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Abstract

We study the problem of the reconstruction of a Gaussian fielddefined in[0, 1] usingN sensors de-
ployed at regular intervals. The goal is to quantify the total data rate required for the reconstruction of the
field with a given mean square distortion. We consider a classof two-stage mechanisms which a) send
information to allow the reconstruction of the sensor’s samples within sufficient accuracy, and then b) use
these reconstructions to estimate the entire field. To implement the first stage, the heavy correlation between
the sensor samples suggests the use of distributed coding schemes to reduce the total rate. We demonstrate
the existence of a distributed block coding scheme that achieves, for a given fidelity criterion for the re-
construction of the field, a total information rate that is bounded by a constant, independent of the number
N of sensors. The constant in general depends on the autocorrelation function of the field and the desired
distortion criterion for the sensor samples. We then describe a scheme which can be implemented using
only scalar quantizers at the sensors, without any use of distributed source coding, and which also achieves
a total information rate that is a constant, independent of the number of sensors. While this scheme oper-
ates at a rate that is greater than the rate achievable through distributed coding and entails greater delay in
reconstruction, its simplicity makes it attractive for implementation in sensor networks.

1 Introduction

In this paper, we consider a sensor network deployed for the purpose of sampling and reconstructing a spa-
tially varying random process. For the sake of concreteness, let us assume that the area of interest is repre-
sented by the line segment[0, 1], and that the for eachs ∈ [0, 1], the value of the random process isX(s).
For example,X(s) may denote the value of some environmental variable, such astemperature, at points.

A sensor network, for the purpose of this paper, is a system ofsensing devices (sensors) capable of

1. taking measurements from the environment that they are deployed in, and

2. communicating the sensed data to a fusion center for processing.

The task of the fusion center is to obtain a reconstruction{X̃(s), s ∈ [0, 1]} of the spatially varying process,
while meeting some distortion criteria.

There has been great interest recently in performing such sensing tasks with small, low power sensing
devices, deployed in large numbers in the region of interest[1], [2], [3] [4]. This interest is motivated by the
commercial availability of increasingly small and low-cost sensors which have a wide array of sensing and
communication functions built in (see, for example, [5]), and yet must operate with small, difficult to replace
batteries.

Compression of the sensed data is of vital importance in a sensor network. Sensors in a wireless sensor
network operate under severe power constraints, and communication is a power intensive operation. The
rate at which sensors must transmit data to the fusion centerin order to enable a satisfactory reconstruction
is therefore a key quantity of interest. Further, in any communication scheme in which there is an upper
bound (independent of the number of sensors) on the amount ofdata that the fusion center can receive per
unit time, there is another obvious reason why the compressibility of sensor data is important - the average
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rate that can be guaranteed between any sensor and the fusioncenter varies inversely with the number of
sensors. Therefore, any scheme in which the per-sensor ratedecreases slower than inversely with the number
of sensors will build backlogs of data at sensors for large enough number of sensors.

Environmental variables typically vary slowly as a function of space and it is reasonable to assume that
samples at locations close to each other will be highly correlated. The theory of distributed source coding
([6], [7], [8]) shows that if the sensors have knowledge of this correlation, then it is possible to reduce the
data-rate at which the sensors need to communicate, while still maintaining the property that the information
conveyed by each sensor depends only on that sensor’s measurements. Research on practical techniques
([9], [10], [11], [12], [13]) for implementing distributedsource coding typically focuses on two correlated
sources, with good solutions for the many sources problem still to be developed. Thus, in our work, we
attack the problem at hand using the available theoretical tools which have their origins in [6].

This approach has been taken earlier in [1] and [2], which investigate whether it is possible to use such
distributed coding schemes to reduce theper-sensordata rate by deploying a largenumberof sensors at
closely spaced locations in the area of interest. In particular, it is investigated whether it is possible to
construct coding schemes in which the per-sensor rate decreases inversely with the number of sensors. The
conclusion of [1], however, is that if the sensors quantize the samples using scalar quantizers, and then
encode them, the sum of the data rates of all sensors increases as the number of sensors increases (even with
distributed coding), and therefore the per-sensor rate cannot be traded off with the number of sensors in the
manner described above.

Later, though, it was demonstrated in [14] that there existsa distributed coding scheme which achieves
a sum rate that is a constant independent of the number of sensors used (so long as there is a large enough
number of sensors). The per-sensor rate of such a scheme therefore decreases inversely with the number of
sensors, which is the trade-off of sensor number with per-sensor rate that was desired, but shown unachievable
with scalar quantization, in [1]. Results similar to those of [14] for the case when a field of infinite size
is sampled densely have since appeared in [3]. However, a question that still appears to be unresolved is
whether it is possible to achieve a per-sensor rate that varies inversely with the number of sensors using a
simplesensing (sampling, coding, and reconstruction) scheme.

This paper is an expanded version of [14]. We describe the distributed coding scheme of [14] in detail, and
then study another sampling and coding scheme which achieves the desired decrease of per-sensor rate with
the number of sensors. The two main properties of this schemeare that (1) it does not make use of distributed
coding and therefore does not require the sensors to have anyknowledge of the correlation structure of the
spatial variable of interest, and (2) it can in fact be implemented using only scalar quantizers at the sensors
for the purpose of coding the samples. The scheme utilizes the fact that the sensors are synchronized, which
is already assumed in the models of [1], [2], [3], and is easily achievable in practice. Since scalar quantizers
are easily implementable in sensors with very low complexity, this paper shows that it is possible achieve
per-sensor rates that decrease inversely with the number ofsensors with simple, practical schemes.

