSc) =
∑
i∈T c

λ2
i ,

where T denotes the set of the k dimensions that are used for the approximation, and
T c its complement (within S). The best choice of the set T does not depend on the
actual value of xSc :
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Theorem 3. The best k-dimensional approximation space for the side information
problem of Figure 2 (with k2 = N −M) is composed of the k conditional eigenvectors
(rows of C) corresponding to the k largest conditional variances λ2

i .

Example 2. Take Σ the N ×N Toeplitz matrix of (1, ρ, ρ2, . . . ). Consider N = 100,
ρ = 0.8, S = (1, 3, 5, 7, . . . , 99), and k = 25. If we simply apply the (“marginal”)
KLT to the sampled part and retain the eigenvectors corresponding to the k largest
eigenvalues, the final distortion is Dklt = 5.5141. If we apply the conditional KLT with
respect to the non-sampled part, the distortion is Dcklt = 2.6195, i.e., considerably
smaller.

Compression Problem

The M-dimensional random vector XS is compressed using a total of R bits for a
decoder that has access to XSc . What is the optimal compression scheme? For
M = 1 and N = 2, the problem of Figure 2 (with k2 = N − M) has been solved by
Wyner and Ziv [5]. Here, we restrict our attention to the case where X is a vector of
jointly Gaussian random variables, and we extend the result of [5] to arbitrary M and
N . We show that the solution can be found using the conditional KLT: It transforms
XS into a vector YS whose components are conditionally independent given XSc .
Just like in the standard KLT, each such component is then compressed separately
by applying the Wyner-Ziv solution; the bit allocation between these M Wyner-Ziv
problems is determined by the following theorem:

Theorem 4. The rate-distortion function for the problem with side information, il-
lustrated in Figure 2 (with k2 = N − M), is given by

R(D) = min
Di

M∑
i=1

max

{
1

2
log2

λ2
i

Di

, 0

}
(8)

where the minimum is over all Di satisfying
∑M

i=1 Di ≤ D.

For a complete proof, see [4]. This result has also been found in the context of
Gaussian sources with memory [6].

3.3 Combining the Partial and the Conditional KLT

The solutions found in Section 3.1 and 3.2 can be used to determine the solution
for the problem illustrated in Figure 2: there is side information and a hidden part.
Our analysis is limited to the case where X is a vector of jointly Gaussian random
variables. Again, we can consider the problems of approximation and compression;
here, we present our solution to the approximation problem. The intuitively pleasing
solution is as follows: The conditional KLT with respect to X ′

Sc is applied (as if X ′′
Sc

was not there). The best choice of k components for the approximation problem, or
the best rate allocation for the compression problem, depends both on X ′

Sc and X ′′
Sc .

It is determined by the modified conditional eigenvalues (1 + ci)λi defined below.
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Approximation Problem

Consider the distortion E
[
||X − X̂||2|X ′

Sc = x′
Sc

]
. Due to the joint Gaussianity of

X, we can write

XS = BX ′
Sc + U, (9)

where XS and U are independent Gaussian random vectors. Hence, the conditional
KLT of XS with respect to X ′

Sc exists, and we obtain

E
[
||X − X̂||2|X ′

Sc = x′
Sc

]

=

M∑
k=1

E
[
|Yk − Ŷk|2

∣∣∣ X ′
Sc = x′

Sc

]
+ E

[
||X ′′

Sc − X̂ ′′
Sc||2

∣∣∣ X ′
Sc = x′

Sc

]
(10)

Again due to the joint Gaussianity of X, we can write

X ′′
Sc = A

(
XS

X ′
Sc

)
+ V = A1XS + A2X

′
Sc + V, (11)

where A1 and A2 are defined accordingly, and V is independent of XS and X ′
Sc . From

the arguments leading to the partial KLT, we find that the distortion can be written
as

E
[
||X − X̂||2|X ′

Sc = x′
Sc

]
=

M∑
k=1

(1 + ck)E
[
|Yk − Ŷk|2

∣∣∣X ′
Sc = x′

Sc

]
+ E||V ||2,

where ci =
∑N−M−k2

j=1 |(A1C
−1)ji|2. The best k-dimensional approximation to XS is

therefore easily determined:

Theorem 5 (partial-conditional KLT). The best k-dimensional subspace is a sub-
space of the conditional KLT of XS with respect to X ′

Sc. Out of this M-dimensional
conditional KLT space, the best k vectors are the ones with largest modified condi-
tional eigenvalues (1 + ci)λ

2
i , where the modification ci depends on the hidden part

X ′′
Sc.

