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Abstract

We present an algorithm for lossy compression of hyperspectral images for imple-
mentation on field programmable gate arrays (FPGA). To greatly reduce the bit rate
required to code images, we use linear prediction between the bands to exploit the
large amount of inter-band correlation. The prediction residual is compressed using
the Set Partitioning in Hierarchical Trees algorithm. To reduce the complexity of the
predictive encoder, we propose a bit plane-synchronized closed loop predictor that does
not require full decompression of a previous band at the encoder. The new technique
achieves almost the same compression ratio as standard closed loop predictive coding
and has a simpler on-board implementation.

1 Introduction

Every day, NASA collects and stores large amounts of hyperspectral data. For example, one
Moderate Resolution Imaging Spectroradiometer (MODIS) alone can produce hyperspectral
data that require up to 225 Gbytes of storage per day. The Terra spacecraft produces 194
gigabytes of data per day [1]. The hyperspectral images are transmitted to the ground
station, stored, and used to identify occurrences of fire, water, and snow on the Earth.
The huge amount of data generated by satellites presents a data compression challenge. In

this research, we code the hyperspectral data with the Set Partitioning in Hierarchical Trees
(SPIHT) algorithm [2], which is a wavelet-based technique that codes images with both
high compression ratios and high fidelity. SPIHT was originally designed as a sequential
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algorithm; however, with some modifications, it can be parallelized for implementation on
field programmable gate arrays (FPGAs) [3] and therefore has great potential for applications
where the compression is performed in hardware on the satellite.
To reduce the bit rate required to code hyperspectral images, we use linear prediction

between the bands. Each band, except the first one transmitted, is predicted by another
band. Once the prediction is formed, it is subtracted from the original band, and the residual
(difference image) is compressed using SPIHT. Because different bands are used for different
purposes, we compress all bands to the same fidelity.
To compute the exact difference between a band and its prediction from another band, the

encoder must have access to the decoded version of the band used for prediction; however,
such a closed loop system requires a full implementation of the decoder on the satellite,
which increases the complexity of on-board applications. In this article we present a new
prediction technique, bit plane-synchronized closed loop prediction, that significantly reduces
the complexity of the encoder. Instead of requiring the encoder to fully reconstruct the
compressed band from which the current band is predicted, the encoder and the decoder
simply use the same integral number of full bit planes of the wavelet-coded difference image
of the band used for prediction. This enables the encoder to be less complex because, while
it must still do an inverse wavelet transform, full decompression on-board the satellite is
avoided. The proposed prediction method is very promising in that for the same target
fidelity, the average bit rate is only slightly higher than for traditional predictive coding.
The paper is organized as follows. In Section 2, we review related background material. In

Section 3, we describe algorithms for predictive coding of hyperspectral images. In Section 4,
we introduce our new reduced complexity encoder. We present results of our algorithm on
hyperspectral images in Section 5, and conclude in Section 6.

2 Background

In this section, we present related work. We first review SPIHT. Then, we discuss prior work
in hyperspectral image compression and finish with a discussion on FPGAs.

2.1 Set Partitioning in Hierarchical Trees

SPIHT is a progressive image coder, which first approximates an image with a few bits of
data, and then improves the quality of approximation as more information is encoded. The
encoder first performs a wavelet transform on the image pixels. Then, the wavelet coefficients
are encoded one bit plane at a time. The embedded bit stream can be truncated at any time.
Bit plane encoding and decoding take significantly more time than the wavelet transform.

2.2 Previous Work in Hyperspectral Image Compression

The proposed techniques for lossy compression of hyperspectral images can be classified into
two types: vector quantization [4, 5, 6] and transform-based [7, 8, 9] algorithms. Motta,
Rizzo, and Storer [4] designed a product VQ with an algorithm to determine how to form
subvectors across bands. Linear prediction as a method to reduce inter-band correlation was
investigated by Memon in [10] who proposed adaptive reordering of the spectral components
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(a) Band 30 (b) Band 200

Figure 1: Sample bands 30 and 200 of a 224-band image of the Cuprite geology site.

of each pixel followed by a piecewise linear function at a specified error tolerance. Rao
and Bhargava [11] used simple block-based linear inter-band prediction followed by a block-
based DCT. To take advantage of linear prediction between bands, Tate in [12] explored
unconstrained optimal reordering of the multispectral bands followed by linear prediction,
which uses spatial neighborhoods to predict each pixel and arithmetic coding.

