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ABSTRACT

3D neuro-anatomical images and other volumetric data sets are important in many
scientific and biomedical fields. Since such sets may be extremely large, a scalable
compression method is critical to store, process and transmit them. To achieve a
high compression rate, most of the existing volume compression methods are lossy,
which is usually unacceptable in biomedical applications. Our near-lossless or lossless
compression algorithm uses a Hilbert traversal to produce a data stream from the
original image. This data stream enjoys relatively slow image context change, which
helps the subsequent DPCM prediction to reduce the source entropy. An extremely
fast linear DPCM is used; the prediction error is further encoded using Huffman code.
In order to provide efficient data access, the source image is divided into blocks and
indexed by an octree data structure. The Huffman coding overhead is effectively
reduced using a novel binning algorithm. Our compression method is designed for
performance-critical digital brain atlas applications, which often require very fast
data access without prior decompression and for which a modest compression rate is
acceptable.

Keywords: volume data, 3D medical imaging, near-lossless compression, lossless
compression, octree, entropy coding, predictive coding, Hilbert traversal.

1. INTRODUCTION

Image compression has been extensively studied for more than two decades. Many
compression methods, lossy or lossless, were developed for 2D images.1 Various stan-
dards have emerged. In spite of all that work, very few volume compression methods
have been developed. Lossy volume compression methods have been developed in
order to achieve high compression rates. Data fidelity is a critical issue in medical
imaging, which often renders lossy methods unacceptable. Due to the probable loss of
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information in the many steps towards preparing a 3D neuro-anatomical image, loss-
less compression on the other hand is too strict and sometimes overkill. Near lossless
seems to be a natural compromise. Very little work has been done in near-lossless 3D
neuro-anatomical image compression. Even though 3D image compression seems to
be a simple extension of 2D image compression, there are many unique properties that
are ignored in 2D. Scalability, scan order, overhead control, along with near-lossless
quantization are discussed in this paper.

Among the handful of volume compression methods,2–10 most are lossy.3–5, 7–10

Different methods such as 2D wavelet transformation,9 3D wavelet transformation,5, 8

3D Laplacian pyramid,7 fractal decomposition4 are used in lossy volume compression.
Integer 3D wavelet transformations are used to offer progressive volume decompres-
sion3, 10 where lossy and lossless information are built into the same data stream.
However, when lossless compression is desired, the integer 3D wavelet transformation
no longer offers good compression rate nor efficiency.

Generic data compression software such as GZIP, COMPRESS, PKZIP, and WinZip
use dictionary-based methods1 to compress computer files disregarding the type of
the data source. When they are used to compress image data, they often fail to effi-
ciently de-correlate the spatial redundancy within the image source. Lossless volume
compression such as COMPVOX2 compresses the volume using linear DPCM and
truncated Huffman code. The entire volume must be decoded to access the volume
data. The non-linear DPCM-based lossless method6 achieves a better compression
rate yet is slower than the linear DPCM.

There are two definitions of near lossless compression. One definition is based on
the percentage of altered pixels/voxels. For example, less than 5% of the pixels/voxels
altered in the decompressed image is considered near lossless. This definition is not
very convincing because if the 5% altered pixels/voxels are the edges in the image
and the intensity changes are significant, then the image can look totally different.
A more reasonable and widely accepted definition concerns the visual appearance of
the decompressed image. A compression method is near lossless if no pixel/voxel is
changed in magnitude by more than d gray levels. Our near-lossless method is based
on the second definition.

Our compression method is designed with a performance-critical digital brain
atlas application in mind. Speed and compression rate are weighted equally towards
a balanced solution. The remainder of this paper is organized as follows. In section 2,
we describe the outline of our method. Section 3 is the index data structure. Section 4
discusses our unique voxel scan order. Near-lossless quantization and overhead control
are discussed in section 5 and section 6, respectively. Section 7 shows some results
and concludes the paper.

2. OUTLINE OF THE COMPRESSION METHOD

The compression method is outlined as follows. The 3D image is divided into sub-
volume blocks and then indexed by an octree data structure. Each block is traversed
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Figure 1: Data flow of the compression method.

following a Hilbert curve. While traversing the block, a near-lossless or lossless DPCM
prediction is performed. The prediction error is recorded, as is the histogram of the
prediction error. Each sub-volume block has its unique prediction error distribution.
To form a Huffman code book of the prediction error for the entire volume is inef-
ficient. On the other hand, to produce a Huffman code book for every sub-volume
block also introduces heavy coding overhead. We characterize each block’s error dis-
tribution as a point in a high-dimensional space and then bin the points using a novel
binning method. All the error distributions that fall into the same bin are summed
together to form a summed error distribution. We build a Huffman code book for this
distribution. The total number of Huffman code books is the number of bins. The
coding overhead is therefore effectively reduced. All the sub-volume blocks’ predic-
tion error is coded according to its own Huffman code book. Finally, the code books,
the upper level index and encoded sub-volume blocks are flushed to disk. Figure 1 is
the data stream flow chart of the compression method.