A brief outline of this paper is as follows: We pose the problem formally and establish notation in Sec-
tion 1.1. We study the achievability of the above tradeoff with a distributed coding scheme in Section 2,
and compare the rate of this coding scheme with that of a reference centralized coding scheme in Section 3.
We describe the simple coding scheme mentioned above in Section 4. Some numerical results are presented
in Section 5. We make some concluding remarks in Section 6.

1.1 Problem statement

1.1.1 Model for the spatial process

We take a discrete time model, and assume that the spatial process of interest is modeled by a (spatially)
stationary, real-valued Gaussian random process,X(i)(s) at each timei, wheres is the space variable. The
focus of this paper is the sampling and reconstruction of a finite section of the process, which we assume
without loss of generality to be the interval[0, 1]. We follow conventional usage in referring to the spatial
processX(i) = {X(i)(s), s ∈ [0, 1]} as thefieldat timei.

We assume that the fieldX(i) at timei is independent of the fieldX(j) for anyj 6= i, and has identical
statistics at all times. (In what follows, we omit the time index when we can do so without any ambiguity.)
For simplicity, we assume thatX is centered,E [X(s)] = 0, and that the variance ofX(s) is unity, for all
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s ∈ [0, 1]. The autocorrelation function of the field is denoted as

ρ(τ) = E [X(s)X(s+ τ)] .

Following common usage, we sometimes refer toρ as thecorrelation structureof the field. Clearly,ρ(0) = 1,
andρ(τ) ≤ 1 for anyτ . We need only mild assumptions on the fieldX :

1. We assume thatX is mean-square continuous, which is equivalent to the continuity of ρ at 0 (see, for
example, [15]).

2. We assume that there is a neighborhood of0 in whichρ is non-increasing.

Note that all results in this paper extend to fields in higher dimensions. We restrict the exposition to
one-dimensional fields for clarity and to avoid the tedious notation required for higher dimensional fields.

1.1.2 Assumptions on the sensor network

We assume thatN sensors are placed at regular intervals in the segment[0, 1], with sensork being placed at
sk = 2k−1

2N for k = 1, 2, . . . , N . Sensors are assumed to be synchronized, and at each timei, sensork can
observe the valueX(i)(sk) of the field at its location, for eachk. Sensork encodes a block ofm observations,
[X(1)(sk), X

(2)(sk), . . . , X
(m)(sk)] into an indexIk chosen from the set{1, 2, . . . , ⌊emRk⌋}, whereRk is

the rate of sensork, which we state in the units of nats per discrete time unit. Weassume that the blocklength
m is the same at all sensors. The messages of the sensors are assumed to be communicated to the fusion
center over a shared, rate constrained, noiseless channel.The fusion center then uses the received data to
produce a reconstructioñX(i)(s) of the field.

A coding schemeis a specification of the sampling and encoding method used atall sensors, as well as
the reconstruction method used at the fusion center.

1.1.3 Error criterion

We refer toE(X(i)(s)− X̃(i)(s))2 as the mean square error (MSE) of the reconstruction of the field at point
s and timei. We measure the error in the reconstruction as the average (over a blocklength) integrated MSE,
which is defined as

JMSE(m) =
1

m

m
∑

i=1

∫ 1

0

E
(

X(i)(s)− X̃(i)(s)
)2

ds. (1)

We study coding schemes in which, for all large enough blocklengthsm and a specified positive constant
Dnet, the fusion center is able reconstruct the field with an integrated MSE of less thanDnet, that is, schemes
for which

lim
m→∞

JMSE(m) ≤ Dnet. (2)

1.1.4 Sum rate

In this paper, we describe coding schemes in which for any given value ofDnet in (2), the sum rate,
∑N

k=1 Rk,
is bounded above by some constantR̄ independent of the numberN of sensors. The bound̄R may in general
depend onDnet. This allows the per-sensor rate can be traded off with the number of sensors, so that for all
N large enough, the rate of each sensor is no more than a constant multiple of 1

N
.

1.2 Contributions

Our main contributions are:

1. We prove the existence of a distributed coding scheme in which, under the assumption that the correla-
tion structure is known at each sensor, a sum rate that is independent of the number of sensorsN can
be achieved.
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2. We design a simple coding scheme which can be implemented using scalar quantization at sensors,
which does not require the sensors to have any information about the correlation structure, and which
makes use of the fact that the sensors are synchronized to achieve a sum rate that is a constant indepen-
dent ofN .

The latter scheme has the advantage of being simple enough tobe implementable even with extremely
resource-constrained sensors. However, the sum-rate achievable through this scheme is in general greater
than the sum-rate achievable through distributed coding. Also, unlike distributed coding, this scheme entails
a delay that increases with the number of sensors in the network.

2 Distributed coding

In this section we describe a distributed coding scheme which achieves the desired scaling.

2.1 Encoding and decoding

The scheme consists ofN encoders,{fk}Nk=1, wherefk is the encoder at sensork, andN decoders,{gk}Nk=1

at the fusion center. For eachk, the rate offk is assumed to beRk, andfk maps the block

[X(1)(sk), X
(2)(sk), . . . , X

(m)(sk)]

of samples to an indexIk chosen from{1, 2, . . . , ⌊emRk⌋}, which is then communicated to the fusion center.
While the output of encoderk may not depend on therealizationsof the observations at any other sensor
i 6= k, it is assumed that all sensors have knowledge of the statistics of the field (in particular, the functionρ
is assumed known at each sensor1) and utilize this information to compress their samples. The decoders may
use the messages received from all encoders to produce theirreconstruction:

X̃(1,··· ,m)(sk) = gk(f1(X
(1,··· ,m)(s1)), · · · , fN (X(1,··· ,m)(sN ))),

whereX(1,··· ,m)(sk) is shorthand for[X(1)(sk), X
(2)(sk), . . . , X

(m)(sk)], for k = 1, . . . , N and similarly
for X̃.

