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Quantized Indexing‡ is a fast and space-efficient form of enumerative coding1-11, 
the most “desirable”4,6 among asymptotically optimal universal source coding 
algorithms. The present advance in enumerative coding is similar to that made by 
arithmetic coding17-22 with respect to its unlimited precision predecessor, Elias 
coding12-16. The arithmetic precision, execution time, table sizes and coding delay 
are all reduced by a factor O(n) at a redundancy below log(e)/2g-1 bits/symbol (for 
n input symbols and a g-bit QI precision). Due to its tighter enumeration, the QI 
redundancy is below that of arithmetic coding (which can be derived23 as a lower 
accuracy approximation of QI). The relative compression gain vanishes in large n 
and in high entropy limits and increases for shorter outputs and for less 
predictable data. QI is significantly faster than the fastest arithmetic coders22, 
from factor 6 in high entropy to over 100 in low entropy limit (‘typically’ 10-20 
times faster). These speedups are result of using only 3 adds, 1 shift and 2 array 
lookups (all in 32 bit precision; α=2§) per less probable symbol and no coding 
operations for the most probable symbol. Further, the exact enumeration 
algorithm is sharpened and its lattice walks formulation is generalized. A new 
numeric type with a broader applicability, sliding window integer, is introduced. 

 
 

Evolution of Enumerative Coding 
 
Enumerative coding (EC) appeared in entropy coding literature in 1960s2,3, although the 
algorithm has been known in mathematics  since 19th century**. It was formulated as a 
general entropy coding algorithm by Cover1 in 1973 who named it “enumerative coding”. 
A larger significance of EC – as a benchmark for modeling flexibility and resilience – 
was identified that same year by Davisson4 who used it as the master algorithm†† for the 
best type of universal codes theoretically possible, the minimax universal codes. Despite 
its theoretical appeal, EC was impractical as a general coding algorithm because  it 
required arithmetic precision of the size of output. Although Cover had suggested a path 
toward solving the EC precision problem – a “suitable function of low complexity” 
providing an “integer upper bound” for the enumerative addends ([1] p. 76) – the 
“suitable function” remained elusive. This led Rissanen to comment few years later that 
this “conveniently calculated upper bound, will not work at all”, because satisfying “the 
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§  For alphabet α >2, the complexity scales as C⋅log(α). An alternative algorithm24, more suitable for low 
entropy sources, scales as C⋅log(h), where h is entropy/symbol, but this variant has a larger multiplier C. 
** Donald Knuth attributes the combinatorial number system, which is a mathematical form of EC, to 
Ernesto Pascal, Giornale di Matematiche 25 (1887), 45-49 (cf. The Art of Computer Programming Vol. 4, 
7.2.1.3, p. 6; preprint at: http://www-cs-faculty.stanford.edu/~knuth/fasc3a.ps.gz ). 
†† Arithmetic coder can also code the ‘universal way’, albeit less accurately and much more slowly than QI. 
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invertibility requirement together with the decodability condition becomes a major 
difficulty” ([18] p. 49)*. Instead, Rissanen found17,18 that by first approximating† the exact 
enumerative addends to within O(log(n)/n) bits/symbol, the subsequent r-bit truncation 
of  these approximate addends was decodable and the truncation resulted in an additional 
redundancy of at most  log(e)/2r-2 bits/symbol15,18. The Rissanen’s algorithm17 and its 
descendants, which became known as arithmetic coding (AC), had thus solved the 
precision problem, but only for the already approximate enumeration and only with 
further adverse side-effects 

‡. 
 
The precision problem of the exact enumeration had resisted solution, despite various 
attempts5-11 toward practical EC over the past three decades§. The most common5-9 
remedy was to code in smaller blocks (of fixed or variable size) and then try to reduce the 
resulting overhead arising from the increased number of small symbol counts and 
fractional bit losses at block boundaries. In [5],[7] variable input blocks were used with 
codes which don’t require that block symbol counts be sent separately from index. Even 
these partial solutions, while not competitive against AC overall, have demonstrated 
distinct advantages of EC in certain areas, especially for coding of  less predictable  
sequences (e.g. video codecs8 and lossless coding of complex images9). A direct attack on 
the arithmetic performance problem was proposed recently by Ryabko10 based on the 
Schönhage-Strassen fast multiplication algorithm. Although the asymptotic performance 
appeared much  improved in theory, no practical algorithm has emerged from this effort 
as yet. Within the specialized domain of constrained coding**, Immink11  proposed a 
method based on floating point approximation of addends. Although the decodability 
problem of truncated EC addends encountered by Rissanen emerged here as well, 
Immink suggested a form of brute force exclusion of the non-decodable strings††.  
 