When the 3D image is accessed by digital brain atlas applications, based on the
index structure, only those sub-volume blocks that are actually needed will be de-
coded. To decode a block, its own Huffman code book is loaded. The decompressed
data stream is the prediction error, which is translated back to the voxel intensity.
The last step is to translate the Hilbert scan order back to normal raster scan order.
It is faster to decompress a sub-volume block than to compress it.

3. UPPER LEVEL DATA STRUCTURE

A typical digitized 3D animal brain atlas may be as big as a few hundred gigabytes.
Larger 3D images will appear in the foreseeable future. It is clear that encoding or
decoding the entire volume is forbidden. The volume must be divided into cubic
blocks. The block size is a parameter defined by the user, or the application program
may assign a default value. We use the octree data structure as the index. Sub-volume
blocks that are pure background will be reduced to terminal nodes in the octree. If
the volume is too big, a single octree may be inefficient, due to the linear code used
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to identify the location of the octree nodes. We use the SHSF data structure11 in
extreme cases. SHSF is an octree variant that uses two levels of indirection to reduce
the octree linear code overhead. Sub-dividing the volume also helps to increase the
compression rate. This will be discussed in section 6.

4. HILBERT TRAVERSAL

A Hilbert curve is an open space filling curve as shown in figure 2A,B. It can be used
in n-dimensional space where n ≥ 2. The common image scan order is the raster
scan. In compressing 2D images, the raster scan order is only slightly less efficient
than the Hilbert scan order; therefore, the literature pays very little attention to this
technique. However, in 3D images, Hilbert traversal offers a very appealing property.
In a Hilbert curve, every pixel/voxel is the immediate neighbor of its subsequent
pixel/voxel. There isn’t any abrupt image context change along a Hilbert traversal.
In addition, the speed of context change is also much slower than that of raster scan.
Let’s define an image context as a group of pixel/voxels that occupy a small area. In
a 3D image, suppose there is a 3D image context of N3 voxels. A raster scan will
leave the context after visiting N voxels. For a Hilbert scan, in the best case, it leaves
the context after visiting all the N3 voxels.

A B C D

Figure 2. A) 3D Hilbert curve (Level 1); B) 3D Hilbert curve (Level 2); C) Voxels’ relative
locations along a Hilbert curve; D) Voxels’ relative locations along a raster scan.

A DPCM prediction is used to reduce the data source’s entropy by predicting
the current pixel/voxel’s intensity based on the previously visited pixel/voxels. The
recorded prediction error can be used to reconstruct the data source and the prediction
error’s entropy is usually much smaller than the data source’s entropy. The greater the
occurrence of big prediction errors, the bigger the prediction error’s entropy. Usually,
a big prediction error occurs when the scan line passes through a high frequency
image component such as an edge. Assume the same 3D image context defined in the
previous paragraph is surrounded by a 3D image edge. Smooth regions are on both
sides of the 3D edge. Using raster scan, the scan line passes through the 3D edge
2N2 times, yet in the best case, the Hilbert scan line pass through the 3D edge only
twice. Depending on the location of the image context, the Hilbert scan line may
pass through the context more than twice; but usually much less than 2N2 times.

Since the Hilbert scan line intersects the image edges less frequently and the image
context change is also much slower than for the raster scan, a less complicated and
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faster DPCM can be used. Along the Hilbert scan line, suppose the current voxel is
Vn and prediction error E is:

E = Vn − (Vn−1 + Vn−2)/2 (1)

Figure 2C,D shows the voxels’ relative locations in Hilbert scan order and raster scan
order. In both, the distance between Vn−1 and Vn is 1. Along the Hilbert curve, the
distance between Vn−2 and Vn is

√
2. In raster order, the distance between Vn−2 and

Vn is 2. If there is a context jump, the prediction is invalid. Because Vn−2 is closer to
Vn in Hilbert scan order than in raster scan, the DPCM in Hilbert scan order tends
to predict the intensity better than the same method in raster scan. This is observed
through experiments.

Hilbert traversal can be easily implemented using a recursive algorithm.12 Its
running time is O(n), where n is the total number of voxels.

