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Bayesian Detection in Bounded Height Tree
Networks

Wee Peng Tay, John N. Tsitsiklisellow, IEEE,
and Moe Z. Win,Fellow, IEEE

Abstract—We study the detection performance of large scale optimal quantization strategies take the form of likeliloo
sensor networks, configured as trees with bounded height, in ratio quantizers, and one can obtain “person-by-person opt
which information is progressively compressed as it moves qjin» conditions that need to be satisfied by the optimal
towards the root of the tree. We show that, under a Bayesian fi N thel finding th timal i
formulation, the error probability decays exponentially fast, and quanuzers. eve_r_ eless, mn '”9 € optima quanllzmnsl,
we provide bounds for the error exponent. We then focus on hence characterizing the detection performance, is a mrathe
the case where the tree has certain symmetry properties. We intractable problem even for a moderate number of nodes. For

derive the form of the optimal exponent within a restricted dass thijs reason, in the spirit of [19], we focus on the exponéntia
of easily implementable strategies, as well as optimal sttegies  5i0 of decay of error probabilities.

within that class. We also find conditions under which (suitély . .
defined) majority rules are optimal. Finally, we provide evidence  IN [20], we studied the Neyman-Pearson variant of the

that in designing a network it is preferable to keep the brantiing  problem considered in this paper. We showed that the error
factor small for nodes other than the neighbors of the leaves  probability decays exponentially fast with the number odes
Index Terms—Decentralized detection, error exponent, tree (this is apparently not the case when the height is unbounded
network, sensor networks. e.g., in a tandem configuration [21]-[24]); furthermore, in
some cases the error exponent associated with a tree caafigur
tion turned out to be the same as for the parallel configuratio
. INTRODUCTION In this paper, we continue this investigation by focusingtum

We consider a sensor network, configured as a directB@yesian formulation. Similar to the Neyman-Pearson case,
tree, with a fusion center at its root. The objective of th&e Will see that for bounded height trees error probabsiitie
network is to make a decision between two given hypothesg&cay exponentially fast. However, the optimal error exgin
H, and H,. Observations are obtained at the nodes of tf generically worse than the one associated with a parallel
tree, and information is propagated from the leaves towarggnfiguration (cf. Proposition] 2), and is also harder to €har
the root. However, because of resource constraints, e.g.2Gerize exactly. In order to make further progress, weeplac
restriction to single-bit messages, every node is requiced SOMe additional restrictions on the trees to be con&demaq,
compress or quantize its information (its observation dred twell as on the allowed Qquantization strategies. Th_e foltayvi
messages it has received) before forming its own messag¥ample serves to motivate some of our assumptions.

Based on the received information, the root or fusion Cemﬁ&ample 1(Random Nodes in the Unit Squar&uppose that
makes a decision about the true hypothesis. Our objective,js jistributen nodes randomly in the unit square and place a
to understand the scaling of the error probability at theofus ,sjon center at the center of the square. We are interested i
center, as the number of nodes increases, and its dependeRGfiouring the nodes so that every node is at most two hops
on qualitative properties of the tree. away from the fusion center.

In the well studied parallel configuration (see e.g. [1]4]10 One possibility (to be referred to as Design 1) is to fix
each node sends its compressed information directly to tggmem and divide the square inte: sub-squares, each
fusion center. A tree, on the other hand, allows for Short%’ith sidé of lengtht //m (see Figure 1). For large t’here

range communications, thus making better use of communi- . .
9 9 o are approximately:/m nodes in each of these sub-squares.
cation resources. Tree networks have been studied in $ev

. let all nodes within a sub-square transmit their messages
references, such as [11]-[18]. It is known that under t d 9

6 an “aggregator” node in that sub-square. In this way, we
assumptions to be made in this paper (conditioned on either, ggreg d Y,

) . . . gét a “symmetric” tree network, in which every aggregator
hypothesis, the observations at the different nodes ack);.i is connected to roughly the same number of nodes, with

This research was supported, in part, by the National Sei¢mundation high prpbablllty. Suppoge now _that the communication cest I.
under contracts ECCS-0701623, ANI-0335256 and ECS-0&B6aid Do- Proportional to the Euclidean distance between two communi

CoMOCUSA Labs. A Cpre][iminary vsersiog_%f this paperhwggopreeﬂdmr;t (th)e cating nodes. Since the numberis fixed, the communication
Data Compression Conference, Snowbird, UT, Marc 7.yl C ; : :

2008 IEEE. Personal use of this material is permitted. Hawepermission cost in this st_rategy I@(n) )
to use this material for any other purposes must be obtaired fhe IEEE An alternative possibility (to be referred to as Design Il)
by sending a request to pubs-permissions@ieee.org. WPJTa Tsitsiklis 5 to reduce the overall communication cost by using a 2-h0p

and M.Z. Win are with the Laboratory for Information and Doh Systems, . .
MIT, Cambridge, MA, USA. E-mailweepeng@! um mi t. edu, {jnt, SPanning tree. As before, we place an aggregator in eacle of th

noew n}@rit . edu. m sub-squares, and let the rest of the nodes in the sub-square



o | . e corresponding probability measur@s, and associated expec-
°.. . © . o tation operator&;, j = 0, 1. We model the sensor network as

" " ol . a directed rooted tre€),, in which a node sends messages to
: : - another if there is a directed arc from the first to the second
IR B e node. The root of the tre&,, is the fusion center and will

S . be denoted byf. The nodes that send messages directly to

. v are called its immediatpredecessorswhile v is called an
| immediatesuccessorf each of these nodes. Let the set of
° o immediate predecessors of a nadée C,,(v).

L R R . A sequence of tree},),,>1 represents the evolution of the
T B network. We focus on tree sequences with bounded height,
o | . : . defined as the length of a longest directed path. For a tree
. o . with heighth, a node is said to be #&vel  if it is connected

. . . to the fusion center via a path with — k hops. Hence the

fusion centerf is a levelh node.
Fig. 1. Random nodes in a unit square. The hollow circlesessmt the . -
local aggregators. The dotted lines represent commuaitditiks. Only one We assume that under each hypothés;s Where] =0,1,

sub-square is shown with its communication links. every nodev makes an i.i.d. observatioN,, with marginal
distribution IP’JX. If v is a leaf node, it sends a summary
Y, = 7.(X,) of its observation to its immediate successor,

send their messages to this aggregator. However, we allowWhere~, is constrained to belong to a given gebf allowed

to be chosen optimally. The overall expected communicatiéiyantization functions(For exampleI” can be the set of all
cost is binary functions ofX,.) If v is a non-leaf node, it summarizes