Quantized indexing (QI) is a direct and optimal solution for the precision problem of 
exact message enumeration. Unlike the double approximation of AC, QI performs only 
the precision reduction, which is the sole approximation  truly necessary, and it selects 
the truncation with the lowest redundancy possible at a given precision. To prepare the 
natural setting for QI, we will first reformulate the conventional EC1 as follows: (a) 
construct an important and general algorithmic component of EC previously overlooked,  
(b) extend the lattice walks formulation5 of EC, (c) reverse the ranking convention1 from 
lexicographic (lex) to co-lexicographic26 (colex). 

                                                 
* In our formulation of EC, these two Rissanen’s requirements correspond to our eqs. (20) and (8). 
† The Rissanen’s approximation of exact enumeration consists of applying Stirling approximation to the 
exact enumerative addends (binomials), then further approximating these by dropping the sqrt() and the 
O(1+1/n) factors (cf. [17] eq. (5), the addends Φ which majorize the EC binomials), resulting in total 
excess bits > log(2π n pq)/2 before any precision reduction. This AC redundancy for n < ∞ is absent in QI.  
‡ The most unfavorable among these are the large coding speed penalty and the hardwiring of the 
‘probabilty of single next symbol’ modeling interface bottleneck (cf.  [23], pp. 19-25, 30-31). 
§ For a pedagogical survey of  EC algorithms (with pseudocode) see [8] and for related combinatorics [26]. 
** Constrained coding is used extensively for low level recording media codes. Even the conventional EC, 
which has been used in this field since 1950s, is advantageous here over AC and prefix codes due to small 
data blocks, intricate constraints and feasibility of direct brute force exhaustive enumerations. 
††  Although Immink doesn’t demonstrate any collision resolution algorithm, the brute force removal of 
collisions should be attainable in this domain by virtue of much smaller combinatorial space and regular bit 
patterns for the colliding codes (easily identifiable and known upfront, being the constraints). 
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Enumeration via Counting of Lattice Paths 
 
The basic idea of EC is to map sets of equiprobable messages* into sets of combinatorial 
objects, enumerative classes, for which there are efficient un/ranking† procedures. To 
encode a message M, the encoder selects enumerative class E(M) and maps the message 
into an object X(M) ∈ E(M), then it computes the index I(X∈E) of the object within its 
class (ranking). The encoder output is the identifier for the class,  the class tag C(E), plus 
the object index I(X∈E). The decoder uses the class tag C to identify E and the index I to 
reconstruct the object X via unranking of I within E, then it maps X back into M.  
 
Following Schalkwijk5, our combinatorial setting is an R-dimensional integer lattice of 
points M = (x0, x1,..., xR-1) with integer coordinates xr ≡ xr(M), r = 0..R-1. A step along the 
r-th dimension is a unit vector <r> ≡ (0,...,0,1,0,...,0) where the single 1 has r zeros to its 
left. The inverse function r = d (<r>) returns dimension index of a vector. To “make a 
step” <r> from point M′, we add the two vectors: M′ + <r> = (x0,..., xr+1,..., xR-1) ≡ M and 
call the point M′  = M − <r> a predecessor of point M. Our basic ‘combinatorial object’ 
is a lattice path Tn, which is a sequence of  points Tn ≡ M0, M1,... Mn, where M0 ≡ (0,0,...), 
Mi ≡ Mi-1 + <ri> for i =1..n  and <ri> is a sequence of n steps defining the n-step path Tn 
(thus we also write paths as a sequence of their steps: Tn ≡ r1 r2...rn). We denote “path 
ending at M” as T(M), “set of all paths ending at M” as E(M), “count of all paths ending 
at M” as N(M) ≡ |E(M)| and “extension of path T by step <r>” as T + <r>. A symbol 
sequence Sn ≡ a1 a2... an where 0 ≤ ai < α ≡ R maps to a lattice path Tn via ri ≡ ai, i =1..n  
(the input symbol ai results in the i-th step of lattice path along ai-th dimension). Using 
Iverson’s selector25 [B] (where B is a boolean expression and [true] =1, [false] = 0), the 
translations Sn ↔ Tn are: 
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These mappings allow us to use paths Tn and sequences Sn interchangeably. Eq. (1) 
implies that the count of symbol r in Sn  is xr(Mn). We call a point Mn solving eq. (4) for 
given n, the n-step point Mn and the set of all such points the n-step front Fn. Hence Fn is 
the set of all points ‘reachable’ in exactly n steps (in our lattice step metrics such set is on a 
hyperplane eq. (4), while in the Euclidean metrics it would be on a surface of a sphere).  