5. NEAR-LOSSLESS QUANTIZATION

Suppose d levels of intensity change is allowed in the near-lossless quantization. Let
m be an integer. The quantization function is:

Q(E) =

{
(2d + 1)m if E = (2d + 1)m + i for i = 1, 2, ..., d
(2d + 1)(m + 1) otherwise

(2)

Two examples are illustrated in figure 3A. Inter-dependency of the prediction error
requires development of a complicated prediction quantization algorithm.13 This
problem can be avoided by looking at both the predicted voxel intensity and the
decoded voxel intensity. We decode the visited voxel’s intensity while we encode the
next voxel; therefore, we can guarantee that the quantization error will not accu-
mulate. Let’s denote Vn as the current voxel’s intensity, V ′

n as the decoded voxel’s
intensity, E as the prediction error, and E ′ as the quantized prediction error. Assum-
ing V−2 = V ′

−2 = V−1 = V ′
−1 = 0.

E0 = V0 − (V ′
−2 + V ′

−1)/2

E ′
0 = Q(E0)

V ′
0 = E ′

0 + (V ′
−2 + V ′

−1)/2 (3)

for the nth voxel, we have

En = Vn − (V ′
n−2 + V ′

n−1)/2

E ′
n = Q(En)

V ′
n = E ′

n + (V ′
n−2 + V ′

n−1)/2 (4)

The prediction error has a Laplace distribution.14 The Laplace distribution’s prob-
ability density function is

P (x) =
1

2b
e−|x−µ|/b (5)
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where µ is the population mean; in our case µ ≈ 0. b is the parameter that controls
the shape of the distribution. For prediction error E, the probability of occurrence is

P (E) =
∫ E+0.5

E−0.5

1

2b
e−|x|/bdx =




e
0.5−E

b −e
−0.5−E

b

2
if E > 0

1− e−
1
2b if E = 0

e
0.5+E

b −e
E−0.5

b

2
otherwise

(6)

The entropy H of the prediction error is

H =
∑
E

−P (E)log2P (E) (7)

When the prediction error is quantized using equation 2, the probability of quantized
prediction error Eq is

P (Eq) =
Eq+d∑

E=Eq−d

P (E) (8)

The entropy Hq of the quantized prediction error is

Hq =
∑
Eq

−P (Eq)log2P (Eq) (9)

Therefore, our near-lossless quantization method can improve the compression rate
by r% where

r = 100− 100Hq/H (10)

Figure 3B,C are the plots that demonstrate the relationship between the maxi-
mum quantization error d, quantization error distribution’s b value, the distribution’s
entropy, and the percentage of compression improvement. Increasing the maximum
quantization error d can improve the compression rate; however, it degrades the de-
compressed image’s quality. On the other hand, increasing d does not increase the
compression rate linearly. Accurate intensity prediction yields a small b value in
the prediction error distribution, near-lossless quantization performs better when b is
small. Hilbert traversal helps to reduce b.

6. REDUCING CODING OVERHEAD

Huffman code is a prefix code which is uniquely decipherable.15 Huffman tree is a
positional tree. A general positional tree can be a σ-ary tree.15 For clarity, all the
following discussions and proofs only consider binary case, namely σ = 2. Let’s denote
the symbol distribution by Ds, the Huffman tree by t, each symbol ci’s probability by
Pi, and its prefix code’s length by li. The Huffman tree is a function of the symbol
distribution, namely t = t(Ds). The average code length l is a function of the symbol
distribution Ds and the Huffman tree t, therefore it can be represented as

l = l(Ds, t(Ds)) =
n∑

i=1

Pili (11)
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B C

Figure 3. A) Near-lossless quantization schemes when d=1 and d=2. B) The compression
rate improvement for different Laplace distributions (with different b values) where d is the
maximum allowed quantization error. C) The entropy decrease when different quantization
intervals are used. The quantization interval equals 2d+1.

Definition 6.1. A prefix code is optimal if its average code length l is minimum

l = min (12)

Definition 6.2. A symbol distribution Ds has a set of symbols SDs = {c1, c2, ..., cn},
we say Ds ≥ D′

s iff SDs ⊇ SDs′.