O(n/m) + O(m) its own observation and the messages it has received using
a transmission functiony,, to produce a messagg,. This
which we minimize by settingn = m(n) = ©(n*/®), and message is then sent to its immediate successor. Finadly, th
thus reducing th@(n) cost of Design | tod(n*/?). On the fysjon centerf uses afusion ruleto decide between the two
other hand, one suspects that the detection performancenghotheses. Let; be a random variable that represents the
Design Il will be inferior to that of Design I. The resultsgecision of the fusion center. A collection of quantizatéord
in Lemmal3 and Propositidd 3 provide evidence that this fgansmission functions, one for each node, and a fusion rule

indeed the case. U will be called astrategy A tree in which every non-leaf node

Motivated by the two designs introduced in Example ign.ores its. own observation, .and simply forwards a summary
we will consider the detection performance of two differerflf its received messages, will be callededay treg in that
classes of tree networks. The first one consists of symmeff@Se, non-leaf nodes will also be referred torelay nodes
trees with a fixed number of aggregators or intermediatesiodk€t /»(v) be the number of leaves in the sub-tree rooted at
while the second consists of trees in which the number Bpdev. In particular,i,(f) is the total number of leaves of
intermediate nodes increases at a certain rate (we cak thi tree’’,.
the rapidly branching tree sequences; cf. Secfidn V). WeGiven a tree networll’,, our objective is to minimize the
characterize and compare the detection performance o thpsobability of errorP, (7,,) = moPo (Y = 1) +miP1(Yy = 0),
two classes, optimized over a restricted set of stratedias tover all strategies. LeP*(7,,) be the minimum probability
are easy to implement. In particular, we show in Propositiaf error (over all strategies) at the fusion center. From an
that the second class performs worse than any of the tesymptotic perspective, we are given a sequence of trees

3l

networks in the first class. (T)n>1, and seek to characterize the optimal error exponent,
The rest of this paper is organized as follows. In Section 1
M we introduce the problem formulation and some related &= limsupﬁlog PX(Ty)
n—oo

concepts. In Section1ll, we show that for general tree net-
works, the error probability decays exponentially fasthwit For a relay tree, we consider instead the optimal error
the number of nodes in the network, and provide bounds fexponent,
the rate of decay. In Sectiohs]IV ahd V, we consider specific 1
classes of tree networks, characterize their performaame, Er = limsup W
provide simple (but suboptimal) strategies. Finally in tRec noee
[VT] we summarize and conclude. where we have normalized the log-error probabilitylhyf),
so that&y, is the error exponent per observation.

Il. PROBLEM FORMULATION Recall thatP¥X is the distribution of an observation made
In this section, we introduce the Bayesian version of tHgy a node under hypothesi$;. For anyy € I, let ]P’} be the
model in [20], describe the basic assumptions and notatiatistribution of v(X), when X has distributioriP’JX. We make
and recall a useful result from [20]. We are given twaohe following assumptions, which are standard in the lites
hypothesedd, and H;, each with prior probabilityr; > 0, (see e.qg. [5], [8], [19]). The Kullback-Leibler (KL) diveemce

log PX(T,),



between two probability measur@sand Q is denoted by Then,

dP 1 h n
D(P =E|log — logPo(Yy =1) < =A%, (v, M) + —1,
(P||Q) =E|log 35, 7 e Po(Yy = 1) < 45,00t +
where the expectation is taken with respect to (w.r.t.) the b log P, (yf = 0) < —A} h(%f(h)) + n__ 1,
measureP. n(f) ’ In(f)

Proposition[1l shows that the Type | and Il error expo-
Assumption 1. The measureB; andP are equivalent, i.e., nents ofh-uniform trees using the strategy described in the
they are absolutely continuous w.r.t. each other. Furthemam proposition are essentially upper bounded b&gﬁ(%t(h))
there exists some € I' such that—D(Pj [P]) < 0 < and—A%, (v,t") respectively. In Section]V, we present a
D(PY || P)). class of tree networks whose error exponents are precisely

— A% (7, t™), for j =0, 1.
To develop insights into how the error probabilities scale

with the number of nodes, we will use an upper bound for I1l. EXPONENTIAL DECAY
the error probabilities at each node in the network. The next
proposition allows us to recursively propagate error pbilba
ities along a tree in whiclll leaves have paths with hops
to the fusion center. Such a tree is called-aniformtree.

In this section, we state a result that shows that the optimal
error probability in a sequence of trees with bounded height
decays exponentially fast with the number of nodegThis

is in contrast to general trees, where the decay can be sub-

Let t) = (t1,to,...,tx), for k > 1, andt(®) = (. For exponential [24].) The proof of Theordmh 1 below is similar to
j=0,1, k>1, and\ € R, we define recursively [20] that for the Neyman-Pearson case [20], and can be found in
~ [25].
Ajo(1; ) = Ajo(y, 605 0) = 1ogEj[(ﬁ)>\L Whenh = 1, we have the classical parallel configuration

aP)
Af o (y,t W) = sup {Mr = Ajeo1(,t 5501, @)
S

Ay (7, %5 0) = max { — A (v, t) (5 + V),

considered in [19], and the optimal error exponent is given b

Ep =—supA§(v,0) = inf min A iA)<0. (6

P =—suphg,(7,0) = inf min Aoo(7; ) (6)
, Theorem 1. Suppose that Assumptidds 1 ahd 2 hold. Consider
* (F)y(q —
Ao p(1 )0 — 1+ A} &) any sequence of trees of heightLet z = liminf {,,(f)/n be

We make the following assumption. A prime denotes ditt-he asymptotic proportion of nodes that are leaves. Then,

ferentiation w.r.t.A, and a double prime indicates the second Ep <ER <O, (7)

derivative w.r.t.\.
and

. X
Assumption 2. Both D(P{ || PY) and D(PY | Bf)} are min 1ogE0[(dP}X)A} <& <285 <. )
finite, and there exists sonte € (0,0), such that for all A€[0,1] dPy

7 € I, we haveAf (v;A) < b forall A € (0,1), and  Fyrthermore, ifz = 1, we have

Afo(y;A) <bforall A e (-1,0). 1

E;SE*Sgiﬁ%SF

Ep. 9)
The following result is proved as Proposition 1 in [20].

