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Abstract

This paper proposes a framework for joint source-channel decoding of Markov se-
quences that are coded by a fixed-rate multiple description quantizer (MDQ), and trans-
mitted via a lossy network. This framework is suited for lossy networks of primitive
energy-deprived source encoders. Our technical approach is one of maximum a pos-
teriori probability (MAP) sequence estimation that exploits both the source memory
and the correlation between different MDQ descriptions. We solve the MAP estimation
problem by computing the longest path in a weighted directed acyclic graph, at a com-
plexity of O(L2NK), where N is the number of source symbols in the input sequence,
K is the number of MDQ descriptions, and L is the number of codewords of the central
quantizer. If the source sequence is Gaussian Markovian, the decoder complexity can
be reduced to O(LNK).

For MDQ-compressed Markov sequences impaired by both bit errors and erasure
errors, the performance of joint source-channel MAP decoder can be 6dB higher than
the conventional hard-decision decoder. Furthermore, the new MDQ decoding technique
unifies the treatments of different subsets of the K descriptions available at the decoder,
circumventing the thorny issue of requiring up to 2K − 1 MDQ side decoders.

1 Introduction

In many modern signal communication applications, such as those in wireless and sensor
networks, the source encoders have to contend with limited power and primitive computing
capability (“smart dust”) and at the same time attain resiliency in adverse network condi-
tions. This calls for an asymmetric codec design that shifts the computational burden from
encoders to decoders, considering that the decoder often situates at a central control site
that has practically unbounded power supply and computing resources, and can further-
more fuse data collected from multiple channels. In this paper we study a particular coding
system in the above design principle.
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Assume that the source to be encoded and communicated via noisy channel(s) is a
Markov sequence χN = χ1, χ2, · · · , χN . Due to the constraints of battery capacity and
computing power, the encoder has to do without sophisticated modeling and source coding
operations and it is forced to forgo channel coding altogether. The maximum work load that
the encoder can manage is to quantize (scalar or vector) χN into K ≥ 2 descriptions, and
then send these descriptions through a lossy network, in fixed length code without entropy
coding. To keep multiple description coding simple, multiple description scalar quantizer
(MDSQ) or multiple description lattice vector quantizer (MDLVQ) should be used. We
refer the reader to [1, 2] for information on MDSQ and MDLVQ, and to [3] on multiple
description coding in general.

As a result of the expediency on the part of the encoder, the decoder is furnished with
rich forms of statistical redundancy:

• the memory of the Markov sequence that is unexploited due to scalar coding or simple
suboptimal block code (e.g., lattice VQ);

• residual source redundancy for lack of entropy coding;

• the correlation that is intentionally introduced between the K descriptions by MDQ.

The inquiry of this paper is how a decoder can best utilize these available redundancies to
correct the channel errors.

Joint source-channel decoding of multiple description scalar quantized (MDSQ) Markov
sequences was reported [4,5], in which the memory of the Markov source and the correlation
between the descriptions of MDSQ are exploited in tandem. The main contribution of
this paper is a new joint source-channel MDQ decoding technique that can simultaneously
utilize the inter-description and intra-description redundancies. The new technique applies
to MAP decoding of multiple description vector quantization (MDVQ) as well.

We first pose the problem as one of MAP sequence estimation, and then solve it by a
graph theoretical algorithm of complexity O(L2NK), where N is the number of symbols in
the input sequence, K is the number of side quantizers, and L is the number of codewords
in the central quantizer. Moreover, for MDSQ-coded Gaussian Markov sequences we can
reduce the algorithm complexity to O(LNK), which is comparable to those of typical
Vertibi-type decoding algorithms. Many authors published MAP estimation algorithms
for joint source-channel decoding of single description quantized Markov sequences [6–9].
This paper is a generalization of these algorithms to joint source-channel MDQ decoding.
Remarkably, it turns out that the generalized new MDQ decoding algorithm eliminates the
need for 2K − 1 side decoders, which is a well-known operational difficulty associated with
hard MDQ decoding process.

The paper is structured as follows. Section 2 formulates a general framework for joint
source-channel MAP decoding of MDQ-coded Markov sequences. Section 3 presents a
longest path algorithm for solving the MAP MDQ decoding problem. In Section 4, a
more efficient solution is developed for Gaussian Markov sequences. Simulation results are
reported in Section 5. Section 6 concludes.

