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Multiple-Description Coding by Dithered

Delta-Sigma Quantization

Jan Østergaard and Ram Zamir

Abstract

We address the connection between the multiple-description (MD) problem and Delta-Sigma quanti-

zation. The inherent redundancy due to oversampling in Delta-Sigma quantization, and the simple linear-

additive noise model resulting from dithered lattice quantization, allow us to construct a symmetric and

time-invariant MD coding scheme. We show that the use of a noise shaping filter makes it possible

to trade off central distortion for side distortion. Asymptotically as the dimension of the lattice vector

quantizer and order of the noise shaping filter approach infinity, the entropy rate of the dithered Delta-

Sigma quantization scheme approaches the symmetric two-channel MD rate-distortion function for a

memoryless Gaussian source and MSE fidelity criterion, at any side-to-central distortion ratio and any

resolution. In the optimal scheme, the infinite-order noiseshaping filter must be minimum phase and

have a piece-wise flat power spectrum with a single jump discontinuity. An important advantage of the

proposed design is that it is symmetric in rate and distortion by construction, so the coding rates of the

descriptions are identical and there is therefore no need for source splitting.

Index Terms

delta-sigma modulation, dithered lattice quantization, entropy coding, joint source-channel coding,

multiple-description coding, vector quantization.

I. INTRODUCTION AND MOTIVATION

Delta-Sigma analogue to digital (A/D) conversion is a technique where the input signal is

highly oversampled before being quantized by a low resolution quantizer. The quantization noise
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is then processed by a noise shaping filter which reduces the energy of the so-called in-band noise

spectrum, i.e. the part of the noise spectrum which overlapsthe spectrum of the input signal.

The end result is high bit-accuracy (A/D) conversion even inthe presence of imperfections in

the analogue components of the system, cf. [1].

The process of oversampling and use of feedback to reduce quantization noise is not limited

to A/D conversion of continuous-time signals but is in fact equally applicable to, for example,

discrete time signals in which case we will use the term Delta-Sigma quantization. Hence,

given a discrete time signal we can apply Delta-Sigma quantization in order to discretize the

amplitude of the signal and thereby obtain a digital signal.It should be clear that the process

of oversampling is not required in order to obtain a digital signal. However, oversampling leads

to a controlled amount of redundancy in the digital signal. This redundancy can be exploited in

order to achieve a certain degree of robustness against inaccuracy in the quantization, or partial

loss of information due to transmission of the digital signal over error-prone channels. In this

paper we pursue the latter aspect, and relate it to the problem of multiple descriptions.

In the information theory community the problem of quantization is usually referred to as a

source coding problem whereas the problem of reliable transmission is referred to as a channel

coding problem. Their combination then forms a joint source-channel coding problem. The

multiple-description (MD) problem [2], which has recentlyreceived a lot of attention, is basically

a joint source-channel coding problem. The MD problem is concerned with lossy encoding of

information for transmission over an unreliableK-channel communication system. The channels

may break down resulting in erasures and a loss of information at the receiving side. Which of the

2K − 1 non-trivial subsets of theK channels that is working is assumed known at the receiving

side but not at the encoder. The problem is then to design an MDsystem which, for given

channel rates, minimizes the distortions due to reconstruction of the source using information

from any subsets of the channels. Currently, the achievableMD rate-distortion region is only

completely known for the case of two channels, squared-error fidelity criterion and a memoryless

Gaussian source [2], [3]. The bounds of [3] have been extended to stationary and smooth sources

in [4], [5], where they were proven to be asymptotically tight at high resolution. Inner and outer

bounds to the rate-distortion region for the case ofK > 2 channels were presented in [6]–[8]

but it is not known whether any of the bounds are tight forK > 2 channels.

The earliest practical MD schemes, which was shown to be asymptotically optimal at high
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resolution and large lattice vector quantizer dimensions,were based on the principle of index

assignments, cf. [9]–[13]. Unfortunately, the existing methods for constructing index assignments

in high vector dimensions are complex and computationally demanding. To avoid the difficulty

of designing efficient index assignments, it was suggested in [14] that the index assignments

of a two-description system can be replaced by successive quantization and linear estimation.

