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Abstract

Minimum-entropy decoding is a universal decoding algorithm used in decoding block
compression of discrete memoryless sources as well as block transmission of information
across discrete memoryless channels. Extensions can also be applied for multiterminal de-
coding problems, such as the Slepian-Wolf source coding problem. The ‘method of types’
has been used to show that there exist linear codes for which minimum-entropy decoders
achieve the same error exponent as maximum-likelihood decoders. Since minimum-entropy
decoding is NP-hard in general, minimum-entropy decoders have existed primarily in the
theory literature. We introduce practical approximation algorithms for minimum-entropy
decoding. Our approach, which relies on ideas from linear programming, exploits two key
observations. First, the ‘method of types’ shows that that the number of distinct types
grows polynomially in n. Second, recent results in the optimization literature have illus-
trated polytope projection algorithms with complexity that is a function of the number
of vertices of the projected polytope. Combining these two ideas, we leverage recent re-
sults on linear programming relaxations for error correcting codes to construct polynomial
complexity algorithms for this setting. In the binary case, we explicitly demonstrate linear
code constructions that admit provably good performance.

1 Introduction

Information theory has had a profound and significant impact on the design and understanding
of digital communication systems. Since the inception of information theory, it has been known
that there exist codes and decoding algorithms that permit block compression of memoryless
sources and block transmission of information across uncertain, memoryless channels with an
error probability that decays exponentially in the length of the block code [1]. Recent insights
into iterative decoding techniques for linear codes based on graphs have sharply narrowed the gap
between channel coding theory and practice [2, 3]. Applying these channel decoding techniques
for near-lossless compression of one or many sources yields similar results [4, 5, 6, 7, 8]. All of
these decoding techniques can be thought of as low-complexity approximations to maximum a
posteriori (MAP) decoding and require a priori knowledge of the source or channel’s statistics
[9].

Since limited feedback and rate loss can make it difficult to estimate source and channel
statistics in many problems of practical interest, a natural question to consider is whether or
not there exist universal decoding algorithms that deliver the same performance (in terms of
achievable rates and rate of decay of the error probability). For discrete memoryless systems,
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in the absence of complexity constraints, the answer is yes [10, 11]. Csiszár’s minimum-entropy
decoder [12] addresses the universal decoding problem for near-lossless data compression, which
is where we will focus our attention for this setting. We note that our discussion and approach
also directly apply to the universal channel coding setting by replacing ‘minimum-entropy’ with
‘maximum-mutual information’ (see [11]). While minimum-entropy decoders are well-established
as a proof technique in the theory literature, we know of no prior literature that tackles practical
minimum-entropy decoder design.

2 Model and Definitions

Throughout this discussion we consider a discrete memoryless source (DMS) U over alphabet
U = {0, 1, . . . , Q − 1}. We use the following definitions:

CH(S) = the convex hull of all s ∈ S
V (B) = {v ∈ B : v is a vertex of the polytope B}
H (B) � the number of half-spaces representing B

P (U) =

{
P =

({Pa}a∈U
)

: P ≥ 0,
∑
a∈U

Pa = 1

}
hb (p) = −p log2 p − (1 − p) log2(1 − p) for p ∈ [0, 1]

Pu =

({
1

n

n∑
i=1

1ui=a

}
a∈U

)
for u ∈ Un (1)

Pn (U) = {P ∈ P (U) : P = Pu for some u ∈ Un}

From [10, 11] we note the following:

|Pn (U)| =

(
n + |U| − 1

|U| − 1

)
≤ (n + 1)|U| (2)

Thus the number of types is polynomial in n. We also note that(
n

k

)
=

(
n

n − k

)
= O(nk). (3)