2 Problem Formulation

Fig. 1 schematically depicts the proposed joint source-channel MDQ decoding system. The
input to the system is a finite Markov sequence χN = χ1, χ2, · · · , χN . A central quantizer



q : R → C maps a source symbol (MDSQ) or a block of source symbols (MDVQ) to a
codeword in central codebook C = {1, 2, · · · , L}, where L is the number of codecells of the
central quantizer. Let the codebooks of the K side quantizers be Ck = {1, 2, · · · , Lk}, where
Lk is the number of codecells of side quantizer k, L ≤ ∏K

k=1 Lk and Lk ≤ L, k = 1, 2, · · · ,K.
The K-description MDQ is specified by an index assignment function αk : C → Ck [2]. The
redundancy carried by the descriptions is reflected by a rate 1− log2 L/

∑K
k=1 log2 Lk.
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Figure 1: Block diagram of a MDSQ based communication system with a MAP decoder.

Let x = x1x2 · · ·xN ∈ CN be the output sequence of χN produced by the central
quantizer, N = N for MDSQ, or N = ιN for MDVQ with ι being the VQ dimension.
The K descriptions of MDQ, αk(x) ∈ CN

k , k = 1, 2, · · · ,K, are transmitted via K noisy
channels. We assume that the K noisy channels are memoryless, mutually independent,
and do not introduce phase errors such as insertion or deletion of code symbols or bits.
Consequently, a received description may have inversion or/and erasure errors, but it has
the same number of bits as the one generated by MDQ. Denote the received code streams
by yk = yk,1yk,2 · · · yk,N , with yk,n being the nth codeword of description k that is observed
by the decoder.

Having the source and channel statistics and knowing the design of MDQ, the MDQ de-
coder can perform joint source-channel decoding of yk, k = 1, 2, · · · ,K, to best reconstruct
x. In a departure from the current practice of designing multiple side decoders (up to 2K−1
of them!), we develop a single unified MDQ decoder that operates the same way regardless
what subset of the K descriptions is available to the decoder. Our MDQ decoder takes the
approach of MAP sequence estimation, and it reconstructs, given the observed sequences
yk, (k = 1, 2, · · · ,K, some of which may be empty), the input sequence x such that the a
posteriori probability P (x|y1, y2, · · · ,yK) is maximized. Namely, the MDQ decoder emits

x̂ = arg max
x∈C∗

P (x|y1, y2, · · · ,yK)

= arg max
x∈C∗

log P (x|y1, y2, · · · , yK).
(1)



According to the Bayes’ theorem,

P (x|y1,y2, · · · , yK) =
P (x)P (y1,y2, · · · , yK |x)

P (y1, y2, · · · , yK)
(a)∝ P (x)P (y1, y2, · · · ,yK |x)
= P (x)P (y1, y2, · · · ,yK |α1(x), α2(x), · · · , αK(x))

(b)
= P (x)

K∏

k=1

P (yk|αk(x))

(c)
=

N∏

n=1

{
P (xn|xn−1)

K∏

k=1

Pk(yk,n|αk(xn))
}

.

(2)

In the above derivation, step (a) is due to the fact that y1 through yK are fixed in the
objective function; step (b) is because of the mutual independency of the K channels;
and step (c) is under the assumption that x, the output of the central quantizer, is first-
order Markovian and the channels are memoryless. This assumption certainly holds, if the
original source sequence χN before MDQ is first-order Markovian, and it remains a good
approximation for a high-order Markov sequence χN as well, if χN is vector quantized.

In (2) we let P (x1|x0) = P (x1) as convention. Pk(b′|b) is the probability of receiving
a codeword b = b1b2 · · · bB from channel k as b′ = b′1b

′
2 · · · b′B. Because the channel is

memoryless, we have

Pk(b′|b) =
B∏

i=1

Pk(b′i|bi). (3)

Specifically, if the K channels can be modeled as memoryless error-and-erasure channels
(EEC), where each bit is either transmitted intact, or inverted, or erased (the erasure can
be treated as the substitution with a new symbol ′$′), then b ∈ {0, 1}B, b′ ∈ {0, 1, $}B and

Pk(b′i|bi) =





pφ, if b′i = $,

(1− pφ)(1− pc), if b′i = bi,

(1− pφ)pc, otherwise,

(4)

where pφ is the erasure probability and pc is the inversion or crossover probability.
If bi is binary phase-shift keying (BPSK) modulated and transmitted through an additive

white Gaussian noise (AWGN) channel, then

Pk(b′i|bi) =
1√
πN0

e−(b′i−bi)
2/N0 , (5)

where N0 is the noise power spectral density of the kth channel.
The prior distribution P (x) and transition probability matrix P (xn|xn−1) for the first-

order Markov sequence x can be determined from the source distribution and the particular
MDQ in question.