More specifically, the two side descriptions can be linearlycombined and further enhanced by a

refinement layer to yield the central reconstruction. The design of [14] suffers from a rate loss

of 0.5 bit/dim. at high resolution and is therefore not able to achieve the MD rate-distortion

bound.1 Recently, however, this gap was closed by Chen et al. [15] whorecognized that the

rate region of the MD problem forms a polymatroid, and showedthat the corner points of this

rate region can be achieved by successive estimation and quantization. The design of Chen et

al. is inherentlyasymmetricin the description rate since any corner point of a non-trivial rate

region will lead to asymmetric rates. To symmetrize the coding rates, it is necessary to break

the quantization process into additional stages, which is amethod known as “source splitting”

(following Urbanke and Rimoldi’s rate splitting approach for the multiple access channel). When

finite-dimensional quantizers are employed, there is a space-filling loss due to the fact that the

quantizer’s Voronoi cells are finite dimensional and not completely spherical, [16], and as such

each description suffers a rate loss. The rate loss of the design given in [15] is that of2K − 1

quantizers because source splitting is performed by using an additionalK−1 quantizers besides

the conventionalK side quantizers.2

An interesting open question is: can we avoid both the complexity of the index assignments

and the extra space-filling loss due to source splitting in symmetric3 MD coding?

Inspired by the works presented in [14], [15], [17], we present a two-channel MD scheme based

on two times oversampled dithered Delta-Sigma quantization, which is inherently symmetric

in the description rate and as such there is no need for sourcesplitting.4 The rate loss when

1The termrate lossrefers to the rate redundancy of the specific implementation, i.e. the additional rate required due to using

a sub-optimal MD scheme.

2By use of time-sharing, the rate loss can be reduced to that ofonly K quantizers. Moreover, in the two-description scalar

deterministic case, the rate loss can be further reduced, cf. [15].

3By symmetricwe refer to the case where the MD scheme has balanced description rates and balanced side distortions.

4It should be noted that it is difficult to extend the proposed construction to allow for asymmetric description rates.

December 15, 2008 DRAFT



4 SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY, AUGUST 2007

employing finite-dimensional quantizers (in parallel) is therefore given by that of two quantizers.

The side-to-central distortion ratio is controlled by the noise shaping filter; the more “high-pass”

the noise is, the larger is the side-to-central distortion ratio. Asymptotically as the dimension

of the vector quantizer and order of the noise shaping filter approach infinity, we show that the

symmetric two-channel MD rate-distortion function for a memoryless Gaussian source and MSE

fidelity criterion can be achieved at any resolution. It is worth emphasizing that our design is

not limited to two descriptions but, in fact, an arbitrary number of descriptions can be created

simply by increasing the oversampling ratio.5 However, in this paper, we only prove optimality

for the case of two descriptions.

In the Delta-Sigma quantization literature there seems to be a consensus of avoiding long

feedback filters. We suspect this is mainly due to the fact that the quantization error in traditional

Delta-Sigma quantization is a deterministic non-linear function of the input signal, which makes

it difficult to perform an exact system analysis. Thus, theremight be concerns regarding the

stability of the system. In our work we use dithered (lattice) quantization, so that the quantization

error is a stochastic process, independent of the input signal, and the whole system becomes

linear. This linearization is highly desirable, since it allows an exact system analysis for any

filter order and at any resolution.6 The case of infinite filter order has a very simple solution in

the frequency domain, which (for large lattice dimension) guarantees that the proposed scheme

achieves the symmetric two-channel MD rate-distortion function [2], [3].

Besides the quantizer-based MD schemes mentioned above there exist several other ap-

proaches, e.g. MD schemes based on quantized overcomplete expansions [19]–[22]. The works

of [19], [20] are based on finite frame expansions and that of [21], [22] are based on redundant

M-channel filter banks.

It is well known that there is a connection between quantizedovercomplete expansions

and Delta-Sigma quantization, cf. [23]–[25]. Furthermore, as mentioned above, the connection

between overcomplete expansions and the MD problem has alsobeen established. Yet, to the

5When considering more than two descriptions, the distortion generally depends upon the particular subset of received

descriptions whereas the coding rate is the same for all descriptions.