2.2 Reconstructing the continuous field

The reconstruction of the field for those values ofs ∈ [0, 1] where there are no sensors is done in a two-step
fashion as follows. In the first step, the estimatesX̃(sk) of sensor samples are obtained as described above.
Then, the value of the field between sensor locations is foundby interpolation.

The interpolationX̃(s) for s /∈ {sk|k = 1, . . . , N} is based on the minimum MSE estimator forX(s)
given the value of the sample closest tos. Formally, for anys, definen(s) = 2k+1

2N if s ∈ [ k
N
, k+1

N
) as the

location of the sample closest tos. Then, givenX(n(s)), the minimum MSE estimate forX(s) is given by
E [X(s)|X(n(s))] = ρ(s− n(s))X(n(s)). The reconstruction of the field at the fusion center is obtained by
replacingX(n(s)) in this estimate with the quantized versioñX(n(s)),

X̃(s) = ρ(s− n(s))X̃(n(s)). (3)

While this two-step reconstruction procedure is not optimal in general, it suffices for our purposes.

2.3 Error analysis

Define

J ′
MSE(m) =

1

N

N
∑

k=1

1

m

m
∑

i=1

E
(

X(i)(sk)− X̃(i)(sk)
)2

. (4)

1In practice, the sensors need only know the vector
h

ρ
`

1

N

´

, ρ
`

2

N

´

, . . . , ρ

“

N−1

N

”i

.
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Using the upper bound found in equation (21) (Appendix A) on the error of the coding scheme described
above, we see thatlimm JMSE(m) ≤ Dnet is met if limm J ′

MSE(m) ≤ D′(N), where

D′(N) =





√

Dnet −
(

1− ρ(
1

2N
)2
)2

−
√

ρ2(
1

2N
)(1 − ρ2(

1

2N
))





2

, (5)

given thatN is large enough so that1− ρ2
(

1
2N

)

< Dnet. It is easy to see thatD′(N) approachesDnet from
below asN → ∞.

2.4 Sum rate

We now study the sum rate of the distributed coding scheme discussed above. We begin with finding the
encoding rates required for achieving

lim
m

J ′
MSE(m) ≤ D, (6)

for some constantD.
The rate regionR(D) is defined as the set of allN−tuples of rates(R1, R2, . . . , RN ) for which there

exist encodersfk and decodersgk, for k = 1, . . . , N , such that (6) can be met. If a rate vector belongs to the
rate region, we say that the corresponding set of rates is achievable.

The rate-distortion problem in (6) is a Gaussian version of the Slepian-Wolf distributed coding prob-
lem [6]. Until recently, the rate region for this problem wasnot known for even2 sources. An achievable
region for two discrete sources first appeared in [16], and was extended to continuous sources in [7]. The
extension to a general number of Gaussian sources appears in[17]. The two-source Gaussian distributed
source coding problem was recently solved in [8], where the achievable region of [16] was found to be tight.
The rate region is still not known for more than2 sources. We use the achievable region found in [17].

Though the result is stated in [17] for individual distortion constraints on the sources, the extension
to a more general distortion constraint is straightforward. We state the achievable region for distributed
source coding in the form most useful to us in Theorem 1 below.In the statement of the theorem, we
useA ↔ B ↔ C to denote a Markov-chain relationship between random variablesA,B andC, that is,
conditioned onB, A is independent ofC. Also, for anyS ⊂ {1, . . . , N}, XS denotes the vector of those
sources the indexes of which lie in the setS andSc denotes the complement of the setS.

Theorem 1 R(D) ⊃ Rin(D), whereRin(D) is the set ofN−tuples of rates for which there exists a vector
U ∈ R

N of random variables that satisfies the following conditions.

1. ∀ S ⊆ {1, 2, . . . , N}, US ↔ XS ↔ XSc ↔ USc .

2. ∀ S ⊆ {1, 2, . . . , N},
∑

i∈S Ri ≥ I(XS ;US |USc).

3. ∃ X̃(U) such that

1

N

N
∑

i=1

E
[

(

X(si)− X̃(si)(U)
)2

]

≤ D. (7)

Note that each of the rate-constraints in Theorem 1 forms some part of the boundary of the achievable region
Rin (see, for example, [17]). In particular, the constraint on the sum rate is not implied by any other set of
constraints.

Constructing a vectorU satisfying the conditions of Theorem 1 corresponds to the usual construction of
a forward channel for proving achievability in a rate-distortion problem. For eachi, Ui can be thought of as
the encoding ofX(si).