Lemma 6.3. A Huffman tree t built from a symbol distribution Ds can generate an
optimum prefix code for Ds.

l = l(Ds, t(Ds)) = min (13)

In other word, ∀t′ = t(D′
s) where D′

s ≥ Ds. If Ds is encoded using the prefix code
generated from t′ then

l′ = l(Ds, t(D
′
s)) ≥ l (14)
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Lemma 6.3 and its proof can be found on page 74 through 79 of Graph Algo-
rithms .15 Arbitrary decisions made in constructing the Huffman tree affect the
individual codes but not the average size of the codes.1

Assuming the Huffman coding overhead is ignorable, it is easy to prove that
subdividing the volume into multiple blocks, building one Huffman tree for each
block, and compressing the volume on a block basis can yield a better compression
rate than treating the volume as a whole. Denote the size of the Huffman coded block
by s and the block by b. The number of voxels in s is nv. Let s be a function of b
and a Huffman tree t, s = s(b, t) = lnv. Given a volume b, we can partition it into
n small blocks b1...bn where b =

∑n
i=1 bi and for each block there is a corresponding

Huffman tree t1...tn.

Lemma 6.4. For any volume b, if we subdivide it into n smaller blocks, then

s(b, t) ≥
n∑

i=1

s(bi, ti) (15)

Proof: According to Lemma 6.3, the Huffman tree ta is a binary positional tree
which generates optimum prefix code for a symbol distribution Ds. The Huffman
tree t′a for a different symbol distribution D′

s (D′
s ≥ Ds) may not be optimal for Ds.

Given the Huffman tree t for volume b, for every Huffman tree ti and corresponding
bi, s(bi, ti) ≤ s(bi, t), therefore s(b, t) =

∑n
i=1 s(bi, t) ≥ ∑n

i=1 s(bi, ti). QED.

Lemma 6.5. Disregarding the Huffman code book size, the best compression rate is
obtained when the volume is divided into voxels.

We can prove Lemma 6.5 by recursively applying Lemma 6.4 to the volume. In
real life, the size of the Huffman code book cannot be ignored. Huffman code book
is stored as a serialized Huffman tree. It can be easily obtained by a tree traversal.
The size of a Huffman code book is Scodebook = C × nsymbols where C is a constant.
Depending on the implementation, C can be slightly different. When the subdivision
is too fine, the Huffman coding overhead is going to exceed the original volume size
because each block has its own Huffman code book attached to the block’s encoded
data stream. It is therefore important to choose a suitable size for the subdivided
volume blocks. From the discussion above, it is obvious that if we can efficiently avoid
the coding overhead, a better compression rate can be achieved.

Building one Huffman tree for each block jeopardizes the compression improve-
ment by sub-dividing the volume. The individual Huffman trees are very similar in
terms of the code word length. Therefore, dividing the sub-volume blocks into a few
groups based on their prediction error’s distribution and building one Huffman tree
for each block can reduce the coding overhead and also provide the benefit of using
small volume blocks. The prediction error distribution can be characterized by its
most probable prediction errors, such as 0,±(2d + 1),±(4d + 2). We build a three-
dimensional space and use the probability of error 0 to label dimension 1 and use
the sum of the probabilities of error ±(2d + 1), and the sum of the probabilities of
error ±(4d + 2) to label dimension 2 and dimension 3. For each dimension, we use
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a logarithmic scale to divide the space thus formed into a grid of rectangular units.
Each unit is considered a bin. Every volume block is therefore abstracted as a point in
three-space. All the blocks that fall in the same bin are considered to have a similar
error distribution. We recalculate the error distribution and build a Huffman tree
for each bin. Figure 4 is a visualization of our binning method. The optimal volume
block size varies depending on the particular data set. We found through experiments
that side length of 32 is a good choice for the block size.

A B

Figure 4. Visualization of the binning method: (A)The three projected views of the three-
dimensional binning space. (B)The three-dimensional view of the binning space.

7. RESULTS & CONCLUSION

Table 1. Comparison of different compression approaches. The compression performance
(bits per voxel) is obtained by compressing a rabbit brain volume data set.

GZIP COMPVOX SPIHT PNG image series ours

bits per voxel 3.02 3.51 3.14 4.45 2.18

dynamic access No No No No Yes

parallellism No No No No Yes

fast previewing No No Yes No Yes

Table 1 shows the comparison between our near-lossless compression method versus
other approaches. Our near-lossless compression method uses an octree to index
the sub-volume blocks. To encode individual blocks, a Hilbert traversal is followed
by linear DPCM and near-lossless quantization. The quantized prediction error is
further encoded using Huffman code. The Huffman coding overhead is reduced by
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comparing the prediction error distribution using our binning method. Our approach
has a better compression rate than the existing lossless volume compression methods;
it is also fast and scalable. The compressed 3D images can be accessed dynamically
without prior decompression of the entire volume. It is also possible to handle a very
large (gigabytes) data set.
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