                                                 
* The job of EC modeling engine is to map the input sequence into ‘equiprobable messages’ (usually 
segments of the input sequence) and select the enumerative classes ([23] pp. 26-35, on EC modeling). 
† Ranking of  a set S is a reversible mapping I(x) which maps each x ∈ S into unique integer I(x), called 
index of x:  0 ≤ I(x) < |S|. Unranking is the inverse mapping (of index into set elements): I(x) → x. 
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To represent often encountered constraints, such as mixed radix codes where 0 ≤ ai < Ri 
and R ≡ Max{ Ri: i =1..n}, we introduce boolean constraint evaluator M:r  which is true 
(false) if step <r> is allowed (disallowed) from point M*. For mixed radix codes with 
given radices Ri, the constraint evaluator for (i+1)-st step is: [Mi:r] = [ r < Ri+1]. 
 
The key building block for our path ranking algorithm is the count of paths arriving at M,  
N(M) ≡ |E(M)|†. In the bottom up approach we want to express the i-step path count N(Mi) 
in terms of (i-1)-step path counts N(Mi-1). Note that any path reaching Mi arrives from 
some (i-1)-step point Mi-1(r) via some last step <r>, thus Mi-1(r) = Mi − <r>. Each point 
Mi-1(r) contributes its N(Mi-1(r)) paths to N(Mi), r = 0.. R-1 (if step <r> is allowed), hence: 
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A lattice for binary input (R =2) with fronts F1..F8 is depicted‡ below. The lattice points 
are (x0, x1) ≡ (x, y), with steps: <0> = (1,0) and <1> = (0,1). The path counts are computed 
via (5), advancing from F1 to F8 and for each point adding counts of its two predecessors: 
N(B) = N(BL) + N(BA) = 35 + 21 = 56, where BL ≡ B - <0>, BA ≡ B - <1>. The 8-step path 
A..B, represents binary input string S8 = 00101001.  
 
 
 
                                         Fronts:            
   
                              A                1             1              1             1              1                x0 
 
                                                                                                                                    
 

                              1                              3              4             5             6 
 
                                                                                                                                    
 
                              1               3                           10            15            21    
                                                                                                                  BA 
                                                                                                                                     
 
                              1              4            10            20                           56 
  
                                                                                               BL                 B 
    x1 

    Fig. 1 

                                                 
* In a more general type of constrained coding11, the steps <r> allowed from M depend on the entire path 
T(M) reaching M, hence the constraint evaluator is T(M):r (requiring extra summations over classes of T). 
† In the conventional EC1 which uses lex ranking, the building blocks (expressed in our setting) are the 
counts of paths from a given point Mk to a fixed end-point Mn (the quantities nS(x1,x2,...,xk) in [1] 73).  
‡ Fig 1. is Pascal triangle rotated by 45°. The points with any xr< 0 have path counts 0 (unreachable points 
via steps <r>). AC can also be computed via walks on Pascal triangle with (x,y) ‘counts’ pxqy ([5],[23]). 
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For unconstrained paths and fixed alphabet α, with Mn ≡ (c1, c2,..., cα) (where c1+r is the 
count of symbol r and c1+c2+...+cα = n), the path counts simplify5 to multinomials: 
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Path index is a function I(T∈E) which maps each path T from set E (enumerative class) 
to a unique* integer in some interval D(E) ≡ [D0, D1) (index interval). The uniqueness 
constrains, via pigeonhole principle25, the length of D(E) from below as: 
 

EEDDD ≥≡− )(01               (8) 
 

I(T∈E) is called compact index if D(E) = [0, |E|). The most elemental set E, used directly 
or as a building block for larger classes†, is the set E(M) (all paths arriving at M). We 
focus now on E(M)‡ and abbreviate D(M) ≡ D(E(M)) and L(M) ≡ |D(M)|. 
 