3 The General Problem

Consider a DMS U with probability distribution Pr (·) ∈ P (U). Our goal is to design a low-
complexity, fixed-rate universal code. For any fixed coding dimension n and rate R, a fixed-rate
source code’s encoder maps length-n input sequences to binary strings of length nR while the
code’s decoder maps length-nR binary sequences back to length-n sequences from the input
alphabet U . The encoder and decoder operate without any knowledge of the source distribution
Pr (·). A code is universal if its error probability can be made arbitrarily small on all sources
Pr (·) with H (U) < R.
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Without loss of generality, we assume that U = {0, 1, . . . , Q − 1} where Q = 2m for some
integer m > 1. Thus we may assume that U takes on values in field F2m . We use a linear block
source encoder, which maps source vector u ∈ Un to syndrome s ∈ Un−k using linear code

H =




−H ′
1−

−H ′
2−

...
−H ′

n−k−


 ∈ U (n−k)×n

according to s = Hu. The source coding rate is R = n−k
n

m.
A universal decoder must select the ‘best’ source vector consistent with the observation s.

The set of source vectors consistent with s is the coset

Co (H, s) = {u ∣∣ Hu = s}.
Csiszár’s ‘minimum-entropy’ decoder selects as the source reconstruction the coset’s entropy
minimizer

û = arg min
u∈Co(H,s)

H (Pu) . (4)

In [12], Csiszár shows that not only do there exist linear codes such whose rates can be arbitrarily
close to H(U) when such a decoder is applied, but also that minimum entropy decoding achieves
the same error exponent as the optimal maximum-likelihood (ML) decoder.

3.1 From Discrete to Continuous Optimization

Note that (4) is a discrete optimization problem with an exponential number of feasible solutions.
Our first step is to replace (4) by a continuous optimization problem. We first construct indicator
variables Ik

i ∈ {0, 1}, for k ∈ U , i ∈ {1, . . . , n}, such that Ik
i = 1 if ui = k and Ik

i = 0 otherwise.
Thus Ik

i specifies u ∈ Un as

u = µ(I), where ui = µi(I) =
∑
k∈U

kIk
i . (5)

Note that any u ∈ Co (H, s) must satisfy the constraints of the linear code. We impose these
code constraints on I by defining

I(H, s) = {I s.t. µ(I) ∈ Co (H, s)}. (6)

For any I ∈ I(H, s) and the corresponding u = µ(I), we can construct Pu as a linear mapping

P = τ(I), where P (k) = τk(I) =
1

n

n∑
i=1

Ik
i , k ∈ U .

Thus we can define the polytope Bi,p(H, s) as

Bi,p(H, s) = {(I, P ) s.t. I ∈ CH(I(H, s)), P = τ(I)} .

Note that for every (I, P ) ∈ V (Bi,p(H, s)):
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• I corresponds to a coset member u = µ(I) ∈ Co (H, s).

• The empirical type Pu associated with u = µ(I) satisfies Pu = P = τ(I).

Since the entropy function is strictly concave, and since minimizing a strictly concave function
over a polytope B has the property that an optimal solution lies in V (B), we can perform (4)
in the continuous domain as

min H(P ) (7a)

s.t. (I, P ) ∈ Bi,p(H, s) (7b)

and take the minimum-entropy solution as u∗ = µ(I∗) where (I∗, P ∗) is an optimal solution to
(7). At first glance, there are two difficulties that arise in trying to perform (7):

1) Since ML-decoding for linear codes is generally NP-hard, the best bound on H (B) (and
thus H (Bi,p)) is O(2n). As a result, it is not obvious how to efficiently represent Bi,p.

2) In (7), |V (Bi,p)| = O(2n) and concave minimization over a polytope is NP-hard [13] -
generally requiring a visit to every v ∈ V (Bi,p).

However, even though |Co (H, s)| = O(2n), from (2) it follows that the number of distinct
types associated with Co (H, s) is polynomial in n. This observation suggests the following
strategy.

a) Project Bi,p(H, s) onto Bp(H, s) = {P | (I, P ) ∈ Bi,p(H, s) for some I}.
b) Perform the minimization

min H(P ) (8a)

s.t. P ∈ Bp(H, s). (8b)

In worst case any ‘concave minimization over a polytope’ algorithm might have to iterate
through every v ∈ V (Bp(H, s)), but here |V (Bp(H, s))| is polynomial in n and thus this is
not too severe of a problem. Denote the vertex P ∗ as the minimizer in (8).

c) Find an I∗ such that (I∗, P ∗) is a vertex of Bi,p(H, s) and let u∗ = µ(I∗) be the estimated
codeword.