In the case of MDSQ, if the stationary probability density function of the source is ps(χ)
and the conditional probability density function is ps(χn|χn−1), then

P (x) =
∫

χ:q(χ)=x1

ps(χ)dχ, (6)



and

P (xn|xn−1) =

∫∫
χ1:q(χ1)=xn

χ2:q(χ2)=xn−1

ps(χ1|χ2)ps(χ2)dχ2dχ1

∫
χ:q(χ)=xn−1

ps(χ)dχ
. (7)

If MDLVQ is the source coder of the system, the transition probability matrix for
P (xn|xn−1)’s can be determined numerically either from a known close-form source dis-
tribution or from a training set.

3 Joint Source-Channel MDQ Decoding Algorithm

In this section, we devise a graph theoretical algorithm for joint source-channel MDQ de-
coding algorithm. Combining (1) and (2), we have

x̂ = arg max
x∈CN

N∑

n=1

{
log P (xn|xn−1) +

K∑

k=1

log Pk(yk,n|αk(xn))
}

. (8)

Because of the additivity of (8), we can structure the MAP estimation problem into the
following subproblems:

w(n, xn) = max
(x1,x2,··· ,xn−1)∈Cn−1

n∑

i=1

[
log P (xi|xi−1) +

K∑

k=1

log Pk(yk,i|αk(xi))
]
,

xn ∈ C, 1 ≤ n ≤ N.

(9)

Then, the solution of the optimization problem (1) is given by

x̂ =arg max
c∈C

w(N, c). (10)

The subproblems w(·, ·) can be expressed recursively as

w(n, xn) = max
(x1,x2,··· ,xn−1)∈Cn−1

{n−1∑

i=1

[
log P (xi|xi−1) +

K∑

k=1

log Pk(yk,i|αk(xi))
]

+ log P (xn|xn−1) +
K∑

k=1

log Pk(yk,n|αk(xn))
}

= max
c∈C

{
w(n− 1, c) + log P (xn|c)

}
+

K∑

k=1

log Pk(yk,n|αk(xn)).

(11)

The above recursion allows us to reduce the MAP estimation problem to one of finding the
longest path in a weighted directed acyclic graph (WDAG) [8], which is given in Fig. 2. The
underlying graph G has LN +1 vertices, which consists of N stages with L vertices in each
stage. Each stage corresponds to a codeword position in x. Each vertex in a stage represents
a possible codeword at the position. There is also one starting node s, corresponding to the
beginning of x.

We use a pair (n, x), 1 ≤ n ≤ N , x ∈ C to label a node in G. From node (n − 1, b) to
node (n, a), a, b ∈ C, there is a directed edge, whose weight is

log P (a|b) +
K∑

k=1

log Pk(yk,n|αk(a)).
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Figure 2: Graph G constructed for the joint source-channel MDQ decoding (L = 5).

From the starting node s to each node (1, a), there is an edge whose weight is

log P (a) +
K∑

k=1

log Pk(yk,1|αk(a)).

In graph G, the solution of the subproblem w(n, a) is the weight of the longest path
from the starting node s to node (n, a), which can be calculated recursively using dynamic
programming. The MAP decoding problem is then converted into finding the longest path
in graph G from the starting node s to nodes (N, c), c ∈ C. By tracing back step by step
to the starting node s, the MDQ decoder can reconstruct the input sequence x to x̂, the
optimal result as defined in (1).

Now we analyze the complexity of the proposed algorithm. The dynamic programming
algorithm proceeds from the starting node s to the nodes (N, c), through all LN nodes in
G. The value of w(n, a) can be evaluated in O(L) time, according to (11). The quantities
log P (a|b) and log Pk(yk,n|αk(a)) can be precomputed and stored in lookup tables so that
they will be available to the dynamic programming algorithm in O(1) time. Hence the term∑K

k=1 log Pk(yk,n|αk(a)) in (11) can be computed in O(K) time. Therefore, the total time
complexity of this algorithm is O(L2NK). To reconstruct the input sequence, the selection
in (11) should be recorded at each node, which results in a space complexity of O(LN).

4 Monotonicity based Complexity Reduction

In [8] we proposed a monotonicity-based fast algorithm for the problem of MAP estimation
of Markov sequences, in which the problem is transformed to one of matrix search and
the monotonicity of the optimization objective function can be exploited to reduce the
computational complexity dramatically. In this section, we show that the same technique
can be applied to joint source-channel decoding of MDSQ-compressed Markov sequences
under the same condition.