6Notice that our results are valid in steady state where the system is time invariant, i.e. we assume the system has been

operating for a long time so that possible short-time temporal transient effects can be ignored. When referring to variances and

power spectra we therefore always mean thestationaryvariances andstationarypower spectra [18].
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best of the authors knowledge, none of the schemes presentedin [19]–[22] are able to achieve the

above mentioned MD rate-distortion bounds. Furthermore, the use of Delta-Sigma quantization

explicitly for MD coding appears to be a new idea. In this paper, we show that traditional Delta-

Sigma quantization can be recast in the context of MD coding and furthermore, that it provides

an optimal solution to the MD problem in the symmetric case.

The paper is structured as follows: In Section II, we providean introduction to dithered

Delta-Sigma quantization. In Section III, a connection between Delta-Sigma quantization and

MD coding is established and we present the main theorem of this work. The proof of the theorem

is deferred to Section V. Section IV presents an asymptotic characterization and performance

analysis of the proposed scheme in the limit of high dimensional vector quantization and high

order noise shaping filter. Section VI shows that the proposed scheme is, in fact, asymptotically

optimal at high resolution for any i.i.d. source with finite differential entropy. An extension to

K descriptions is presented in Section VII, and finally, Section VIII contains the conclusions.

II. D ITHERED DELTA-SIGMA QUANTIZATION

Throughout this paper we will use upper case letters for stochastic variables and lower case

letters for their realizations. Infinite sequences andL-dimensional vectors will be typed in bold

face. We letX ∼ N(0, σ2
X) denote a zero-mean Gaussian variable of varianceσ2

X , andX =

{X1, X2, . . . } denote an infinite sequence of independent copies ofX. ThusX is an i.i.d. (white)

Gaussian process. Moreover,x = {x1, x2, . . . , } denotes a realization ofX wherexk is thekth

symbol ofx.

A. Preliminaries: Entropy-Coded Dithered Quantization

code decode
Entropy EntropyS

ZZ

ŜQL

Fig. 1. Entropy-constrained dithered (lattice) quantization (ECDQ). The dither signalZ is assumed known at the decoder.

The quantizerQL is anL-dimensional lattice vector quantizer and the rate of the entropy coder is given by the entropy of the

quantized output ofQL conditioned uponZ .

December 15, 2008 DRAFT



6 SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY, AUGUST 2007

Before introducing our dithered Delta-Sigma quantizationsystem, let us recall the properties

of entropy-coded dithered (lattice) quantization (ECDQ) [26]. ECDQ relies upon subtractive

dither; see Fig. 1. For anL-dimensional input vectorS, the ECDQ output is given bŷS =

QL(S + Z)−Z, whereQL denotes anL-dimensional lattice quantizer with Voronoi cells [27].

The dither vectorZ, which is known to both the encoder and the decoder, is independent of the

input signal and previous realizations of the dither, and isuniformly distributed over the basic

Voronoi cell of the lattice quantizer. It follows that the quantization error

E = Ŝ − S = QL(S + Z) − S − Z (1)

is statistically independent of the input signal. Furthermore,E is an i.i.d.-vector process, where

eachL-block is uniformly distributed over the mirror image of thebasic cell of the lattice, i.e.,

as−Z. In particular, it follows thatE is a zero-mean white vector with varianceσ2
E [26], [28].

The average code length of the quantized variables is given by the conditional entropy

H(QL(S + Z)|Z) of the quantizerQL, where the conditioning is with respect to the dither

vectorZ. It is known that this conditional entropy is equal to the mutual information over the

additive noise channelY = S +E whereE (the channel’s noise) is distributed as−Z; see [26]

for details. The coding rate (perL-block) of the quantizer is therefore given by

H(QL(S + Z)|Z) = I(S; Y ) = h(S + E) − h(E) (2)

whereI(·, ·) denotes the mutual information andh(·) denotes the differential entropy. If subse-

quent quantizer outputs are entropy-coded jointly, then wemust change the blockwise mutual in-

formation in the rate formula (2) to the joint mutual information between input-output sequences

(if there is no feedback) [26], or to thedirectedmutual information (if there is feedback) [29],

[30].