Our next aim is to construct a compact index Ii(Ti) ≡ I(Ti∈E(Mi)) for i-step paths Ti from 
the compact indices I i-1(Ti-1) ≡ I(Ti-1∈E(Mi-1(r))) for (i-1)-step paths§ Ti-1. We first split 
the set E(Mi) based on the last step <r> of its paths into R disjoint subsets Ar (where Ar is 
a set, possibly empty, of all paths arriving at Mi via last step <r>): 
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The length of index interval for paths Ti-1 in (9) is Lr ≡ |D(Mi-1(r))| = N(Mi-1(r)). To get a 
compact index Ii(Ti) we choose L(Mi) ≡ N(Mi) which, by denoting λr ≡ [Mi-1(r):r]⋅Lr and 
using (5),  relates these interval lengths as: 
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Using (10) we construct the index Ii(Ti) by splitting the interval D(Mi) into R disjoint 
subintervals ∆r ≡ [dr, dr+λr) of lengths λr with d0 ≡ 0, dr+1 ≡ dr + λr, for r = 0..R-1,  where 
each ∆r indexes the λr paths Ti ∈ Ar  by reusing the index of Ti-1 (from eq. (9))  as: 
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* Meaning: T1 ≠ T2 implies I(T1) ≠ I(T2), ∀ T1,T2. This uniqueness is equivalent to invertiblity of I(T∈E). 
† One such class is n-step front Fn used in high entropy limit coding (e.g. mixed radix). They are obtained 
by adding eq. (5) over all Mn ∈ Fn. A class of constant entropy6,7 segments is useful for composite sources. 
A class used in [8], of  all paths with fixed sum of symbols, is an improper (at best approximate) E-class. 
‡ Since E(M0) is an empty set ∅, for notational convenience we define index function I0(T0) ≡ I(T∈ ∅) ≡ 0. 
§ Note that for all 1-step points M1 there is a unique compact index function I1(T1) = I(T1 ∈ E(M1)) = 0. 
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In words, the i-step paths Ti from set Ar are indexed by offsetting index of their (i-1)-step 
prefixes Ti-1 by dr, where dr simply keeps track of the interval length used up so far for 
the intervals ∆s  which are to the left of ∆r (i.e. s < r). Expressing paths in (11) in terms of 
their steps <rj> ( j =1..i,  and ri ≡ r)  as Ti ≡ r1 r2 ... ri  and Ti-1 ≡ r1 r2 ... ri-1, we obtain: 
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which, in terms of sequence Sn = a1 a2 ... an and upon expanding recurrence, becomes: 
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Eqs. (5),(15) represent a finer resolution form of  the EC indexing formula (Prop. 2 in [1], 
p. 74). The essential difference between (15) and (P2) of [1] is that (P2) melds the two 
factors forming individual terms of (15) into a single black box quantity nS (x1, x2,...xi), 
taken as an opaque input to EC and not analyzed further. In contrast, we separate the 
constraints [M:r] factors from the counts N(M) factors in the index formula (15) and then 
find further important general relations (5) for the counts factor which are completely 
absent (even as a question) in [1]. This absence is the principal reason for the “major 
difficulty” (cf. [18] p. 49) in solving the precision problem of  EC since the optimal EC 
quantization resides precisely in the overlooked relations (5). 
 