We now construct aU that would suffice for our purposes. Consider a random vectorZ ∈ R
N that is

independent ofX, and has a Gaussian distribution with mean0 and covariance matrixpI, whereI is the
identity matrix. ThenU = X+Z satisfies the Markov chain constraints of Theorem 1. To find a good bound
on the sum rate, we now find a lower bound on the variancep for which there exists an estimatorX̃(X+ Z)
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which satisfies condition (7). SinceX + Z is jointly Gaussian withX, the estimator which minimizes the
MSE in (7) is the linear estimator,

X̃(X+ Z) = ΣX(X+Z)Σ
−1
X+Z

(X+ Z) , (8)

whereΣX(X+Z) = E [X(X + Z)T ] andΣX = E [XX
T ]. Let pmax(N,D, ρ) be the largest value ofp for

which the MSE achieved by this estimator satisfies (7). We prove below that for large enoughN , pmax grows
faster than linearly withN .

Lemma 1 Let ρ(τ) be a symmetric autocorrelation function such thatlimt→0 ρ(t) = 1 and a threshold
θ > 0 exists for which

1. 1 ≥ ρ(τ) ≥ ρ(θ) > 0 if τ ∈ (0, θ) and

2. the inequality1− ρ2(θ)/(1 + θ) ≤ D holds.

Then

lim inf
N→∞

1

N
pmax(N,D, ρ) ≥ θ2.

Note:The second condition can be met for allD > 0 since1− ρ2(θ)/(1 + θ) → 0 asθ → 0.
Proof: We call a value ofp allowable if the expected reconstruction error in (7), withU = X + Z, is less
thanD. We find the largestp for the error criterion:E [(X̃(si) − X(si))

2] ≤ D for eachi ∈ {1, . . . , N},
which is more stringent than the average error requirement of (7).

Let us consider the estimation ofX(s1). SinceX̃(si) is the best linear estimate ofX(si) from the
dataX+ Z, any other linear estimator cannot result in a smaller expected MSE. We take advantage of this
observation and choose a linear estimator that although suboptimal, is simple to analyze and yet suffices to
establish the lemma.

Our estimator forX(s1) shall be the scaled averageα
∑

1≤i≤Nθ X(si)+Zi, whereα is a parameter to be
optimized shortly. To estimateX(si) for i 6= 0, simply substitute the samples used with those whose indexes
lie in the set{i+1, · · · , i+Nθ} (or, for samples at the right edge of the interval[0, 1], {i−Nθ, · · · , i− 1};
this does not lead to any change in what follows because of thestationarity of the field).

It is not difficult to see that

E



X(s1)− α
∑

1≤i≤Nθ

X(si) + Zi





2

= E
[

X(s1)
2
]

− 2α
∑

1≤i≤Nθ

ρ(i/N) + α2E





∑

1≤i≤Nθ

X(si)





2

+ α2E





∑

1≤i≤Nθ

Zi





2

≤ 1− 2α(Nθ − 1)ρ(θ) + α2N2θ2 + α2Nθp

=
[

1− 2αNθρ(θ) + α2N2θ2 + α2Nθp
]

+ 2αρ(θ), (9)

where we have used the inequality1 ≥ ρ(τ) ≥ ρ(θ) for τ ∈ (0, θ) and the fact that the greatest integer not
greater thanNθ is at leastNθ−1. The value ofα that makes the bracketed expression in (9) smallest is equal
toα∗ = ρ(θ)

Nθ+p
(we do not optimize the entire expression for simplicity). Substitution of this value yields

1− ρ2(θ)

1 + p/(Nθ)

(

1− 2

Nθ

)

.

Now letǫ > 0 be sufficiently small so thatθ2− ǫθ(1+ θ) > 0, and letN be sufficiently large so that2
Nθ

< ǫ.
We can always do this sinceθ only depends onD and on the autocorrelation function. Now suppose that
p/N = θ2 − ǫθ(1 + θ), then

1− ρ2(θ)

1 + p/(Nθ)

(

1− 2

Nθ

)

≤ 1− ρ2(θ)

1 + p/(Nθ)
(1 − ǫ)

= 1− ρ2(θ)

1 + θ
≤ D.

6



The above implies that forN sufficiently large, 1
N
pmax(N,D, ρ) ≥ θ2 − ǫθ(1 + θ). Taking the liminf, we

obtain that for all sufficiently smallǫ > 0,

lim inf
N→∞

1

N
pmax(N,D, ρ) ≥ θ2 − ǫθ(1 + θ).

Sinceǫ > 0 can be arbitrarily small, we obtain the desired conclusion. ⋄
The purpose of this Lemma is only to establish thatpmax(N,D, ρ) grows at least linearly withN . The

constants presented were chosen for simplicity of presentation.
The following is our main result on the rate of distributed coding:

Proposition 1 The sum rate of the distributed coding scheme described above is bounded above by a con-
stant, independent ofN .

Proof: Consider a vector Gaussian channel with inputW ∈ R
N and outputY ∈ R

N , Y = W+Z, whereZ
is as above, and where the power constraint on the input is given byE [WT

W] ≤ N . SinceZ is distributed
N(0, pI), the capacity of this channel,

max
W

I(W;W + Z) subject to E [WT
W] ≤ N,

is equal toN
2 log

(

1 + 1
p

)

(see, for example, [18]).

Let ǫ > 0 be any number smaller thanDnet. We know from Section 2.3 that there is anN1 such that for
N ≥ N1, D′(N) ≥ Dnet−ǫ. Further, from Lemma 1, we know that there exists someN2 ≥ 0 and a constant
θ > 0 such that forN ≥ N2, pmax(N,Dnet − ǫ, ρ) ≥ θ2N . Clearly,pmax(N,D, ρ) is a non-decreasing
function ofD, and therefore forN ≥ max{N1, N2}, pmax(N,D′(N), ρ) ≥ pmax(N,Dnet − ǫ, ρ). It then
follows that forN ≥ max{N1, N2},

I(X;X+ Z) ≤ N

2
log

(

1 +
1

θ2N

)

.