A two-dimensional matrix A = A(a, b) is said to be totally monotone with respect to
row maxima if the following relation holds:

A(a, b) ≤ A(a, b′) ⇒ A(a′, b) ≤ A(a′, b′), a < a′, b < b′ (12)



If an n× n matrix A is totally monotone, then the row maxima of A can be found in O(n)
time [10]. A sufficient condition for (12) is

A(a, b′) + A(a′, b) ≤ A(a, b) + A(a′, b′), a < a′, b < b′, (13)

which is also known as the Monge condition [10].
To exploit the total monotonicity for complexity reduction, we need to convert our

recursion formula into a matrix search form [8]. We rewrite (11) as

w(n, a) = max
b∈C

{
w(n− 1, b) + log P (a|b) +

K∑

k=1

log Pk(yk,n|αk(a))
}

. (14)

Then for each 1 ≤ n ≤ N , we define an L× L matrix An such that

An(a, b) = w(n− 1, b) + log P (a|b) +
K∑

k=1

log Pk(yk,n|αk(a)). (15)

To apply the fast algorithm to the joint source-channel MDSQ decoding problem, we
check if matrix An satisfies the total monotonicity. Substituting An in (15) for A in (13),
we have

log P (a|b′) + log P (a′|b) ≤ log P (a|b) + log P (a′|b′), a < a′, b < b′, (16)

which is a sufficient condition for An to satisfy the total monotonicity and therefore, for the
fast algorithm to be applicable. This condition, which depends only on the source statistics
not the channels, is exactly the same as the one derived in [8]. It was shown by [8] that (16)
holds if the source is Gaussian Markov, which includes a large family of signals studied in
practice and theory.

Finally, we conclude that the time complexity of MAP decoding of MDSQ can be reduced
to O(LNK) for Gaussian Markov sequences. The linear dependency of the MAP decoding
algorithm in the sequence length N and source codebook size L makes it comparable to the
complexity of typical Vertibi-type decoders.

5 Simulation Results

We implemented the proposed MAP-based MDQ decoding algorithm and tested it on three
first-order, zero-mean, unit-variance Gaussian Markov sequences with the correlation coef-
ficient ρ being 0.1, 0.5 and 0.9 respectively. Two different two-description scalar quantizers
(2DSQ) were used in our experiments, which are uniform and have the index assignment
matrices shown in Fig. 3. One of them has L = 15 central codecells, and the other L = 21
codecells. For both 2DSQ’s, the two side quantizers each has L1 = L2 = 8 codecells. The
2DSQ with two diagonals in its index assignment matrix has a stronger correlation between
the two descriptions than the 2DSQ of three diagonals, i.e., the former has higher degree of
redundancy than the latter.

For each description k, k = 1, 2, the codeword index αk(x) is transmitted in fixed length
code of three bits. The channel is simulated to be error-and-erasure channel with erasure
probability pφ and inversion probability pc varying. The new MDQ decoding algorithm is
compared with 1) MAP decoder for single description scalar quantization, and 2) conven-
tional hard-decision MDQ decoder. The competing scalar quantizer (SQ) is uniform and
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Figure 3: The index assignments for two two-description scalar quantizers as proposed
by [1].

has a fixed rate of six bits per sample so that it matches the 2DSQ’s in rate and codecell
structure. The system performance measure is the signal-to-noise ratio (SNR).

The simulation results are plotted in Fig. 4, 5 and 6. Over all values of ρ, pc and pφ,
the joint source-channel MAP MDQ decoder outperforms the conventional hard-decision
MDQ decoder, regardless the level of correlation between the two side descriptions. Not
surprisingly, the performance gap between the two approaches increases as the amount
of memory in the Markov source (ρ) increases. This is because the hard-decision MDQ
decoder cannot benefit from the residual source redundancy in x. The gap also increases
as the erasure error probability pφ increases, indicating that the MAP MDQ decoder can
make a better use of inter-description correlation. Also, as expected, the MAP SQ decoder
achieves higher SNR than the MAP MDQ decoder when the channel quality is very good,
but the former loses to the latter as the channel condition deteriorates. This is when the
redundancy of MDQ starts to pay off. More interestingly, we notice that joint source-
channel MAP decoding of MDQ is advantageous even when the source memory is weak (see
the curves for ρ = 0.1).

6 Conclusions

We proposed a framework for optimal (in MAP sense) joint source-channel decoding of
Markov sequences compressed by fixed-rate MDQ. This framework allows both inter-description
and intra-description correlations to be exploited for correcting bit errors as well as erasure
errors. It is suitable for lossy communications involving low-power inexpensive encoders.

Efficient algorithms were developed to perform MAP decoding of MDQ at a cost compa-
rable to that of Vertibi decoding. Operationally, the new MDQ decoding technique unifies
the treatments of different subsets of descriptions available at the decoder, overcoming
the difficulty of having a large number of side decoders that hinders the design of a good
hard-decision MDQ decoder.
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