4 The Distributed KLT Algorithm

Let us now return to the problem of Figure 1. We restrict attention to the case where
X is a vector of jointly Gaussian random variables, and present again our solution to
the approximation problem.

Approximation Problem

In Figure 1, consider Terminal i. Suppose that all other terminals have furnished a
kj-dimensional approximation to their sensed part X(j) of the vector X. In particular,
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suppose that terminal j applies a transform Cj to the sensed part X(j), and that the
first kj components are the approximation furnished by Terminal j. What is the
optimum for Terminal i?

Clearly, this is the partial-conditional situation outlined in Figure 2: XS is now the
vector X(i) sensed by Terminal i. The conditional part is given by the approximations
furnished by all other terminals, and the hidden part by what the other terminals do
not include into their approximation.

The optimal solution for terminal i can be characterized as follows:

Theorem 6. For fixed Cj, ∀j �= i, the optimum C∗
i is given by the partial-conditional

KLT (Theorem 5), conditioned on the kj first components of CjX(j), ∀j �= i.

While we have not found a closed-form expression for the optimal spaces, the
theorem suggests a simple algorithm:

Algorithm 1 (distributed KLT). Input: 1. Covariance matrix Σ. 2. j1, j2, . . . , jL:
the first j1 components of X are X(1), the next j2 components of X are X(2), and so
on. 3. k1, k2, . . . , kL: Terminal i furnishes a ki-dimensional approximation to X(i).
Initialize by picking arbitrary unitary matrices C1, C2, . . . , CL.
Then, iterate the following, in turn for each i, i = 1, 2, . . . , L:

Compute the conditional KLT Ci of X(i) with respect to the union of the kj first
components of CjX(j), ∀j �= i, and order the rows of Ci such that the ki first
are the best ki-dimensional approximation in the sense of Theorem 5.

Example 3. Suppose Σ is a Toeplitz matrix with first row (1, ρ, ρ2, . . . ), XS contains
the odd-indexed components of X, and XSc the even-indexed. For N = 40 and
ρ = 0.7, the standard KLT applied to each part separately leads to a distortion
Dklt = 8.3275, while the distributed KLT gives Ddklt = 6.8464. Hence, even in this
seemingly symmetric scenario, the distributed KLT is substantially different from the
standard KLT. For comparison, the full standard KLT, applied to the entire vector
X, would give D = 4.5195.

Early numerical studies suggest a rapid convergence for well-behaved covariance
matrices Σ. The convergence behavior of this algorithm is currently under investiga-
tion [4].

5 Applications

5.1 Distributed Compression in Sensor Networks

Figure 1 is a certain sensor network situation: Suppose there are L stations, each
of which has a certain number of sensors. All L stations report to a central unit,
whose goal is to find an estimate X̂. The quality of the estimate is assessed by
E||X − X̂||2. What is the best operation of the L stations? Under the hypotheses
of this paper, the optimal operation is for the stations to apply first the distributed
KLT to their observed vector XS. In the approximation framework, each station then
selects the appropriate components according to the rules of the partial-conditional
KLT (Theorem 5). The compression framework is currently being studied [4].
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5.2 Distributed Database Retrieval

Distributed databases have found widespread interest, in particular for music and
image data. Figure 1 can be seen as a simple model of a distributed database; in that
case, each terminal is a server. Xi are the documents added to the database. For
storage limitations, each database only stores an approximation to the documents.
We assume that the documents of the various databases are generally correlated.

A user specifies the number i if she wants to retrieve document Xi. The databases
furnish an approximation X̂i. Suppose that the quality of the database retrieval
system is measured by the overall average distortion,

D =
N∑

i=1

E|Xi − X̂i|2. (12)

One of the fundamental question is the following: what is the optimum way for
database l to compress its documents? Here, the “optimum” way is the one minimiz-
ing D.

Our theory applies directly to this setup: in the approximation framework, database
l applies the distributed KLT to the data, and retains the appropriate kl-dimensional
approximation; the compression framework is currently under investigation.
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