For unconstrained binary source, eqs. (5), (15) (using (x, y) ≡ (x0, x1), k ≡ y, n ≡ x + y, input 
Sn = a1 a2 ... an, path points Mi ≡ (xi, yi), nj ≡ 0-based offset of j-th 1 in Sn) simplify to: 
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Our eq. (17) corresponds to eq. (4) in [1], where the nj of (17) is replaced by (n-nj). This 
difference illustrates one advantage of colex ([26] p. 59, “Colex superiority principle”) 
over lex indexing used in [1]: at each step j=1..k, the addend in (17) depends only on the 
string processed so far, while the addends in eq. [1].(4) depend also on the size n of the 
entire string. Hence, the colex coder can easily terminate the coding loop based on a 
variety of termination conditions encountered in the first pass (e.g. for VF or VV coding, 
where the sum value accumulated so far may signal termination6,7), while the lex 
de/coder must know in advance the block size n (usable mainly for FV coding). 
 
A numeric example of indexing via (17) for input S8 = 00101001 is shown in Fig. 1. The 
encircled addends N(xi-1, yi) are the path counts of the left neighbors at the end of each 
vertical step. The index of S8 is: I(S8) = C(2,1) + C(4,2) + C(7,3) = 2 + 6 + 35 = 43. 
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Quantized Indexing 
 
The impracticality of exact EC and the need for its quantization (reduced precision) is 
evident even for the simplest binary coding via (17). The binomial coefficients used as 
addends in (17) require arithmetic precision of the size of output (the entropy H(Sn)), 
which is generally O(n) bits. Since the number of operations in (17) is O(n) adds of O(n) 
bit numbers, the coder needs O(n2) bit operations10. The addends are also impractical to 
compute on the fly, so they need to be precomputed, e.g. for some maximum block size n 
into a table holding ~ n2/4 entries of size O(n) bits/entry, resulting in table sizes of O(n3) 
bits. For an alphabet of size α, the arithmetic complexity is O(n2 log(α)) bit operations, 
while the table sizes are exponential in α as O(nα+1) bits. 
 
Our quantization tool is a sliding window integer (SWI), defined as the integer function 
Q = SW(g, w, s), where g significant bits of Q are given as integer mantissa (window) w, 
while the exponent (shift) s specifies the number of zeros in the less significant bits of Q. 
Although the abstract SWI appears structurally identical to abstract floating point 
numbers (FP), the operators, concrete structures and application controls differ between 
the two types of numbers. SWI is a hybrid, combining functionality of unlimited size 
integers with some structural constraints of FP. Unlike FP, the arithmetic with SWI 
operands maintains the arithmetic properties of integers, such as associativity of 
additions*.  The essential structural and functional properties of SWI are as follows: 
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i) SW arithmetic (in any combinations of SWI and integers) yields exactly the same 

result as the corresponding integers Q in the expanded form (18) would produce. 
The sole difference is that SWI operands generally require (s+g)/g times fewer bit 
operations than integer operands of the same magnitude, (s+g) bits.  

 
ii) SW rounding  Q ≡ ⎡X ⎤ sw  maps an integer X to the nearest SW integer Q ≥ X  †. 

Unlike FP, due to (i) the SW rounding functions as a delayed rounding‡. 
  
Since the source of EC precision problem are counts N(M) used in the index (15), the 
“obvious idea”1,18 would be to quantize N(M) via L(M) ≡ ⎡N(M)⎤sw. While such L(M) does 
satisfy pigeonhole principle (8), L(M) ≥ N(M), this kind of global, one-step majorization 
of all N(M) cannot guarantee validity of the EC interval composition underlying the 
index recurrence (11). Namely, note that the set decomposition  E(Mi) = Ur Ar  in (9) 
                                                 