Let S,(v) be the log-likelihood ratio (or more formally, the The exact error exponent depends on several factors, such

logarithm of the associated Radon-Nikodym derivative)nef t @S the probability distributions and the architecture of th

received messages at nogeA (one-bit) Log Likelihood Ratio Network. For example, in architectures that are essentiall
Quantizer (LLRQ) with threshold for a non-leaf node is a the same as the parallel configuration or can be reduced to

quantizer that takes the form the parallel configuration, the error exponentijs. However,
in most other cases, the error exponent is in general strictl
Y, = { 0, Sn(v)/l_n(v) <t inferior to £}, (cf. Propositior R). To obtain some insights into
1, otherwise the optimal error exponent, we consider specific classés of

N ] ) uniform tree networks in the next two sections. It turns out
Proposition 1. Consider a sequence afuniform relay trees. that finding optimal strategies is in general difficult, so we

Suppose that Assumptidi]1-2 hold. Suppose that the folowjyi|| instead analyze simple, but suboptimal strategies.
strategy is used: every leaf employs the same quantization

functiony € I', and every levek node ¢ > 1) uses a LLRQ

) L IV. SYMMETRIC TREE SEQUENCES
with thresholdt, satisfying Q

In this section, we consider the asymptotic performance of
—D(Pg | P}) < 0 < D(P} || P5), (3) a special class of-uniform tree networks, which we catt
—D(Py || P]) < t1 < D(P] || Py), (4) symmetric. These are relay trees, with a bounded number of
_AF t=DY < < A =1 relay n(_)des, as in Design | in Example 1._V\/_e first characterize
Le-1 (7 )<t 0.6-107 ) the optimal error exponent under a restrictive class otestra
for1<k<h. (5 gies. Then, we study the effect of the number of relay nodes



on the optimal error exponent, and provide conditions underConsider a symmetric tree, and let the set of immediate
which the majority decision rule is optimal. Throughoutsthipredecessors of the fusion cenfebe C,,(f) = {v1,...,v.}.
section, we assume that nodes can only send binary messagesn Definition[1, the subtrees rooted at the different prede
taking values{0,1}. An r-symmetric tree network is definedcessors off are asymptotically the same. We also note that
as follows. under an optimal strategy there is a tradeoff between the Typ
I and Il error probabilities. It follows that without loss of

Definition 1 (r-symmetric tree) For h,r > 1, a h-uniform .
generality, we can assume that

tree sequencél,),>: is said to ber-symmetric if:

(i) for all level k nodesv, wherek > 1, |C,,(v)| = r, and 0>Y(v1) > Y(ve) > -+ > (v.) > —o0, (11)
(i) for all level 1 nodesv, I,,(v)/l,(f) — 1/r"~1 asn — — 00 < p(v1) < @vg) < -+ < p(vy) < 0. (12)

Q0.
Furthermore, ify)(v;) > ¥ (v;), thenp(v;) < ¢(v;), and vice

The second COI’}]EIPOI’] in this definition requires that Whevnersa, for alli, j.
n is large, all ther level 1 nodes have approximately the
same number of immediate predecessors. Lemma 2. To minimize the objective function {10) at the

We define acounting quantizer (CQyvith thresholds for fusion center using a counting quantizer as the fusion rule,

a level k nodewv, wherek > 1, as a transmission function ofthere is no loss of optimality if we restrict all immediate

the form predecessors of to satisfyy(v;) = ¢¥(v,), ande(v;) = ¢(v;)
for all 4, j.
y,={ O Zucc,w Yo =5 ’ _ .
1, otherwise Proof: Suppose the fusion center uses a counting quan-

where}_ o () Yu is the total number of 1s that receives tizer with thresholds. Then, we have

from its immediate predecessors. A counting quantizer has  j;,, 1 log Po(Y; = 1)

arguably the simplest possible structure. Furthermores it n—oco I (f)
equivalent to a LLRQ with an appropriate threshold if all ) 1 T
the messages of's immediate predecessors are identically = nlggo In(f) 10%P0(2Yvi > S)
distributed. For tractability and to ensure that our sg@s i=1
are easily implementable, we will now restrict all non-leaf — lim LlOgPO(Yvi =1,i=1,2,...,s+1)
nodes to using counting quantizers. We call such a strategy n=20 In(f)
a counting strategy. Let€%(r) denote the optimal (over all A g 1
counting strategies) error exponent (in the worst-case ove  — Znhjﬂo mlog]P’o(Ym =1)
all 7-symmetric tree sequences). We will show that with the =1 )
restriction to a counting strategy, using the same trarsaris _ liw(v_) (13)
function at the leaves results in no loss of optimality. r = v
For any given strategy, and for each naddet the Type | h
and Il error exponents & where the second equality follows becaugg, = 1,i =
1,2,...,s 4+ 1} is the dominating error event, and the third
Y(v) = lim ) log Py (Y, = 1), equality follows from independence. Similarly, we obtain
p(v) = lim ——log Py (Y, = 0). lm ——logPy(¥Y; =0) =+ 3 p(n).  (14)
n—00 I (v) n=oe In(f) i=st1
Consider minimizing the following objective function, Then, the objective functiofi . (1L0) is equal to
max{\1(f), daw(f)}, (10) ) s+1 -

i . - A ), A ;

where \; and )\, are fixed positive constants. In the case of r haxq AL ;d’(“ﬂ) 2j§1¢(vﬂ)}

minimizing the error exponend; = A\; = 1 [26]. We use this 1

more general formulation because it proves to be usefullate = — max{Ai(s + 1) (vsr1), Ao(r — s)p(vsy1)},

We start with two preliminary lemmas, the first of which is ) )

proved in [19] for the cas@; = \; the proof for the general Where equality holds if we set(v;) = ¢(vs11) andp(v;) =

case is entirely similar. o(vs41) for all . Hence, it is optimal to use the same strategy
_ ~ for each of the sub-trees rooted at the nodgs..,v,. W

Lemma 1. Suppose that Assumptiofd]1-2 hold. Consider

minimizing the objective functioff0) at the fusion center of Theorem 2. Consider anv-symmetric tree sequen¢e, ), >1,
a parallel configuration. Then, there is no loss in optimalit2Nd Suppose that Assumptio]1-2 hold. Within the set of

if we restrict all nodes to use the same transmission functic°ouUnting strategies, there is no loss in optimality if we asg

and the fusion rule to use a counting quantizer. the following restrictions: o _
(i) all leaves use the same transmission function;
Iwe use the notatiotim here, without first showing that the limit exists. (i) for eachk > 1, all level k nodes use counting quantizers
The subsequent arguments can be made completely rigorousrisydering : .
a subsequence of the tree sequence, in which limits of the Tgpd Il error with the same threShmd' .
exponents exist at each non-leaf node. Furthermore, the optimal error exponent at the fusion cente



is given bE tree results in a loss of efficiency as compared to the péralle
configuration, if we restrict to counting strategies. Intfax

.1 .
Es(r) = Jim — log g (T) stronger result is possible. The detection performance of a
h 2-symmetric tree is strictly worse than that of a parallai-co
- — sup {[( 11 Sk T 1)A371(7,t)} A figuration, even without the restriction to counting stepgs.
{sk}:t k=2 r

Proposition 2. A 2-symmetric tree has strictly worse detection
L Sk\ s performance than a parallel configuration. Moreover, theye
[( H ) 171(7’0} no loss in optimality restricting to counting strategies.

k=2
sp€{0,...,r—1}, fork=2,... h; yeT; Proof: Consider a 2-symmetric tree with nodgsandwvs
sending messages directly to the fusion center. It is nat toar
(15)  see that the only choices for the fusion rule are: (i) declase
iff both v; andwv, send 0; (ii) declaréd iff either vy or vy send

Proof: (Outlinél ) From Lemma R, we can restrict at-~ ~ . ; i . .
tention to counting strategies that use the same strategyaagt’ (iii) declarer, iff v, sends a 0; and (iv) declar iff v,

every sub-tree rooted at eache C,(f). Suppose that the sends a 0. The latter two rules can achieve an error exponent

. . . . . at most half that of the parallel configuration since halftedf t
fusion center uses, as its fusion rule, a counting quantlﬁer

with thresholds,. Then, the objective at each € C(f) €aves are ignored. Rules 1 a}nd 2 are counting rules. Ivfsllo
is 10 minimize by the same argument as in the proof of Theofdm 2, that

1 there is no loss in optimality restricting the 2-symmetriget
—max {(sp + 1)Y(v), (r—sn)p()}. to counting strat_egies. The lemma then follows immediately
r from our discussion aftef (16). [ |

— D(P} || B}) < ¢ < D] || ) }.