Then, using the inequalitylog(1 + x) ≤ x, and using the result of Theorem 1 to substitute
∑N

k=1 Rk for
I(X;X+ Z), we see that

N
∑

k=1

Rk =
1

2θ2

is achievable. ⋄
The constants in Proposition 1 have been chosen for simplicity. In general, the rates achievable by dis-

tributed coding are smaller than the bound found in Proposition 1.

3 Comparison with a reference scheme

In this section, we compare the rate of the distributed coding scheme discussed in Section 2 with a reference
scheme, which for reasons that will become apparent below, we call ascentralizedcoding.

The scheme consists ofonecentralized encoderf , which has access to samples taken at all sensors at
times{1, . . . ,m}, andN decoders,{gk}Nk=1 at the fusion center. The encoder maps the samples of the
sensors,X(1,...,m)(s1, . . . , sN ), into an index chosen from the set{1, 2, . . . , ⌊emR∗

N ⌋}, whereR∗
N is the rate

of the centralized scheme, and communicates this index to the fusion center. The decodergk at the fusion
center reconstructs the samples from sensork from the messages received from the centralized encoder,

X̃(1,··· ,m)(sk) = gk(f(X
(1,...,m)(s1, . . . , sN ))),

for k = 1, . . . , N .
At the fusion center, the reconstruction of the fieldX̃(s) is obtained in the same two-step manner de-

scribed in Section 2.2: the fusion center constructs estimatesX̃(sk) of the samplesX(sk), for k = 1, . . . , N
from the messages received from the sensors, and then interpolates between samples using (3).
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LetR∗
N (Dnet) be the smallest rate for which there exists an encoderf and decoders{gk}Nk=1 such that the

integrated MSE (1) achieved by the above scheme satisfies theconstraint (2). Then, it is clear thatR∗
N (Dnet)

is a lower bound on the rates of all schemes which use the two-step reconstruction procedure of Section 2.2.
In this section we bound the excess rate of the distributed coding scheme of Section 2 over the rateR∗

N (Dnet)
of the centralized scheme.

3.1 Error analysis

Using the lower bound in Appendix A, equation (22), on the error (1) in terms ofJ ′
MSE(m) of (4) we

conclude that forN large enough, ifJMSE(m) ≤ Dnet, thenJ ′
MSE(m) ≤ D′′(N), where

D′′(N) =
2
(

1− ρ2
(

1
2N

))

+ 2
√

(

1− ρ2
(

1
2N

)) (

1− ρ2
(

1
2N

)

+Dnet

)

+Dnet

ρ2
(

1
2N

)

Note thatD′′(N) approachesDnet from above asN → ∞.

3.2 Bounding the rate loss

Now, consider

V
∗ = arg min

p(V|X)
I(X;V), subject to

1

N
E
[

‖X−V‖22
]

≤ D′′(N). (10)

From Section 3.1, it is clear that the rate of the centralizedcoding scheme,R∗
N (Dnet) satisfies, for anyN ,

R∗
N (Dnet) ≥ I(X;V∗).

We now use techniques similar to those in [19] to bound the redundancy of distributed coding over the
rate of joint coding. LetZ be as in Proposition 1. ExpandingI(X;X+Z,V) in two ways, we getI(X;X+
Z) + I(X;V|X + Z) = I(X;V) + I(X;X+ Z|V), so that

I(X;X+ Z)− I(X;V) ≤ I(X;X+ Z|V) (11)

= I((X−V) ; (X−V) + Z|V).

SinceV ↔ (X−V) ↔ (X−V) +Z, we haveI((X−V) ; (X−V) +Z|V) ≤ I((X−V) ; (X−V) +
Z). Subject to the constraint in (10),I((X−V) ; (X−V) + Z) is upper bounded by the capacity of a
parallel Gaussian channel, with noiseZ and inputW = X − V, the power constraint on which is given

by 1
N
E [‖W‖2] ≤ D′′(N). The capacity of this channel is [18]C = N

2 log
(

1 + D′′(N)
p

)

, and therefore

from (11) and the definition (10) ofV as the rate-distortion achieving random vector, we get

I(X;X+ Z)−R∗
N (Dnet) ≤ N

2
log

(

1 +
D′′(N)

p

)

.

≤ N

2

D′′(N)

p
,

where the second inequality follows becauselog(1 + x) ≤ x. From Section 3.1, we know that for anyǫ > 0,
there is aN1 large enough so that for allN ≥ N1, D′′(N) ≤ Dnet + ǫ, and we can choose the variance
p of the entries ofZ to be at leastNθ2, whereθ is as in Lemma 1, while still ensuring thatX + Z meets
the requirements on the auxiliary random variableU of Theorem 1. Therefore, substituting

∑N

i=1 Ri for
I(X;X+Z), and using Lemma 1 and the result of Section 3.1 we get that foranyǫ > 0, there is anN1 large
enough so that for allN ≥ N1,

N
∑

i=1

Ri −R∗
N (Dnet) ≤ Dnet + ǫ

2θ2
. (12)

We conclude that the rate of the distributed coding scheme ofSection 2 is no more than a constant
(independent ofN ) more than the rate of a centralized coding scheme with the same reconstruction procedure.
Again, the constant in (12) has been chosen for simplicity ofpresentation and is in general much larger than
the actual excess of the rate of the distributed coding scheme (see Section 5).