* Hence, the conventional FP, in hardware or in libraries, is not suitable for SWI implementations. 
† And similarly for the rounding down operator: Q ≡  ⎣X ⎦ sw yielding the nearest Q ≤  X. 
‡ For example, ⎡X+Y+Z⎤ sw is equivalent via (i) to computing integer X+Y+Z in full precision (albeit 
quicker) and then rounding only the final result up, while the FP evaluation of X+Y+Z would also round 
each partial sum, which will generally be larger than  ⎡X+Y+Z⎤ sw. 
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implies that the index interval D(Mi) of set E(Mi) must contain all disjoint intervals ∆r 
used as index intervals for sets Ar in (11), which then constrains the lengths of these 
intervals, λr ≡ |D(Ar)| = [Mi-1(r):r]⋅L(Mi-1(r)), r = 0..R-1 and L(Mi) ≡ |D(Mi)|, as: 
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If we were to just set globally L(M) = ⎡N(M)⎤  for all M and for some quantization ⎡X ⎤ ,  
recalling that via (5) the non-quantized values N(M) satisfy exact equality in (20), then 
this quantization must satisfy e.g. ⎡Z⎤ ≥ ⎡X⎤ + ⎡Y⎤ for arbitrary non-quantized Z = X + Y. 
Any simple rounding up (including SW rounding)“will not work at all” *, as Rissanen 
noted18. In our EC formulation, the solution suggests itself  naturally: we propagate the 
three constraints, the SW rounding (combining the pigeonhole principle (8) and the g-bit 
precision constraints) and the interval composition constraint (20),  from F1, where they 
already hold, to F2, F3... front by front. Thus QI computes L(M) by replacing (5) with: 
 

[ ] ( )  ,2,1,1)(,)(:)()( 0
SW

1

0
11 K=≡⎥

⎥

⎤
⎢
⎢

⎡
⋅= ∑

−

=
−− iLrLrrL

R

r
iii MMMM   (21) 

 
Since L(M0) = N(M0),  (5) and (21) imply (via front by front induction) L(M) ≥ N(M) for 
any M, hence (8) is satisfied globally. SW rounding used in (21) implies (by its definition 
(ii)) that the resulting L(Mi) is the smallest interval length satisfying (20) for any given 
precision g for L(Mi). Using (20) instead of (10), we can replicate the index construction 
in (11), with the only differences that now we do not assume L(M) = N(M) (it was used 
for the lengths λr, thus we keep L(M) in (12)) and that the intervals ∆r may not cover the 
entire interval D(Mi), hence the index has some redundancy. The simple notation changes 
of (11) into (14)-(15) follow through as before, yielding the final QI index equations: 
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To obtain QI redundancy δ(g) due to SW rounding in (21), note that for any X, whenever 
Q = ⎡X⎤sw yields Q > X, the w normalization in (18) implies w ≥ 2g-1, hence the expansion 
factor f ≡ Q/X is bound as f < (2g-1+1)/2g-1.  Thus δ(g) < log(1+1/2g-1) < log(e)/2g-1 bits/sym†. 
To keep the total output excess for n symbols below c bits, the SW precision g must be at 
least 1+log(log(e))+log(n/c) ≈ 1.53+log(n/c). Since the unused index values of intervals 
D(M) are known from the common L(M) tables, these gaps can be reclaimed ‡ by the 
modeling engine as Esc code space (of size adjustable via g) or by the coder itself for 
input segmentation, QI frugal bits22 mode, output structuring, steganography,... etc. 
                                                 
* E.g. consider ceiling function for X =1.1, Y =1.2:  ⎡Z⎤ = ⎡1.1 + 1.2⎤ = ⎡2.3⎤ = 3 < ⎡1.1⎤ + ⎡1.2⎤ = 2 + 2 = 4. 
† Measured values (for the entire L(M) tables) of max excess n⋅δ for α=2, g = ⎡log(n)⎤+1 and n ≤ 214 are 
below 0.7 bits (avg 0.3), while the theoretical bound is 1.44 bits. QI coder normally uses g =32 and n ≤ 212. 
‡ AC, lacking the exact addend tables, cannot as easily or as efficiently reuse these gaps in its code space. 
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Implementation Notes and Test Results 

 
N1. The index (23) can be computed in forward (i =1..n) or in reverse (i = n..1) direction, 
which functions exactly as LIFO and FIFO coding modes19 of AC. LIFO mode is faster, 
simpler and has lower redundancy while FIFO mode allows decoder to start as soon as 
the initial g bits were received (encoder may output data in both modes with a g bit 
delay). The carry problems and solutions in FIFO mode are the same as with AC18-20,24. 
 