We apply Lemmal2 om, and repeat the same argument/ier
2 steps. Therefore, we conclude that for each 2, there isno A. On the Worst Case Error Exponent

loss in optimality if all nodes at the same leveluse counting  When » = 1, the network is essentially the same, and
quantizers with the same threshald Moreover, by the same therefore achieves the same performance, as a parallel con-
argument, there is no loss in optimality if each level 1 node hfiguration, which is the best possible. Our next result ptesi

the same Type | and Il error exponents. Lenimha 1, applied éoidence that performance degradesrascreases. In other
each level 1 node, implies that it is asymptotically optifimal words, for a fixed number of nodes, it is preferable to have a
all leaves to use the same transmission funciipand all level high branching factor at level 1, and a low branching factor,

1 nodes to use LLRQs with the same threshol@Note that say » = 2, at the other levels. Le{T,(r)),>1 be ar-
these LLRQs must be equivalent to counting quantizersesirgymmetric tree sequence, for=1,2, .. ..

the leaves use the same transmission function.) Finally,
form of the optimal error exponent is obtained by optimizin
over the thresholds;, (for &k = 2,..., h), the threshold, and
the transmission function. The theorem is now proved.m

emma 3. Suppose that Assumption$11-2 hold, and that the
etwork is restricted to counting strategies. Then, for any
1, h > 1, and any positive integemn > 1, £4(r) < E&(mr).

Suppose that the transmission functipnn (I5) has been Proof: Consider any sequence of integéss wherei =
fixed, and suppose that> 1 andr > 1. Then, we have 2,...,h, such that) < k; < mr for all <. For eachi, we can
L find an integers; € [0,r), such thatms; < k; < m(s; + 1).
e H(Si +1)<1, Sincek; is an integer, we obtain

i=2 ki+1 i+ 1 it 1

R + Sm(s—f—)_s—i-’ (17)
mr mr T

WH(T_S”SL gk omsi s (18)

=2 mr — mr r

and equality cannot hold simultaneously in both expressiofiyen we have
above. Since for each € T', Ag,(v,t) and A7 ;(v,t) are

i int, th t inC(15) is achieved by [/ 1y ki + 1y . S kN
ggtr:i:wnguous in e error exponent iN_(15) is achieved by [(H g )AOJ(%L‘)} N [(H(l B )) 171(%75)]

h

(I it = (15060 00 < (I )5,00] 1 ({0 - 27,00

r

i= =2 =2 =2
Hence, the error exponent &rictly smaller than that for the < —&5(r).

arallel configuration. This shows that usingr#&ymmetric , C T .
P 9 g-&y (The first strict inequality is because equality cannot hold
2The products are taken to be 1 whan= 1. We also use the notation Simultaneously in boti (17) and {18).) Taking the supremum
z Ay = min{z,y}. over k;, v andt, yields £5(mr) > £4(r). The proof is now
3For any given counting strategy, a more rigorous proof wiloive taking complete. u

a subsequence @f’,),,>1 along which the vector of thresholds that defines
the counting strategy converges to a limit; see the prooftafofeniB, for a The above lemma shows that for any > 1 andr > 1,

similar argument. (Eg(mlr))lzo is an increasing sequence, which is bounded



above by zero, hence it converges. We provide an upper bot
for this limit (cf. Propositior b) below.

Proposition 3. Suppose that Assumptiop§]1-2 hold. For an
collection of symmetric tree sequencéél’,(r))n>1 : r = bp(t)

1,2,...}, where(T,,(r))n>1 iS ar-symmetric tree sequence, /(to,bp(to))
we have

AS l(ly’t)hiilAT l(v’t)hiil h—1 Cq(o)
limsup £5(r) < —sup ( ) 2L - ) |
T zgﬂg AS,I(th) T Ail(’y’t) h—1
bp(0)

Proof: Given~ € T, and¢ that satisfies-D(P] | P]) <
t < D(P] || PY), let N (to; cq(to))

_1
Af,l(’ya t) h=t

t
= « 1 « 1 (19) 0
A1 (7 )71 + AT (7, 1) 7T t
ands = LMJ' We have Fig. 2. A typical plot of the rate functions.
" s+ 1\h-1 | r—s\h-1
&m<-[(5=) maa]n[(F2) AL
Sinces/r — ¢ asr — oo, we obtain the optimal error exponent is
limsup E5(r) < —[0"TAL (7, )] A [(1 = 8)" 1AL (7, ¢ . r41\h-1 |
msup £5(r) < ~[5" ASL (3, 0)] AL = 8 AL (.)] 50 = - (221" a3, 00),
S 1% _
— _( AOvl(%t):*lAl»l(%t)’ 11 )h ! and is achieved by using the majority decision rule at alyel
AG ()T + Af (v, 8)"T nodes.
and taking the infimum ovey € I andt € R, the proposition Proof: If r = 1, the network is equivalent to the parallel
is proved. B configuration, and there are no relay nodes to consider. In

Under some additional symmetry assumptions, the inequtilis case,t, = t; = 0 and the condition[{20) holds with
ity in the above proposition becomes an equality. This iswsho equality. Also, the formula fo€%(1) is the well known error

in Propositior 6 in Sectiof V. exponent for the parallel configuration. Henceforth, weiass
thatr > 1.
For simplicity, letp(t) = Ag;(v,t) andq(t) = A7 1(7,1).
B. Optimality of the Majority Decision Rule The sufficient condition[{20) is obtained by approximating

the convex functiong and ¢ with appropriate straight line
segments as shown in Figdrk 2, and as we proceed to show.
eSuppose that