Performing the the projection of a polytope, as in a), was originally addressed with Fourier-
Motzkin elimination [14, section 2.8] and is usually a computationally difficult task. However, we
can here leverage (2) to use polytope projection algorithms; these algorithms have low complexity
under conditions that our problem satisfies. More explicitly, recent developments [15, section
3],[16] in the optimization literature have illustrated polytope projection algorithms that are
linear in the number of vertices or halfspaces of the polytope projection. Since the polytope
projection Bp(H, s) has a polynomial number of vertices, these algorithms directly apply to give
polynomial-complexity solutions. Finally, we can perform c) using a single linear program [14].
It thus follows that part 2) of the difficulties in performing (7) can be alleviated.

We next consider part 1) of the difficulties in performing (7). This problem remains since ML
decoding for linear codes is in general NP-hard. We next introduce a relaxed polytope B̃i,p(H, s)
that can be efficiently represented. For low-density parity check codes (LDPCs), B̃i,p(H, s) has a

projection vertex count
∣∣∣V (B̃p(H, s)

)∣∣∣ that is polynomial in n. This implies our aforementioned

approach has polynomial complexity.
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Figure 1: Normal Syndrome-Former Encoding Graph

3.2 A Polynomial Complexity Continuous Relaxation

We now restrict our attention to low density linear codes over F2m . A linear code H has low
density if there exists a constant d independent of n such that the number δj of nonzero elements
in Hj satisfies δj ≤ d for all j.

For a linear code H, each local constraint is a smaller linear code. Figure 1 illustrates a normal
graph representation [9], where codeword symbols are associated with edges and constraint codes
are associated with nodes. The jth node with a ‘+’ sign is a single parity check code connected to
one syndrome symbol sj and a set N (j) of δj adjacent variable nodes. This parity check enforces
the constraint that sj and the symbols in N (j) must sum to 0 (over F2m). Each node with an
‘=’ sign is a repetition code enforcing the constraint that all symbols lying on its adjacent edges
must be equal. It thus follows that

Co (H, s) =
n−k⋂
j=1

{
u
∣∣ u|N(j) ∈ Co (Hj, sj)

}

⇒ I(H, s) =
n−k⋂
j=1

I(Hj, sj), (9)

where I(Hj, sj) �
{
I
∣∣ µr(I)|N(j) ∈ Co (Hj, sj)

}
.

Since I(H, s) can be represented as (9), it is natural to consider the relaxed polytope, analogous
to [8, section 4] (which originated from the LP relaxations of Feldman et al. for channel coding
[17, 18, 19]),

B̃i,p
j (Hj, sj) =

{
(I, P ) s.t. I ∈ CH(I(Hj, sj)), P = τ(I)

}
, j = 1, . . . , n − k

B̃i,p(H, s) =
n−k⋂
j=1

B̃i,p
j (Hj, sj).

Since the degrees of the checks are bounded, CH (Co (Hj, sj)) can be compactly represented
in terms of the Qδj−1 ≤ Qd−1 configurations consistent with check j. Thus B̃i,p

j (H, s) can be
represented with fixed complexity in terms of n. It therefore follows that

H
(
B̃i,p(H, s)

)
= O(n). (10)
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Since this is a relaxation, for any graph other than a tree, V
(
B̃i,p(H, s)

)
includes fractional

vectors. As in the binary case [17, 18, 8], the polytope has the property that

v = (I, P ) ∈ V
(
B̃i,p(H, s)

)
is integral ⇒ u = µ(I) ∈ Co (H, s) . (11)

As a consequence of (11) along with the application of the vertex enumeration algorithm in
a),b), and c) to the relaxed polytope B̃i,p(H, s), we have a relaxed minimum-entropy decoder
with an analogous property to the ML-certificate property in [17, 18, 8]. In particular, we
have the ME-certificate property: if an integral solution is found, it is guaranteed to be the
minimum-entropy solution.