8



4 Point-to-point coding

The distributed coding scheme studied in Section 2 shows that the tradeoff of sensor numbers to sensor
accuracy is achievable. However, it may not be feasible to implement complicated distributed coding schemes
in simple sensors. In this section we show that if the sensorsare synchronized and if a delay that increases
linearly with the number of sensors is tolerable, then the desired tradeoff can be achieved by a simple scheme
in which encoding can be performed at sensors without any knowledge of the correlation structure of the
field.

In this scheme, we partition the interval[0, 1] intoK equal sized sub-intervals,[0, 1
K
], ( 1

K
, 2
K
],. . .,(K−1

K
, 1].

We specifyK later, but assume thatN > K sensors are placed uniformly in[0, 1]. We assume thatK divides
N for simplicity (so that there are an integer number,N

K
, of samples in each interval).

Since the somewhat involved notation may obscure the simpleidea behind the scheme, we explain it
before describing the scheme in detail. We consider time in blocks of durationN

K
units each. The scheme

operates overall with a blocklength ofm = m′ N
K

, that is,m′ blocks, for some integerm′. Each sensor is
active exactly once in any time interval that isN

K
units in duration. A sensor samples the field at its location

only at those times when it is active. Each sensor uses a point-to-point code of blocklengthm′ and rateRp

nats peractivetime unit. The code is chosen appropriately so as to meet the distortion constraint. However,
since the sensor is active only inm′ out ofm′N

K
time units, the rate of the codeper time-stepis only K

N
Rp

nats. We show below that the desired distortion can be achieved with a rateRp that is independent ofN and
therefore the desired scaling can be achieved by the above scheme.

We now describe the scheme in detail. Consider the time instants
{

1, 2, . . . ,m′ N
K

}

. Each sensor uses
a code of blocklengthm = m′N

K
, which is constructed from a code of blocklengthm′, as follows. For

eachj in {1, 2, . . . , N
K
} and eachl in {0, 1, . . . ,K − 1}, sensorN

K
l + j (which is thej-th sensor from the

left in the sub-interval
(

l
K
, l+1

K

]

, and is at locationsN
K

l+j ) samples the field only at timesTl,j = {j, j +
N
K
, j + 2N

K
, . . . , j + (m′−1)N

K
}. It uses a code of rateRp, to be specified below, to map them′ samples

{X(i)(sN
K

l+j), i ∈ Tl,j} to an element of the set{1, 2, . . . , ⌊em′Rp⌋}. The rate per-time unit of each sensor

is therefore 1
m′ N

K

m′Rp = K
N
Rp nats.

The fusion center consists ofN decoders, one for each sensor. Decoderk constructs estimates of the
samples encoded by sensork using only messages received from sensork. Then, for each timei = N

K
l + j

in {1, . . . ,m′ N
K
}, the fusion center has reconstructions

[

X̃(i)(sj), X̃
(i)(sN

K
+j), X̃

(i)(s 2N
K

+j), . . . , X̃
(i)(s (K−1)N

K
+j

)
]

,

that is, one reconstruction for each sub-interval.
For anys ∈ [0, 1], we denote the location of the (unique) sensor active withinthe interval( l

K
, l+1

K
] to

whichs belongs byr(i)(s). For each time instanti, the fusion center reconstructs the field fors 6= r(i)(s) as

X̃(i)(s) = ρ(s− r(i)(s))X̃(i)(r(i)(s)),

whereX̃(i)(r(i)(s)) is the decoded sample at the fusion center of the sensor atr(i)(s) at timei.
We show in Appendix B that

1

m

m
∑

i=1

∫ 1

0

E [(X(i)(s)− X̃(i)(s))2]ds

≤ (1− ρ2(
1

K
)) +

1

N

N
∑

k=1

{

1

m′

∑

ik∈Tk

E [
(

X(ik)(sk)− X̃(ik)(sk)
)2

]

}

(13)

where, with some abuse of notation, we useTk to denote the set of time steps in which sensork is active.
Note that the cardinality ofTk ism′ for eachk.

We now chooseK large enough so that(1 − ρ2( 1
K
)) < Dnet and choose

DK = Dnet − (1− ρ2(
1

K
)). (14)
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Figure 1: Linear increase ofpmax for largeN : ρ(τ) = sinc(τ) (left) andρ(τ) = exp{−|τ |} (right). Dnet =
0.1.

The m′-blocklength code used at sensork for the times that it is active is a code that achieves the rate-
distortion bound for the distortion constraint

1

m′

∑

ik∈Tk

E [
(

X(ik)(sk)− X̃(ik)(sk)
)2

≤ DK ,

asm′ → ∞. It is well known that the rate of this code isRp = 1
2 log

1
DK

nats per time step. It is clear
from (13) and (14) that this scheme achieves the required distortion. Since the rate of each sensor in the
overall scheme isK

N
Rp nats per time step we have therefore constructed a scheme in which the bit rate of

each sensor is

− K

N

1

2
log

[

Dnet − (1− ρ2(
1

K
))

]

(15)

nats per time step. We can now chooseK to minimize the sum-rate−K
2 log

[

Dnet − (1 − ρ2( 1
K
))
]

.
Further, it is well known (see [20, Section 5.1]) that using scalar quantization, each sensor can achieve

distortionDK at rate1
2 log

1
DK

+ δ, whereδ is a small constant. For example, for Max-Lloyd quantizers
(see [20, Section 5.1]),δ is less than1 bit.