Suppose that all leaves use the transmission funetiar.
Finding an optimal counting strategy by solving the opt
mization problem [(I5) requires us to search over a spac

with »"~1 elements, and also optimizing over The search h h

X T+ 1 h1
can be daunting even for moderate valuesradind h. For b= [ (sk+1) <a:= ( 5 )T <=0 = sk
this reason, we now consider the case wheiie odd, and k=2 k=2

the majority decision rule is used at every non-leaf nodgrhe argument in the case when the above inequalities hold in

i.e., a node transmits a 1 iff the majority of its immediatehe reverse direction will be similar.) We consider the tiohu
predecessors send a 1. For level 1 nodes, the majority decisio the equations

rule corresponds to a LLRQ with threshold 0, while for nodes

of level greater than 1, it corresponds to a counting quantiz y = Mt + bp(0),

with threshold(r — 1) /2. In the proposition below, we develop to

a sufficient condition under which this strategy is optimal. y= _Mt + ¢q(0)
to ’

Zropoiltlor;] 4 anS|der :dr-g)f[mmetrls(: tree nithwct)rl:h V\t”th”vvhich gives the intersection of the straight line approxiores
> L, Wherer 1S an odd nteger. suppose that that alyy, ,in FiguréR. Solving the linear equations, and obegrvi
leaves use the same transmission functior_et ¢, and ¢;

be such thatk ; (v, fo) — 1A% 1 (1.to) and Af 4 (1, ) = TerP(0) = a(0), we obtain

" =LA 1 (v,t1). Under Assumptiongl[I-2, and the restriction Y= be(1 + d) (0)
to counting strategies, if c+bd ’
2rh = (r + 1)A 1 (7,0) whered = %. Sincep andq are convex functions,

max {Ag,l(’Yv to), AT,l(Va tl)} <

rh=tr —1) +r+ 3(2’0) Slip min{bp(t),cq(t)} < y. (21)



We first show thaty < ap(0), for all pairs (b,c¢) such that 1, and that all leaves use the same transmission function

b < a < c. This is equivalent to checking that ~. Under AssumptionEl[-2, and the restriction to counting
_p b— strategies, if
dgzgi—a;:%(l_c—Z)_l’ (22) 2(r+1)
max{D(B] || B}), D] | By)} < —=—5~ inf Aoo(y: M),
for all (b, ¢) such thath < a < ¢. Using the condition cl0.1]
2rh=1(r 4 1) then using the majority decision rule at all non-leaf nodes

A 0 achieves the optimal error exponent.
Th_l(r— 1) +T+3 0,1(75 )7 p p

(which is a consequence ¢f(20)), it can be shown (after some V. RAPIDLY BRANCHING TREE SEQUENCES
algebra) that

Aj1 (7, t0) <

In the previous section, we considered a symmetric tree
d< c*(a—b") sequence in which the number of non-leaf nodes is bounded. In
~ b*(¢* —a)’ this section, we consider tree sequences in which the number
where b* = (r + 1)"2(r — 1)/2"-1 and ¢ = (r + pf non—leafv\?odglf k;]ecorr;es_ Iart%e, int_a clertain sens;}e a:s
1)"=2(r+3)/2h=1. The right-hand side of(22) increases whefy o ©as€s. We WIT characterize the opfimal error expoiwsn

-such tree sequences under a restricted class of stratagigs,

b decreases (and increases), hence the minimum value 'Zhow that the performance of these tree sequences is inferio
achieved byb = b*, andc = ¢*. This shows that[{22) holds P q

to that of ther-symmetric tree sequences.
for all (b,c) such thath < a < ¢, and thereforey < ap(0). : . : )
From [21), we then have Motivated by Design Il in Examplé]l, we define the

following.
Sup min{bp(t), cq(t)} < ap(0). Definition 2. A rapidly branching tree sequence is a sequence
be:b=asc of h-uniform trees(7,,),,>1, such that:
A similar argument shows that (i) the number of immediate predecessors of each non-leaf

node grows to infinity as increases;

i < .
sup. - min{bp(t), cq(t)} < ap(0) (i) there exists a sequence of positive redls,),>1 such

t
beesash that x,, decreases to 0 as increases and such that for
Therefore, from Theoref 2, we obtain each levelk nodev, with k£ > 2, we have
. a r4+1\hL 12
&5(n) > 50 = =(5) A6a000) maXucCuw W) i o),

_ o _ mingec, (v) 12 (1)
Finally, the proposition is proved by noting that the above A rapidly branching tree sequence is a sequence of trees

mequgllty becqmes an equality when we set each of t|hnewhich the number of immediate predecessors of each node
counting quantizer thresholds ta = (r — 1)/2.

To show that our sufficient condition in Propositibh 4 igrows Iaster tha_n _the rate at Wh'Ch the tre_e becomes *unbal-
apced. The definition of a rapidly branching tree sequence

not vacuous, we provide an example in which the use of " : .
P P implies that the number of immediate predecessors of every

the majority decision rule does not give an optimal countiqgveI 1 node aro formly fast i tai
strategy. de grows uniformly fast, in a certain sense.

In Design Il of Example[1l, whem is large, with high
Example 2. Consider ar-symmetric network, withr = 45 probability, we havé,, (u) ~ [, (v) for all level 1 nodes: and
and h = 3. Suppose that each leaf sends the message.1Therefore, this tree network fits our definition of a rapidly
with probability po = 0.3 under hypothesidiy, and with branching network with height = 2. For a generah, a
probability p; = 0.9 under hypothesigZ;. If all non-leaf similar design can be used to approximate-hop MST [27].
nodes use the majority decision rule (the counting quantize all of these designs, with high probability we get a rapidl
thresholds ares;, = s3 = 22), we get an error exponentbranching tree network.
of —129.2460/452. If counting quantizers with thresholds Since using LLRQs for every node is known to be optimal
sy = s3 = 23 are used, our error exponentis29.5009/45%,  (see e.g. [5]), we assume that every node (including ledses)
which dominates (is more negative than) the one for tlalowed to use LLRQs. The number of nodes at each lgvel
majority decision rule. In fact, it can be checked numehjcalin a rapidly branching tree network grows with Similar
thatss = s3 = 23 is the optimal choice of counting quantizersto Section[1V, the problem of finding optimal LLRQs for
O each node in a rapidly branching tree network is, in general,
iH’ntractable. Therefore, we make the following simplifying

The sufficient condition in({20) can be difficult to check .
assumption.

one does not have access to the functidfis(v,), j =0, 1.
A simpler but cruder sufficient condition is presented belowvAssumption 3. Every node is allowed to use LLRQs, and
the proof is the same as in Propositldn 4, except that we Btery node at the same levieluses a LLRQ with the same
D(P] || P}) play the role oft,, and—D(P} || P]) the role of thresholdty.