Since B̃i,p(H, s) has vertices corresponding to both true elements of Co (H, s) and ‘pseudo-
codewords’ [18, 17], it is important to understand the impact these pseudocodewords have on

V
(
B̃p(H, s)

)
, and whether or not H

(
B̃p(H, s)

)
and

∣∣∣V (B̃p(H, s)
)∣∣∣ are polynomial in n. The

following Lemma addresses this question.

Lemma 3.1. Both
∣∣∣V (B̃p(H, s)

)∣∣∣ and H
(
B̃p(H, s)

)
are polynomial in n.

Proof details appear in the appendix.

4 The Binary Case

In the binary case (U = {0, 1}), the concave minimization problem for minimum-entropy de-
coding corresponds to

min hb (p)

s.t. u ∈ CH (Co (H, s))

p =
1

n

n∑
i=1

ui.

Since |V (Bp(H, s))| ≤ 2, we may instead perform the following pair of optimization problems
to obtain the two vertices:

LP-MIN
min 1

n

∑n
i=1 ui

s.t. u ∈ CH (Co (H, s))

LP-MAX
max 1

n

∑n
i=1 ui

s.t. u ∈ CH (Co (H, s))

and let umin,∗, umax,∗ be the optimal solutions to LP-MIN and LP-MAX, respectively. From
there we may take

u∗ = argu∈{umin,∗,umax,∗} min H(Pu)

and arrive at the same optimal solution.

4.1 A Figure of Merit for Binary Linear Codes under Minimum-
Entropy Decoding

Notice that LP-MIN is equivalent to ML-decoding where Pr (0) < Pr (1) and is thus NP-hard.
Likewise, LP-MAX corresponds to ML-decoding where Pr (1) < Pr (0) and is also NP-hard.
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The difficulty in these two problems manifests itself in the inability to efficiently represent
the polytope CH (Co (H, s)). However, this can be relaxed while maintaining provably good
performance by using the relaxed polytope B̃i,p(H, s) in LP-MIN and LP-MAX.

For good performance under such a universal decoder, we must construct codes that simul-
taneously work well for LP-MIN and LP-MAX or any relaxations thereof. This leads to a
new performance metric for a binary linear code, the ‘minimum-maximum distance’, given by

min
u∈Co(H,0),u�=0

min (wH(u), wH(1 ⊕ u)) ,

where wH(·) is the Hamming weight. We illustrate the motivation for using the minimum-
maximum distance in code design using the following example. Consider any linear code H for
which the all one’s vector, 1 is a member of Co (H, 0). Then the minimum-entropy decoder
has probability of error equal to 1

2
by the following argument. For any u ∈ Co (H, s), u ⊕ 1 ∈

Co (H, s). Further, H (Pu) = H (Pu⊕1). Thus u and u ⊕ 1 are indistinguishable to a minimum-
entropy decoder. Note that the ‘min-max’ distance of any such linear code H is 0, which captures
this undesirable effect.

Using properly constructed expander codes as discussed in [19], we may select component
codes of the expander code to have good min-max distance so that the aggregate code has good
min-max distance. We can then show that the performance of the above mentioned algorithm
is provably good (has a positive error exponent). In fact, from [1], it follows that if we take as
our component code of the expander code to be a random binary linear code chosen uniformly,
then with exponentially high probability the distance spectrum of the code will satisfy our
‘minimum-maximum distance’ criterion.

We also note that for the binary case, we need not perform a Feldman-style LP. By con-
structing the same expander codes as mentioned above, iterative bit-flipping algorithms with
provably good performance due to [20] can naturally be extended so that one algorithm searches
in a manner analogous to LP-MIN and the other to LP-MAX. Thus in this setting we also
get provably good performance.