Therefore, we conclude that it is indeed possible to achievethe desired tradeoff between sensor numbers
and the per-sensor rate even when the sensors encode their measurements using appropriate scalar quantizers,
given that we also make use of the synchronization between sensors to activate sensors appropriately. This is
in contrast to the conclusions of [1], where full use of synchronization is not made, and therefore it is found
that the above tradeoff is not achievable with scalar quantization.

5 Numerical examples

In this section we give numerical examples of the rates of thecoding schemes discussed in Section 2, Section 3
and Section 4. The two fields we consider as examples are (1) a (spatially) band-limited Gaussian field, for
whichρ(τ) = sinc(τ), wheresinc(τ) = sin(πτ)

πτ
, and (2) a Gauss-Markov field, for whichρ(τ) = exp{−|τ |}.

For these fields, we numerically find the largest valuepmax of the variancep of Z for which the error for
the estimator in (8) is no more than the distortionD′(N) of (5), with Dnet = 0.1. The resulting values are
shown in Figure 1. We see that for large values ofN , pmax is indeed approximately linear inN .

We compute the achievable sum rate of the distributed sourcecoding scheme, which is equal toI(X;X+
Z) from Theorem 1, with thepmax found above as the variance of the entries ofZ. These rates are shown
in Figure 2. For reference, we also show the lower bound on therate of the centralized coding scheme
computed in Section 3.

In comparison, on minimizing the rate (15) of the point-to-point coding scheme of Section 4, we find
that best sum rate forρ(τ) = sinc(τ) is 11.77 nats forK = 7 intervals, and that the best sum rate for
ρ(τ) = exp(−|τ |) is 46.92 nats withK = 24 intervals, which is significantly greater than the sum-rateof the

10



0 50 100 150
0

1

2

3

4

5

6

7

8

9

10

N

R
at

e 
(n

at
s)

Lower bound on rate of centralized coding
Upper bound on sum rate of distributed coding

0 50 100 150 200 250 300
0

5

10

15

20

25

30

35

40

45

N

R
at

e 
(n

at
s)

Lower bound on rate of centralized coding
Upper bound on sum rate of distributed coding

Figure 2: Rates of joint and distributed coding (in nats per snapshot) vs. number of sensorsN : ρ(τ) =
sinc(τ) (left) andρ(τ) = exp{−|τ |} (right). Dnet = 0.1.

distributed coding scheme found above. However, part of thereason for the large sum-rate of the point-to-
point coding scheme is that our analysis exaggerates an edge-effect for the sake of simplicity: In Section 4 we
estimated the value of the field at points at timei using the sample that the fusion center has at timei from
the sub-interval thats lies in. We could instead have used the sampleclosestto s that is available at the fusion
center at timei, similar to what is done in Section 2 and Section 3. However, this would have meant dealing
with the first and the last sub-interval differently, and therefore we did not follow the analysis outlined above.
Without this edge effect, the rates of the point-to-point coding scheme are approximately half the rates found
above, which are still considerably larger than the sum-rates of the distributed coding scheme.

6 Conclusions

We have studied the sum rate of distributed coding for the reconstruction of a random field using a dense
sensor network. We have shown the existence of a distributedcoding scheme which achieves a sum rate
that is a constant independent of the number of sensors. Sucha scheme is interesting because it allows us
to achieve a per-sensor rate that decreases inversely as thenumber of sensors, and therefore to achieve small
per-sensor rates using a large number of sensors.

In obtaining bounds on the sum rate of distributed coding, wemade full use to the heavy correlation
between samples of the field taken at positions that are closetogether. When the number of sensors is large,
the redundancy in their data can be utilized by coding more and more coarsely: this corresponds to more
noisy samples, and is manifested in the growth of the noisepmax in the forward channel in Section 2. We
believe that this technique of bounding the sum rate is of independent interest.

We have also shown that contrary to what has been suggested in[1] and [3], it is indeed possible to design
a scheme that achieves a constant sum rate with sensors that are scalar quantizers, evenwithout the use of
distributed coding. This scheme, however, requires that wemake appropriate use of the synchronization
between the sensors, results in a delay in reconstruction which increases linearly with the number of sensors,
and achieves rates that may be significantly higher than the rates achieved by distributed coding. The scheme
is nevertheless interesting because its low complexity makes it easy to implement.
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A Bounds onJMSE(m) for the schemes in Section 2 and Section 3

We can write the error in reconstruction at anys ∈ [0, 1] as

X(s)− X̃(s) = X(s)− ρ(s− n(s))X̃(n(s))

= [X(s)− ρ(s− n(s))X(n(s))] +
[

ρ(s− n(s))
(

X(n(s))− X̃(n(s))
)]

= ES(s) + EQ(s), (16)

whereES(s) = X(s)−ρ(s−n(s))X(n(s)) andEQ(s) = ρ(s−n(s))
(

X(n(s))− X̃(n(s))
)

. Note that in

the schemes described in Section 2 and Section 3, the encodings of all samples are used to obtain the estimate
X̃(n(s)), and thereforẽX(n(s)) is in general not independent ofX(sk), for sk 6= n(s). As a result,ES(s)
andEQ(s) are in general not independent. In this appendix, we find upper and lower bounds onJMSE(m)
that hold for the schemes of Section 2 and Section 3.