N2. The addends L(M) are precomputed via (21) into tables which may cover all points to 
some n (with symmetry reductions) or constant entropy V-shaped6,7 tables or long low 
entropy strips near lattice axes. To save table space, one may keep only every m-th front 
(reducing table sizes by factor m) and use recurrences (21) (except that here it is usually 
better not to round at all these interpolated L(M)24) to compute the omitted fronts on the 
fly24. The table values can also be reduced from the full (w, s) content, since the 
exponents s are very regular and can be quickly computed or interpolated from much 
smaller tables. For example, QI coder uses g =32 and keeps only mantissas. It computes 
on the fly the exponents for binomials n!/[k!(n-k)!]  from an array of  n entries (log(k!) in 
fixed point), freeing thus the space of n2/4 exponents at a negligible speed cost. 
 
N3. The high entropy limit codes23 use fronts Fi as enumerative classes E, thus the tables 
grow linearly in n. Instead of  n2/4 binomials of (16), the tables have only n entries, Ri for 
fixed radix R, i! for permutations, Catalan numbers Ci for trees,... etc23. The QI versions 
of mixed radix Ri tables are24: Li = ⎡Ri⋅Li-1⎤sw, L0 =1 (for permutations: Li = ⎡i⋅Li-1⎤sw). 
 
N4. QI coder uses mixed radix codes [N3] to eliminate bit fraction losses at the block 
boundaries by using for Ri the leading 16 bits of value L(Mn), common to all paths T(Mn). 
It encodes the leading 16 bits of the computed index In(T(Mn)) as a digit in this radix. 
 
N5. For multi-alphabet coding, the multinomial tables (7) are not practical due to table 
sizes ~ nα+1. QI uses factorization of multinomials into products of binomials (guided by 
the alphabet prefix codes), which allows the reuse of quantized binomial tables for α >2, 
with the resulting algorithm24 resembling the newer log(α) complexity variants of AC22. 
 
N6. The encoding of symbol counts can use a streamlined form of multi-alphabet QI 
(optimized for binomial or hypergeometric distribution of counts per block). For just a 
few blocks or for not overly sparse inputs, the counts can be coded quicker and nearly as 
well using MTF or precomputed (e.g. for binomial distribution) Huffman codes.  
 
N7. The modeling paradigms differ substantially23 between EC/QI (Kolmogorov, finite 
sequence and its exact properties, counts, BWT,...) and AC (Shannon, infinite sequence  
“source” and its limit averages,  probabilities, PPM,...), although each coder can in 
principle work both ways21,23 (with penalties in ‘non-native’ mode). E.g. QI can code the 
AC way from the ‘next symbol probabilities’ p(a) using lattice jumps, but these require 
mantissa scaling on each jump, reducing the QI speed to that of AC. In native coding 
mode,  but with only AC modeling engine available, QI separates output streams for each 
probability class, thus it codes quickly again and nearly optimally.  In the native QI 
modeling23  the input is segmented into enumerative classes (e.g. via BWT, grammars).  
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Below are few test results of QI vs. AC (‘best’ settings22) for input sizes N and given # of  
1’s (binary order 0 coders; K ≡210 bits; 500 random inputs/result; columns Speed: coding 
times ratio A/Q,  N: output size % (A/Q-1) ⋅100; array Vary ≡ int32 {...,-2,-1,0,+1,+2,...}). 
 
  #1's       N:4K  Speed    N:8K  Speed   N:32K  Speed  N:128K  Speed 
 
     8      6.846   68.3   6.421  112.8   5.447  199.6   5.966  247.5 
    16      4.175   59.7   3.830   78.5   3.389  138.1   3.730  168.0 
    32      2.297   49.7   2.090   58.9   2.096   95.9   2.220  117.2 
  N/64      1.370   40.3   0.606   41.0   0.186   41.7   0.073   42.5 
  N/32      0.897   30.8   0.343   33.7   0.123   34.2   0.049   34.5 
  N/16      0.505   21.8   0.197   25.3   0.084   24.6   0.040   24.8 
  N/8       0.359   14.4   0.155   16.7   0.069   16.8   0.045   16.8 
  N/4       0.288    9.2   0.138   10.8   0.083   10.6   0.068   10.5 
  N/2       0.509    6.6   0.445    6.6   0.367    6.4   0.332    6.4 
  Vary    110.899   21.9  96.736   19.6  71.308   16.5  52.580   14.1 
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