! For notational simplicity, if each leaf uses a transmission

Corollary 1. Suppose that is an odd integer greater than function~ which is a LLRQ, we identifyy with the threshold



of the LLRQ, i.e.,v = to € R. We will first state a limit and

theorem for a rapidly branching tree netwo_rk. This re_sult A (B DY (AE L (y, t D) — 1)
essentially shows that the bounds in Proposifibn 1 are,tight\} k(%t(k)) = 1”1 ! - 0.k : = )
and is similar in spirit to tightness results for Chernoftibds. ’ AG k-1 (7, tk=1)) + AT 1 (7, tk=1)
As the proof is rather long and tedious, we refer the reader t Af oy (1 DY (AT Ly (17D 1)
[25]- AG oy (1 tF=D) AT (7, 8D

Rs oy, t®) =

Proposition 5. Suppose that Assumptioh#{11-2 hold. Given

a rapidly branching tree sequendd;,),>1, suppose each

leaf sends its observation to its immediate successor usiAgpof of Theorem[3: Suppose that under Assumptidnis]1-3, an
a transmission functior € T', and each levek node, where optimal strategy is for each leaf to use a LLRQ with threshold
k > 1, uses a LLRQ with a common threshald Suppose +,, and for each levek node, wherek > 1, to use a LLRQ

that {~,t1,...,t,} satisfy [3){(5). Then, with thresholdt,, ;. Let (n;);>1 be a subsequence such that
1 1
lim ——logPi (Y =0) = —A*, (v, t(M), lim —— log P.(Ty,) = Ef .
o0 1 (f) g Py (Yy =0) La( ) % 1 (F) g Pe(Tn,) = Epp
lim L log Py (yf = 1) =—A} h(%t(h))- Since~,, is bounded|f,,| cannot diverge to infinity, otherwise
n—o0 I(f) ’ every leaf reports either 1 or 0 with probability one asymp-

totically, under either hypothesis), there exists a subsage
u_l)lzl of (n;);>1 such thaty,, — v € R asl — oo. Then,
rom AssumptionR, sinceD(P] ||P]) and D(P] || P]) are
bounded, the thresholds, , must satisfy—D(P] || P]) —1 <

. . . tu,e < D(P] || ) + 1, for I sufficiently large; otherwise, it
Theorem 3. Consider a rapidly branching tree SEAUENCR AN be shown that either the Type | or Type Il error exponent

ggl)grlc;rse%g?\:tt?;t Assumptidd§]1-3 hold. Then, the op;f{t— the fusion center is zero.

T 1
" AG (7, t) F=T AT (y, t1) T
Erp = — sup ( , 1 . 1

AO,l(%tl)hf1 +A171(’Y7t1)h*1

We now consider the Bayesian detection problem in
rapidly branching tree sequence, in which all nodes are cq)
strained to sending binary messages.

h— .
) 1, (23) Therefore, there exists a further subsequefeg);>; of
(w)i>1 such that for allk, lim;_c tm, x = tx, for some

) _ ] bounded;. Then, for alle > 0, from Propositiofib, we obtain
Furthermore, if the supremum is achievedty T', andt; €

(—=D(PJ || P]),D(P] || P3)), then the optimal threshold for the Epp = —min{Ag (Y + €t + €. bk +6),
fusion center is; = 0, and the optimal threshold, for level Ny —6t1—¢6...tk — )}

k nodes, wherd: =2,...,h — 1, is . . .
Taking e — 0, and noting that\j , and A} ; are continuous

th :(Agﬂk,l(v,t(k’l))Ajk,l(v,t(k*”)’“i“ - in all their arguments, we get

. b A ) £ > mind AF () AF (. 4O
Af o (1 DY TN (e 1)))/ rp 2 —min{Ag (v, £), A7 5 (7, £)}

. 1 i 1 This shows that there is no loss in optimality if we restrio t
(Ag,k—l(%t( TR LAY (7t 1))hk“> . transmission functions to be the same forsallTherefore, it
remains to optimize ovey € T and overt("). In this case, it is

We first state two lemmas that we will not prove. The prod‘1"e" known (using the same argument as in Corollary 3.4.6 of

of these two lemmas are easily obtained using simple algedf)) that the optimal fusion rule at the fusion center cetssi
of a LLRQ with threshold;, = 0. To simplify the notation in

Lemma 4. Givenk > 1 anda,b > 0, we have the following, we writeA* , (v,¢*)) asA%,. Then, we have
min (-4l )E g (AR )Y P B CYSICATLIPY
—b<z<a \\a(b+ x) bla — x) %te([hil]>
1\ %1 1\ mry k1 [
=) +G)) I e N 24)

L - NGy AT
and the minimizer is given by

1 —1
[t (e )
Wb — arh Lﬁwfil Ny TR
1 1 inf inf{ As’h_z—i_AI’h_z

~,t(h=2) th_y Ar . (A* o+ thfl)
Lemma 5. For k > 2, andt(*) satisfying [#){(5), we have A O’Z_ [2\* b2 o
0,h—2 1,h—2 H

: (F))A* (*) " "
inf Ao,k(%t(k); /\) __ {}O,k(%(i) )Alf(%t (k)) 7 Al,h—2(A0,h—2 — thfl)
ACl0] As k(1 t) + A7 (7,18)) where [24) and[{(25) follow from Lemmi@ 5. We take=

—a
aF+T + hF+T ' . [

+

(25)




Af_p andb = A7, , in Lemmal4 to obtain exponentially fast with the number of nodes in the network,
1 12 1 1/242q-1 and prowded bounds for the rate of decay. W_e also con3|de_red
Ehp = _[ inf {( * ) +( * ) } } ) specific classes of tree networks to quantify the detection
7,12 LNAG o Al s performance. In particular, we considered simple counting
The optimal error exponent and the optimal thresholds fétrategies in symmetric tree networks, and characterized t
the LLRQs then follow by repeating the above same argumettimal detection performance over this class of strategie
for anotherh — 2 steps. The proof is now complete. 1 We showed that the detection performance of symmetric tree
By taking t; = 0 in (23), we obtain a lower bound thatnetworks (with a fixed number of relay nodes) is superior to
matches the upper bound ifil (9). Hence one does no wotBat of rapidly branching tree networks, although the fatte
than by a factor ofl /2"~ from the optimal error exponentis, in general, more energy efficient. We also showed that for
of a parallel configuration. these classes of tree networks and transmission stratéigges
For completeness, our next result shows that the bouBayesian detection performance deteriorates with thehheig
in Proposition[B is an equality if leaves can use LLRQs 4Be tree architecture, in contrast to the results for thenhay
transmission functions. In some sense, it is also a consigte Pearson formulation [20].
result: trees with a fixed branching factey in the limit of ~ Throughout this paper, we have assumed that every node
larger, perform the same as rapidly branching trees. makes a (conditionally) i.i.d. observation. A topic for thuer
research is the case of correlated observations, whichimsma
relatively unexplored area, with work mainly limited taeth
rallel configuration [10], [28]-[32].