If the sourceS is white Gaussian, then the coding rate (2), normalized per-sample, is upper

bounded by

1

L
H(QL(S + Z)|Z) ≤ 1

2
log2

(

1 +
Var(Sk)

σ2
E

)

+
1

2
log2(2πeGL) (3)

= RS(D) +
1

2
log2(2πeGL) (4)

whereGL is the dimensionless normalized second moment of theL-dimensional lattice quantizer

QL [27]. In the second equality,D is the total distortion after a suitable post-filter (multiplier)
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andRS(D) is the rate-distortion function of the white Gaussian source S; see [31]. The quantity

2πeGL is the space-filling loss of the quantizer and1
2
log2(2πeGL) is the divergence of the

quantization noise from Gaussianity. It follows that it is desirable to have Gaussian distributed

quantization noise in order to makeGL as small as possible and thereby drive the rate of

the filtered quantizer towardsRS(D). Fortunately, it is known that there exists lattices where

GL → 1/2πe as L → ∞; the quantization noise of such quantizers is white, and becomes

asymptotically (in dimension) Gaussian distributed in thedivergence sense [28].

B. Delta-Sigma ECDQ

LPF

−
+

+

Dither Entropy
coding

LPF

ak a′
k âk

c′(z)

QL

ek

ẽk

xn x̂nh(z) ha(z)
22

R = H(QL|Dither)

Fig. 2. Dithered Delta-Sigma quantization.

We are now ready to introduce our dithered Delta-Sigma quantization system, which is

sketched in Fig. 2.7 The input sequencex is first oversampled by a factor of two to produce the

oversampled sequencea. It follows that a is a redundant representation of the input sequence

x, which can be obtained simply by inserting a zero between every sample ofx and applying

an interpolating (ideal lowpass) filterh(z). For a wide-sense stationary input processX, the

resulting oversampled signalA would be wide-sense stationary, with the same variance as the

input, and the same power-spectrum only squeezed to half thefrequency band as shown in Fig. 3.

In particular, a white Gaussian input becomes a half-band low-pass Gaussian process with

Var(Ak) = Var(X) = σ2
X . (5)

At the other end of the system we apply an anti-aliasing filterha(z), i.e. an ideal half-band

lowpass filter, and downsample by two in order to get back to the original sampling rate.

7The Delta-Sigma quantization system shown in Fig. 2 is a discrete-time version of thegeneral noise-shaping coderpresented

in [32]. The system has an equivalent form where the feedbackis first subtracted and this difference is then filtered [32].
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(c) Spectrum ofA

Fig. 3. The power spectrum of (a) the input signal and (c) the oversampled signal. (b) illustrates the oversampling process

where the input signal is first upsampled by two and then filtered by an ideal half-band lowpass filter.

We would like to emphasize that the dithered Delta-Sigma quantization scheme is not limited

to oversampling ratios of two. In fact, arbitrary (even fractional) oversampling ratios may be

used. This option is discussed further in Section VII.

The oversampled source sequencea is combined with noise feedback̃e, and the resulting

signala′ is sequentially quantized on a sample by sample basis using adithered quantizer. For

the simplicity of the exposition we shall momentarily assume scalar quantization, i.e.,L = 1.

The extension toL > 1 is discussed in Section II-C. The quantization errorek of thekth sample,

given for a general ECDQ by (1), is fed back through the (causal) filter c′(z) =
∑p

i=1 ciz
−i and

combined with the next source sampleak+1 to produce the next ECDQ inputa′
k+1. Thus, the

output of the quantizer can be written as

âk = a′
k + ek = ak + ẽk + ek

∆
= ak + ǫk (6)

where ẽ(z) = c′(z)e(z) or equivalently

ẽk =

p
∑

i=1

ciek−i.

−
+

+ +
ak a′

k âk

c′(z)
ẽk

xn x̂n′ x̂n

ek

ek

h(z) ha(z)2 2

Fig. 4. The dithered quantizer is replaced by the additive noise model.
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As explained above, the additive noise model is exact for ECDQ and we can therefore represent

the quantization operation as an additive noise channel, asshown in Fig. 4. In view of this linear

model, the equivalent reconstruction error in the oversampled domain, denotedǫk in (6), is

statistically independent of the source. Thus we callǫk the “equivalent noise”. Notice thatǫk

is obtained by passing the quantization errorek through the equivalentpth order noise shaping

filter c(z),

c(z) ,

p
∑

i=0

ciz
−i (7)

wherec0 = 1 so thatc(z) = 1 + c′(z). Since the quantization errore of the ECDQ (1) is white

with varianceσ2
E, it follows that the equivalent noise spectrum is given by

Sǫ(w) = |c(ejw)|2σ2
E . (8)

The fact that the output̂ak is obtained by passing the quantization errorek through the noise

shaping filterc(z) and adding the result to the inputak can be illustrated using an equivalent

additive noise channel as shown in Fig. 5.