2.3 FPGAs

Field-Programmable Gate Arrays (FPGAs) are chips that can be programmed and repro-
grammed to implement complex digital logic [13]. Current chips may run at speeds of
100MHz or more, with logic capacities in the millions of logic gates. Because of their repro-
grammability, they are particularly attractive in remote applications, where configurations
can be changed and upgraded by simply shipping a configuration file.

3 Predictive Coding of Hyperspectral Images Using

SPIHT

Because each band of a hyperspectral image corresponds to the same location on Earth,
there is a high level of correlation between the bands (see Figure 1 for an example). It
has been suggested in the literature that the pixel values across different bands are linearly
related [12, 14].
We use linear prediction to take advantage of correlation between bands. Assume there

are m bands Bi for 0 ≤ i < m. We define an additional root band Bm in which each pixel
is the constant 1. This band will be the only band that is not predicted by another band.
Each band Bi (0 ≤ i < m) can be linearly predicted from another band Bj (0 ≤ j ≤ m)
and the root band as described in Equations (1). The values aij and cij are the prediction
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coefficients and Pij is the prediction of the current band Bi from a previously transmitted
band Bj. The difference Dij between Bi and Pij is a residual and can usually be compressed
well. Once Dij is transmitted, band Bi can be recovered by adding Dij to the prediction Pij.

Pij = aijBj + cijBm

Dij = Bi − Pij
Bi = Pij +Dij.

(1)

Note that the prediction Pim requires that aij = 0 so that the prediction only depends on
the value of cij. We assume that the prediction coefficients are known to both the encoder
and decoder by some prior communication. The quality of a particular prediction can be
measured by its prediction mean squared error (PMSE), ‖Dij‖

2/n, where n is the number of
pixels in a single band. Generally, the larger the prediction MSE, the more bits are needed
to compress the difference. The prediction MSE depends on a good choice of aij and cij. If
0 ≤ i, j < m, i 6= j, then a natural choice for aij and cij are values that minimize the PMSE.
These can be calculated by least squares fit [15]. The value cim that minimizes the PMSE
‖Dim‖

2/n is simply the average pixel value of the band Bi.
A band prediction ordering is a function σ : {0, . . . ,m−1} → {0, . . . ,m}. That is, except

for band Bm, band Bi is predicted by band Bσ(i). The function σ must satisfy the following
property: For each i such that 0 ≤ i < m, there is a sequence i = i1, i2, . . . , ik = m such that
ij+1 = σ(ij) for 1 ≤ j < k. An alternative definition is that a prediction order is a tree with
nodes labeled uniquely from {0, 1, . . . ,m} with root labeled m.
We measure the quality of the prediction ordering σ as the average prediction MSE:

1

mn

m−1∑

i=0

‖Di,σ(i)‖
2. (2)

3.1 Basic Band Prediction Orderings

The simplest band ordering is the forward monotonic ordering where σ(0) = m and σ(i) =
i−1 for 1 ≤ i < m, and the reverse monotonic ordering where σ(i) = i+1 for 0 ≤ i < m−1.
There are two relatively easy-to-compute alternatives that are significantly better than the
monotonic orderings. These alternatives are based on examining the m× (m+1) prediction
matrix, where the (i, j)-th entry is ‖Dij‖

2/n, the prediction MSE.
Figure 2 is an example of a prediction matrix. The horizontal axis represents the predictor

band numbers and the vertical axis represents the predicted band numbers. The darker color
represents larger values, which is where the prediction does not perform well. Clearly, some
bands do not perform well as predictors, while other bands are very easily predicted. For
example, bands 110 and 160 do not predict others well, whereas bands 110 and 158 are well
predicted by any other band.
To take advantage of the fact that some bands are better predictors than other we define

the best forward ordering by choosing σ(i) < i or σ(i) = m that minimizes ‖Di,σ(i)‖
2/n

for 0 ≤ i < m. That is, the bands are predicted smallest to largest, and a particular
band is predicted by the best band with a smaller number, with the exception of the root
band. Similarly, we can define the best reverse ordering by choosing σ(i) > i that minimizes
‖Di,σ(i)‖