Proposition 6. Suppose that the sdt of allowable trans-
mission functions for the leaves includes LLRQs. Then,mun
AssumptionE]1l and 2, we have
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leaves attached to it. Then, from Theoré&m 2,_the optimal REFERENCES
error exponent for each tree sequeli@én, r)),>1 is £5(r).
; N [1] Z. Chair and P. K. Varshney, “Optimal data fusion in mpiti sensor
Sup.pose that*there eXIStf a SUbsequémemzl such that detection systemsJEEE Trans. Aerosp. Electron. Systol. 22, no. 1,
g = limy, .o E&(rm) < Efp. Suppose that each tree se-  pp o8-101, 1986.
quence(T'(n, rm,))n>1 USes the asymptotically optimal count- [2] G. Polychronopoulos and J. N. Tsitsiklis, “Explicit stibns for some

ing strategy proposed in Theor€&in 2. Note that this stratisgy a gﬁg'ige%%mﬁizgdp‘ftg‘éﬁz"_g ggnggéEEE Trans. Aerosp. Electron.
satisfies Assumptidnl 3. We shall construct a rapidly brarghi [3] P. Willett and D. Warren, “The s’uboptimality of randoreit tests in

tree sequence frof\(T'(n, rm))n>1 : m > 1}. Fix a positive distributed and quantized detection systemi&EE Trans. Inf. Theory

e < &Ly — g, and let(n be an increasing sequence of _ Vol 38, no. 2, pp. 355-361, Mar. 1992. = . .
<Crp Y ( m)mzl 9 Seq [4] J. N. Tsitsiklis, “Extremal properties of likelihooddio quantizers,”

positive integers such that IEEE Trans. Communvol. 41, no. 4, pp. 550-558, 1993.
1 [5] —, “Decentralized detectionAdvances in Statistical Sighal Process-
——log PE(T(nm’ rm)) < 5§(Tm) +e. ing, vol. 2, pp. 297-344, 1993.
lnm (f) [6] W.W. Irving and J. N. Tsitsiklis, “Some properties of apal thresholds

~ o . . in decentralized detection/EEE Trans. Autom. Contrphol. 39, no. 4,
Let T,, = T(nm,rm). Then, it is an easy exercise to verify pp. 835-838, 1994.

that f satisfies Definitio withe.. = 1/r.. (which [7] R. Viswanathan and P. K. Varshney, “Distributed detattvith multiple
(Lon )21 2 m Jrm ( sensors: part | - fundamental$?roc. IEEE vol. 85, no. 1, pp. 54-63,

goes to 0, asn — oo0). We then have 1997
1 _ .-F. Chamberland and V. V. Veeravalli, “Decentralizedtection in
8] J.-F. Chamberland and V. V. V lli, “D lizeldtection i
—l (f) log Pe(Tm) = 7 (f) log PE(T(nm, rm)) sergsozroggtworks,l’EEE Trans. Signal Processvol. 51, no. 2, pp. 407—
Nom N, 416, .
< &* (T ) +e [9] ——, “Asymptotic results for decentralized detection jower con-
= Zs\im strained wireless sensor network$ZEE J. Select. Areas Commun.,
; ; Special Issue on Wireless Sensor Networks. 22, no. 6, pp. 1007—
Takingm — oo, we obtain 1015, 2004.
1 ~ ——, “How dense should a sensor network be for detecticith w
. y 10 “H d hould k be for d iaith
msup ———= log P (1),) < g+e¢ RB> correlated observations rans. Inf. Theoryvol. 52, no. 11, pp.
1 7 log P.(Th,) <g+e<& lated ob ions?EEE T Inf. Th . 52 11
m—oco ln, (f) 5099-5106, Nov. 2006.

[ ] R. Viswanathan, S. C. A. Thomopoulos, and R. Tumulu@ptimal
a contradiction to Theorerfl] 3. Therefore, we must ha\H?l serial distributed decision fusionlEEE Trans. Aerosp. Electron. Syst.

liminf, .o E4(r) > &fp. Finally, from Propositiori 13, we vol. 24, no. 4, pp. 366-376, 1988.

obtain the desired conclusion. B [12] A. R. Reibman and L. W. Nolte, “Design and performancenparison
of distributed detection networkslEEE Trans. Aerosp. Electron. Syst.
c vol. 23, no. 6, pp. 789-797, 1987.

VI. CONCLUSION [13] Z. B. Tang, K. R. Pattipati, and D. L. Kleinman, “Optinaizon of

In this paper, we studied the detection performance of Iarge detection networks: part | - tandem structurd&EE Trans. Syst., Man,

. . . Cybern, vol. 21, no. 5, pp. 1044-1059, 1991.
scale tree networks with bounded helght, under a Bayes ——, “Optimization of detection networks: part Il - trestructures,”

formulation. We showed that the error probability decays IEEE Trans. Syst., Man, Cyberrol. 23, no. 1, pp. 211-221, 1993.



[15] J. D. Papastavrou and M. Athans, “On optimal distridutgecision
architectures in a hypothesis testing environmel#EE Trans. Autom.
Control, vol. 37, no. 8, pp. 1154-1169, 1992.

A. Pete, K. Pattipati, and D. Kleinman, “Optimizatiorf detection
networks with multiple event structuredEEE Trans. Autom. Contrpl
vol. 39, no. 8, pp. 1702-1707, 1994.

S. Alhakeem and P. K. Varshney, “A unified approach todesign of

[16]

[17]

decentralized detection system#FEE Trans. Aerosp. Electron. Syst. |

vol. 31, no. 1, pp. 9-20, 1995.

Y. Lin, B. Chen, and P. K. Varshney, “Decision fusionesilin multi-hop
wireless sensor networksEEE Trans. Aerosp. Electron. Sysiol. 41,
no. 2, pp. 475-488, Apr. 2005.

J. N. Tsitsiklis, “Decentralized detection by a largentber of sensors,”
Math. Control, Signals, Systvol. 1, pp. 167-182, 1988.

W. P. Tay, J. N. Tsitsiklis, and M. Z. Win, “Data fusionetrs for
detection: Does architecture matted®EE Trans. Inf. Theoryvol. 54,
no. 9, pp. 4155-4168, Sep. 2008.

M. E. Hellman and T. M. Cover, “Learning with finite menygr Ann.
of Math. Statist. vol. 41, no. 3, pp. 765-782, 1970.

T. M. Cover, “Hypothesis testing with finite statisticsAnn. of Math.
Statist, vol. 40, no. 3, pp. 828-835, 1969.

J. D. Papastavrou and M. Athans, “Distributed detechy a large team
of sensors in tandem|EEE Trans. Aerosp. Electron. Systol. 28, no. 3,
pp. 639-653, 1992.

W. P. Tay, J. N. Tsitsiklis, and M. Z. Win, “On the sub-exmential
decay of detection error probabilities in long tandem&EE Trans.
Inf. Theory vol. 54, no. 10, pp. 4767-4771, Oct. 2008.