5 Extensions and Conclusions

In this paper we bring minimum-entropy universal decoding from the realm of proof technique to
the realm of practice. We do this by exploiting the fact that the number of types is polynomial in
the block length and applying recent results in the optimization literature on polytope projection
algorithms. We consider polynomial complexity relaxations using LDPC codes. In the binary
case, we show that that by using proper codes with this algorithm, the performance is provably
good. Further directions that we plan to pursue include

• As in the case of LP decoding for relaxations to ML decoding,

- the quantification of the error exponent loss under this sub-optimal decoding

- proof of attainability of all achievable rates under this suboptimal decoder.

• understanding how iterative decoding relates to this optimization problem. Considering
how the min-sum algorithm operates on the polytope discussed here (see [21]), it would be
interesting to see if there is an iterative equivalent of performing the concave minimization
solver.
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We note that although this discussion was limited to block source compression, these techniques
directly apply to distributed source coding problems, such as Slepian-Wolf [22]. The discussion
of this methodology for Slepian-Wolf is discussed in [23]. By noting that ‘maximum-mutual
information’ decoding in the universal channel decoding domain [11] - as a replacement to
‘minimum-entropy’ decoding in this domain - also exploits the method of types, the techniques
discussed here directly apply to universal channel decoding for discrete memoryless channels. In
particular, section 4 directly applies to decoding on a binary symmetric channel with unknown
crossover probability by application of the coset-leader approach to channel decoding.
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A Proof of Lemma 3.1

Proof. Consider the polytope
B̃i,p = {x ∈ R

N | Ax ≤ b}, (12)

where M = H
(
B̃i,p
)

is the number of rows in A. Any subspace L and an affine set M parallel

to L can be expressed as

L = {x ∈ R
N | Cx = 0}, where dim L � N − rk(C)

M = L + a = {x ∈ R
N | Cx = d}, where Ca = d, dim M � dim L = N − rk(C).

For an arbitrary set S ⊆ R
N , its affine hull, given by

aff (S) =

{
x ∈ R

N
∣∣ x =

N∑
i=1

λivi, vi ∈ S,

N∑
i=1

λi = 1

}
, (13)

is an affine set and thus can be expressed as aff (S) = {x ∈ R
N | Cx = d}. The dimension of a

polytope B̃i,p is given by dim B̃i,p � dim aff
(
B̃i,p
)

= N − rk(C). Let

ˆ̃Bi,p =


(z, w) ∈ R

N × R
M−N+rk(C)

∣∣

A 0︸︷︷︸

M−N+rk(C)


[ z

w

]
≤ b




⇒ aff
(

ˆ̃Bi,p
)

=


(z, w) ∈ R

N × R
M−N+rk(C)

∣∣

C 0︸︷︷︸

M−N+rk(C)


[ z

w

]
= d




⇒ dim ˆ̃Bi,p = dim aff
(

ˆ̃Bi,p
)

= N + M − N + rk(C) − rk




C 0︸︷︷︸

M−N+rk(C)






= M

Note that dim ˆ̃Bi,p = H
(

ˆ̃Bi,p
)

= M and the projection of ˆ̃Bi,p onto any set of indices S ⊆
{1, . . . , N} equals the projection of B̃i,p onto S.

In general, the P -dimensional projection B̃p of a D-dimensional polyhedron B̃i,p where

H
(
B̃i,p
)

= H satisfies [24]

H
(
B̃p
)
≤
(

H

D − P + 1

)
.

For ˆ̃Bi,p we have D = H = H
(

ˆ̃Bi,p
)

= H
(
B̃i,p
)

and so from (3) and (10) it follows that

H
(
B̃p
)
≤
( H

(
B̃i,p
)

H
(
B̃i,p
)
− |U| + 1

)
= O

(
H
(
B̃i,p
)|U|)

= O
(
n|U|) . (14)

Since any |U|-dimensional polytope B̃p has at most
(H(B̃p)

|U|
)

vertices [14], from (3) and (14) it

follows that ∣∣∣V (B̃p
)∣∣∣ = O

(
H
(
B̃p
)|U|)

= O
(
n|U|2

)
.
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