Using the Cauchy-Schwarz inequality (for any two appropriately integrable random variablesA andB,
|E [AB]| ≤

√

E [A2]E [B2]), it is easy to see that

E (ES(s) + EQ(s))
2 ≤ E (ES(s))

2
+ E (EQ(s))

2
+ 2

√

E (ES(s))
2 E (EQ(s))

2 (17)

E (ES(s) + EQ(s))
2 ≥ E (EQ(s))

2 − 2

√

E (ES(s))
2 E (EQ(s))

2. (18)

Now, note thatE (ES(s))
2
= (1− ρ2(s− n(s)). Therefore,

E (ES(s))
2 E (EQ(s))

2
= ρ2(s− n(s))

(

1− ρ2(s− n(s))
)

E
(

X(n(s))− X̃(n(s))
)2

.

ForN large enough so that bothρ2
(

1
2N

)

≥ 1
2 and1/(2N) lies in the interval around0 in which ρ is non-

increasing (so that fors ∈
(

k
N
, k+1

N

)

ρ2(s − n(s))(1 − ρ2(s − n(s)) ≤ ρ2( 1
2N )(1 − ρ2( 1

2N )), which holds
because the functionh(x) = x(1− x) is decreasing in[ 12 , 1]), we get that

E (ES(s))
2 E (EQ(s))

2 ≤ ρ2
(

1

2N

)(

1− ρ2
(

1

2N

))

E
(

X(n(s))− X̃(n(s))
)2

. (19)

From (1) and (16), we have

JMSE(m) =
1

m

m
∑

i=1

∫ 1

0

E
(

E
(i)
S (s) + E

(i)
Q (s)

)2

ds. (20)

Therefore, integrating (17) and (18) over[0, 1], using (19) and Jensen’s inequality (and the concavity of the
functiony(x) =

√
x), and averaging over the time index, we get

JMSE(m) ≤
{

1− ρ2
(

1

2N

)}

+ J ′
MSE(m) + 2

√

ρ2(
1

2N
)(1− ρ2(

1

2N
))J ′

MSE(m), (21)

JMSE(m) ≥ ρ2(
1

2N
)J ′

MSE(m)− 2

√

ρ2(
1

2N
)(1 − ρ2(

1

2N
))J ′

MSE(m), (22)

whereJ ′
MSE(m) is as in (4).

B Error analysis for the point-to-point coding scheme

With some abuse of notation, we can still write the error in reconstruction as

X(s)− X̃(s) = ES(s) + EQ(s),
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where now

ES(s) = X(s)− ρ(s− r(s))X(r(s)), and

EQ(s) = ρ(s− r(s))
(

X(r(s)) − X̃(r(s))
)

.

In the point-to-point coding scheme, the fusion center estimates the samples of each sensor using only the
messages that it receives from that particular sensor. Notethat E(i)

S (s) is the error in the optimal MSE
estimate ofX(s) givenX(i)(r(s)). It is well known that if{X(s), s ∈ [0, 1]} is a Gaussian process, the error

E
(i)
S (s) in is independent ofX(i)(r(i)(s)). Further, due to the independence of the fieldX(i) and the field

X(j) for anyj 6= i, E(i)
S (s) is independent ofX(j)(r(j)(s)) for all j, and hence also of the reconstructions

X̃(j)(r(j)(s)) and the error termsE(i)
Q (s). Therefore, for anyi,

E [(X(i)(s)− X̃(i)(s))2] = E [(E(i)
S (s))2] + E [(E(i)

Q (s))2].

Now, forK large enough,E [(E(i)
S (s))2] = 1− ρ2(s− r(i)(s)) ≤ 1− ρ2( 1

K
) for everys ∈ [0, 1]. Also, since

ρ2(s) ≤ 1 for all s ∈ [0, 1],

E [(E(i)
Q (s))2] ≤ E [

(

X(i)(r(i)(s)) − X̃(i)(r(i)(s))
)2

].

So, we get

∫ 1

0

E [(X(i)(s)− X̃(i)(s))2]ds =
K−1
∑

l=0

∫
l+1
K

l
K

E [(X(i)(s)− X̃(i)(s))2]ds

≤
K−1
∑

l=0

∫
l+1
K

l
K

(1− ρ2(
1

K
)) + E [

(

X(i)(r(i)(s))− X̃(i)(r(i)(s))
)2

]ds

= (1− ρ2(
1

K
)) +

1

K

K−1
∑

l=0

E [
(

X(i)(r(i)(
l + 1

K
))− X̃(i)(r(i)(

l + 1

K
))

)2

],

where we note that by our notation,r(i)( l+1
K

) is the location of the (unique) sensor active at time stepi in the
interval( l

K
, l+1

K
].

Now summing over the time index we get,

1

m

m
∑

i=1

∫ 1

0

E [(X(i)(s)− X̃(i)(s))2]ds

≤ (1− ρ2(
1

K
)) +

1

Km

m
∑

i=1

K−1
∑

l=0

E [
(

X(r(i)(
l + 1

K
))− X̃(r(i)(

l + 1

K
))

)2

].

Rearranging the sum on the right and substitutingm = m′N
K

we get

1

m

m
∑

i=1

∫ 1

0

E [(X(i)(s)− X̃(i)(s))2]ds

≤ (1− ρ2(
1

K
)) +

1

m′N

N
∑

k=1

∑

ik∈Tk

E [
(

X(ik)(sk)− X̃(ik)(sk)
)2

],

= (1− ρ2(
1

K
)) +

1

N

N
∑

k=1

{

1

m′

∑

ik∈Tk

E [
(

X(ik)(sk)− X̃(ik)(sk)
)2

]

}

whereTk is the set of time steps in which sensork is active.
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