W. P. Tay, “Decentralized detection in resource-leditsensor network
architectures,” Ph.D. dissertation, Massachusettstiistof Technology,
Dec 2007.

A. Dembo and O. Zeitounil.arge Deviations Techniques and Applica-
tions New York, NY: Springer-Verlag, 1998.

A. Clementi, M. lanni, A. Monti, M. Lauria, G. Rossi, ariRl. Silvestri,
“Divide and conquer is almost optimal for the bounded-hopTMfBob-
lem on random Euclidean instances,Hroc. Structural Information and
Communication ComplexityMont Saint-Michel, France, May 2005, pp.
89-98.

E. Drakopoulos and C. C. Lee, “Optimum multisensor dasof cor-
related local decisionsJEEE Trans. Aerosp. Electron. Systol. 27,
no. 4, pp. 593-606, Jul. 1991.

M. Kam, Q. Zhu, and W. S. Gray, “Optimal data fusion of dated
local decisions in multiple sensor detection systemEEE Trans.
Aerosp. Electron. Systvol. 28, no. 3, pp. 916-920, 1992.

R. S. Blum and S. A. Kassam, “Optimum distributed detecof weak
signals in dependent sensortfEE Trans. Inf. Theoryvol. 38, no. 3,
pp. 1066-1079, May 1992.

R. S. Blum, S. A. Kassam, and H. Poor, “Distributed detec with
multiple sensors: part Il - advanced topicBfoc. |IEEE vol. 85, no. 1,
pp. 64—79, 1997.

W. Li and H. Dai, “Distributed detection in large-scaensor networks
with correlated sensor observations,” Bmoc. Allerton Conf. on Com-
munication, Control, and Computingep. 2005.

(18]

[19]

[20]

[21]
[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

[32]

Wee Peng Tay (S'06) received the B.S. degree

University in 2002. He received the Ph.D. degree i
Electrical Engineering and Computer Science fro
the Massachusetts Institute of Technology, Cal
bridge, in 2008.

making in sensor networks, data fusion, distribute

bility.

in Electrical Engineering and Mathematics and thq
M.S. degree in Electrical Engineering from Stanford,

His research interests include distributed decisio&

algorithms, stochastic networks, and applied probaé-1

10

John N. Tsitsiklis (F '99) received the B.S. degree
in Mathematics (1980), and the B.S. (1980), M.S.
(1981) and Ph.D. (1984) degrees in Electrical En-
gineering, all from M.L.T., where he is currently a
Clarence J Lebel Professor of Electrical Engineering.
He has also served as a co-director of the MIT
Operations Research Center (2002-5).

His research interests are in the fields of systems,
optimization, communications, control, and opera-
tions research. He has coauthored four books and
more than a hundred journal papers in these areas
His awards include an Outstanding Paper Award by the IEEHrGloBystems
Society (1986), the M.I.T. Edgerton Faculty Achievementafev(1989), the
Bodossakis Foundation Prize (1995), and the INFORMS/CSTZ (§1997).

He is currently a member of the editorial board for the Sprirderlag

"Lecture Notes in Control and Information Sciences” serias associate
editor of Mathematics of Operations Research, a member efNational
Academy of Engineering, and was a member of the National €bwm

Research and Technology in Greece (2005-07).

Moe Z. Win (S'85-M'87-SM'97-F'04) received the
B.S. degreerfiagna cum laudefrom Texas A&M
University, College Station, in 1987 and the M.S.
degree from the University of Southern California
(USC), Los Angeles, in 1989, both in Electrical
Engineering. As a Presidential Fellow at USC, he
received both an M.S. degree in Applied Mathemat-
ics and the Ph.D. degree in Electrical Engineering
in 1998.

Dr. Win is an Associate Professor at the Labora-
tory for Information and Decision Systems (LIDS),
Massachusetts Institute of Technology (MIT). Prior to jo@q MIT, he
spent five years at AT&T Research Laboratories and sevens yaaithe
Jet Propulsion Laboratory. His main research intereststteeapplications
of mathematical and statistical theories to communicatidetection, and
estimation problems. Specific current research topicsudecllocation-aware
networks, measurement and modeling of time-varying cHanmesign and
analysis of multiple antenna systems, ultra-wide bandw{dtWB) systems,
optical transmission systems, and space communicaticstersg.

Professor Win has been actively involved in organizing ahdiring a
number of international conferences. He served as the keathRrogram
Chair for the IEEE Conference on Ultra Wideband in 2006, tE&H
Communication Theory Symposia of ICC-2004 and Globeco®B2@nd the
IEEE Conference on Ultra Wideband Systems and Technoldgiez002;
Technical Program Vice-Chair for the IEEE International nf@wence on
Communications in 2002; and the Tutorial Chair for ICC-2088d the
IEEE Semiannual International Vehicular Technology Cogriee in Fall
2001. He served as the chair (2004-2006) and secretary {2002 for
the Radio Communications Committee of the IEEE CommurtoatiSociety.
Dr. Win is currently an Editor for IEEE TRANSACTIONS ON WIRHSS
COMMUNICATIONS. He served as Area Editor for Modulation aSdnal
Design (2003-2006), Editor for Wideband Wireless and Giitgr(2003-2006),
and Editor for Equalization and Diversity (1998-2003), &k the IEEE
TRANSACTIONS ON COMMUNICATIONS. He was Guest-Editor foreth
2002 |IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS
(Special Issue on Ultra-Wideband Radio in Multiaccess &&® Communi-
cations).

Professor Win's recognitions include the Office of Naval &ash Young
nvestigator Award (2003), the U.S. Presidential Early gear Award for
Scientists and Engineers (2004), and the Laurea HonorisaCé&nom the

rUniversity of Ferrara, Italy (2008). His papers have reegimumerous awards
rTf_ncluding the IEEE Antennas and Propagation Societys $érggchelkunoff
Mransactions Prize Paper Award (2003) and the IEEE Comratioits Soci-

etys Guglielmo Marconi Best Paper Award (2008). In 2004 fé&asor Win was
amed Young Aerospace Engineer of the Year by the AIAA, anctbeived a
ulbright Foundation Senior Scholar Lecturing and Res$e&edlowship, and
n Institute of Advanced Study Natural Sciences and TedgyoFellowship.
Of particular significance, he was honored with the IEEE EicSumner
Award (2006), an IEEE Technical Field Award, for “pionegyinontributions
to ultra-wide band communications science and techndldgypfessor Win
is an |IEEE Distinguished Lecturer and an elected Fellow ef IfEEE, cited
for “contributions to wideband wireless transmission.”



	Introduction
	Problem Formulation
	Exponential Decay
	Symmetric Tree Sequences
	On the Worst Case Error Exponent
	Optimality of the Majority Decision Rule

	Rapidly Branching Tree Sequences
	Conclusion
	References
	Biographies
	Wee Peng Tay
	John N. Tsitsiklis
	Moe Z. Win