2/n for 1 ≤ i < m. That is, the bands are predicted largest to smallest, and a
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Figure 2: Prediction Matrix (Log Scale).

particular band is predicted by the best band with a smaller number. Both best orderings
can be computed in O(m2) time once the prediction matrix is constructed.
We also consider the optimal ordering in which there is no limit on which band can predict

other bands. We formulate the problem of determining the optimal ordering as a graph
problem (finding the minimum weight rooted spanning tree on a directed graph [16, 12]).
The five possible orderings are shown in Fig. 3. Table 1 lists the average prediction MSE

over the 224-band Cuprite image for all of these orderings. As can be seen, the best reverse
ordering is actually very close to the optimal ordering (within 0.32%). Since the running
time of the best reverse ordering is much faster than the optimal, we use it for all simulations
in this paper.
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Figure 3: Prediction band ordering.

Table 1: Average prediction MSE for the Cuprite Image Set for 5 Different Band Orderings.

Ordering Type Average prediction MSE

Forward Monotonic 254.48

Best Forward 252.61

Reverse Monotonic 183.65

Best Reverse 175.24

Optimal 174.52
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3.2 Target MSE

For each band i, the quality of a particular compression scheme can be measured by its
compression mean square error (MSE), ‖Bi − B̂i‖

2/n, where n is the number of pixels in a
single band and B̂i is the decoded band i. In this research, we encode each band to the same
compression MSE, which we call the target MSE, and compare the resulting bit rates. The
SPIHT algorithm can be modified to keep track of the MSE of the wavelet coefficients which
approximates the MSE of the residuals and original bands. For this study we used binary
search to find the bit rate for given target MSE.
Prediction significantly improves the compression ratio. For example, for the Cuprite

image (614x512, 224 bands, 16-bit integer data), when all of the bands are encoded to a
target MSE of 100 per band, using prediction increases the compression ratio from 8:1 to
40:1.

3.3 Standard Closed Loop Prediction

To predict the current band, a previous band is needed. In closed loop prediction, shown in
Figure 4, the decompressed version of a previously encoded band is used for prediction by
both the encoder and decoder.
Let σ be a prediction ordering. As described in Equations (3), the transmitter uses a

decompressed previous band B̂σ(i) to form Pi,σ(i), the prediction of original band Bi. Next,
Pi,σ(i), is subtracted from Bi to obtain the difference Di,σ(i), which is then coded with SPIHT

to the bit rate which yields the target MSE. The decompressed difference band D̂i,σ(i) is

summed with Pi,σ(i) to obtain B̂i. Finally, B̂i is stored in the encoder and decoder so that
it can be used to predict some other band, if necessary. Note that this method requires the
transmitter to implement the decoder, which significantly increases computational complex-
ity.

Pi,σ(i) = ai,σ(i)B̂σ(i) + ci,σ(i)Bm

Di,σ(i) = Bi − Pi,σ(i)

B̂i = Pi,σ(i) + D̂i,σ(i)

(3)

4 Bit Plane-Synchronized Closed Loop Prediction

As a lower complexity solution for on-board implementation, we introduce a new kind of
predictive coder, the bit plane-synchronized predictor. We take advantage of the fact that
the SPIHT algorithm can be split into two steps: wavelet transform and bit plane coding.
We also exploit the fact that the wavelet transform step requires much less computation than
the bit plane encoding step. To eliminate the bit plane decoding step from the transmitter,
we will predict using only full bit planes of the wavelet transform.

4.1 The Algorithm

The transmitter first performs the wavelet transform on the difference band Di,σ(i) to obtain
Wi,σ(i). Let R(Wi,σ(i)) be the bit rate required to encode Wi,σ(i) to the target MSE. This
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Figure 4: Standard closed loop prediction.

corresponds to stopping the encoder mid-bit-plane, for example, in bit plane number k. Let
W k

i,σ(i) and W k+1
i,σ(i) be the wavelet coefficients truncated to k or k + 1 bit planes, respec-

tively. Also, let R(W k
i,σ(i)) and R(W

k+1
i,σ(i)) be the bit rates required to code W

k
i,σ(i) and W

k+1
i,σ(i)

losslessly. Note that R(W k
i,σ(i)) ≤ R(Wi,σ(i)) < R(W k+1

i,σ(i)).

If Equation (4) is satisfied, k complete bit planes are selected for prediction, and the bit
rate at which we transmit Wi,σ(i), R(Wi,σ(i)), does not change. Otherwise, k + 1 complete
bit planes are used for both prediction and coding. The bit rate at which we transmit Wi,σ(i)

must be increased to R(W k+1
i,σ(i)). In both cases, the transmitter and receiver use the same

number of complete bit planes (either k or k + 1) for prediction. In Equation (4), T is a
threshold with typical values on the order of 0.1−1.0. Note that to reduce the computational
complexity, we do not look ahead to see how the prediction results propagate into the future.

R(Wi,σ(i))−R(W k
i,σ(i)) ≤ T (R(W k+1

i,σ(i))−R(W k
i,σ(i))) (4)

For example, the bit rate required to code the difference band 35 of the Cuprite image to
the target MSE of 100 is 1.5 bpp. This corresponds to stopping mid-bit-plane in bit plane
number 12. The bit rates required to code this difference band to 12 and 13 bit planes are
0.64 bpp and 1.89 bpp, respectively. If our threshold in Equation 4 is T = 0.2, we use 13 bit
planes for prediction and encode the difference band to 13 bit planes for transmission.
However, in the case of the difference band 69, the bit rate required to code it to the
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Figure 5: Bit plane-synchronized closed loop prediction.

target MSE of 100 is 0.16 bpp. This corresponds to stopping mid-bit-plane in bit plane
number 5. The bit rates required to code this difference band to 5 and 6 bit planes are
0.04 bpp and 0.73 bpp, respectively. For the same threshold T = 0.2 in Equation 4, we use
5 bit planes for prediction and encode the difference band to 0.16 bpp for transmission.
Figure 5 further describes the prediction and encoding processes. If k bit planes are used

for prediction, the transmitter sends Wi,σ(i) at bit rate R(Wi,σ(i)). The receiver decodes to

Ŵi,σ(i), takes the inverse wavelet transform to obtain D̂i,σ(i) and adds to Pi,σ(i), the prediction

of the current band, to compute the decompressed band B̂i. However, to form the prediction
of the current band for possible later use, both the encoder and receiver truncate Wi,σ(i) or

Ŵi,σ(i) to W
k
i,σ(i), take the inverse wavelet transform to obtain D

k
i,σ(i), and then add D

k
i,σ(i) to

Pi,σ(i) to compute the decompressed truncated band B
k
i which is stored.

If k + 1 bit planes are used for prediction, the encoder transmits W k+1
i,σ(i) at bit rate

R(W k+1
i,σ(i)). The receiver decodes to Ŵi,σ(i) = W k+1

i,σ(i), takes the inverse wavelet transform to

obtain D̂i,σ(i) = Dk+1
i,σ(i) and adds to Pi,σ(i), the prediction of the current band, to compute
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the decompressed band B̂i. What differs from the previous case of using k bit planes for
prediction is that to form the prediction of Bi for possible later use, here, both the encoder
and receiver simply inverse transform W k+1

i,σ(i) to obtain Dk+1
i,σ(i) which is added to Pi,σ(i) to

compute Bk+1
i .

5 Results

In Figure 6, we compare the standard closed and new bit plane-synchronized predictive
coders. Over a range of target MSEs from 50 to 500, the bit rate of the bit plane synchro-
nized is only slightly higher than the bit rate of the standard closed loop technique. For a
target MSE of 100, the average bit rate for the proposed method is 0.65 bpp which is an
18% increase in bit rate over the 0.55 bit rate for the closed loop prediction. However, for
a target MSE of 200, the bit rates are very close. Hence, the bit plane-synchronized loop is
a very promising method to code hyperspectral data. It achieves a very good compression
ratio with a low MSE and has a much lower computational complexity compared to the
original closed loop prediction.
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Figure 6: Bit rate vs. Target MSE for bit plane-synchronized closed loop prediction and
standard closed loop prediction.

6 Conclusions

In this research, we have investigated different methods of using prediction to code hyper-
spectral data. As expected, we saw that combining prediction with a state-of-the-art image
compression algorithm significantly improves the compression ratio. We have also proposed
a new method of prediction, the bit plane-synchronized loop. We showed that under the
constraints of a simple implementation on-board the satellite, it offers excellent performance.
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