+
xn x̂n′ x̂n

h(z) ha(z)2 2
ak âk

c(z)

ek

ǫk

Fig. 5. The equivalent additive noise channel: The outputâk is obtained by passing the quantization errorek through the noise

shaping filterc(z) and adding the result to the inputak.

We may view the feedback filterc′(z) as if its purpose is to predict the “in-band” noise

component ofẽk based on the pastp quantization error samplesek−1, ek−2, . . . , ek−p (at the

expense of possibly increasing the “out-of-band” noise component). The end result is that the

equivalent noise spectrum (8) is shaped away from the in-band part of the spectrum, i.e., from

the frequency range(−π/2, +π/2), as shown in Fig. 6. Notice that due to the anti-aliasing filter

ha(z), only the in-band noise determines the overall system distortion. The exact guidelines for

this noise shaping are different in the single- and the multiple description cases, and will become

clear in the sequel.
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π
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−π
2

ω0

2σ2
X

σ2
E

π−π

SA

π
2

−π
2

ω0

2σ2
X

|c(ejw)|2σ2
E

Fig. 6. Illustrated on the left the case where there is no feedback and the quantization noise is therefore flat (in fact white)

throughout the entire frequency range. On the right an example of noise shaping is illustrated. The grey-shaded areas illustrate

the power spectra of the noise and the hatched areas illustrate the power spectra of the source.

As previously mentioned, if we encode the quantizer output symbols independently, then the

rateR of the ECDQ is given by the mutual information between the input and the output of the

quantizer. Thus, the rate (per sample) is given by

R = I(A′
k; Âk) = I(A′

k; A
′
k + Ek) (9)

whereEk is independent of the present and past samples ofA′
k by the dithered quantization

assumption. IfAk andEk were Gaussian, as discussed in Section II-C below, then we could get

R =
1

2
log2

(

1 +
Var(A′

k)

σ2
E

)

(10)

where Var(A′
k) denotes the variance of the random variableA′

k. At high resolution conditions

the variance of the error signale (and therefore ofǫ) is small compared to the source, so by

(5) we have Var(A′
k) + σ2

E ≈ σ2
X which implies that (10) becomes

R ≈ 1

2
log2

(

σ2
X

σ2
E

)

(11)

where≈ in (11) is in the sense that the difference goes to zero asσ2
E → 0. We can now

combine (11) with the expression (8) for the noise spectrum to obtain a simple overall rate-

distortion characterization of the system. It can be observed that the resultingR(D) curve depends

on both the in-band and the out-of-band noise components.

If we apply joint entropy coding of the quantizer outputs, that is, we let the entropy coder

take advantage of the memory inside the oversampled source,then the rate of the Delta-Sigma

quantization scheme is independent of the out-of-band noise spectrum. To see this, recall that

for jointly-coded ECDQ within a feedback loop, the coding rate is given by thedirectedmutual

DRAFT December 15, 2008



ØSTERGAARD AND ZAMIR: MULTIPLE-DESCRIPTION CODING BY DITHERED DELTA-SIGMA QUANTIZATION 11

information rate, that is, [30],

Ī(A′
k → A′

k + Ek) = I(A′
k; A

′
k + Ek|A′

k−1 + Ek−1, A
′
k−2 + Ek−2, . . . )

= h(A′
k + Ek|A′

k−1 + Ek−1, A
′
k−2 + Ek−2, . . . ) − h(Ek)

(a)
= h(Ak + ǫk|Ak−1 + ǫk−1, Ak−2 + ǫk−2, . . . ) − h(Ek)

(b)
= h̄(A + ǫ) − h̄(ǫ)

= Ī(A; A + ǫ) (12)

where h̄(·) and Ī(·) denote the entropy rate and mutual information rate, respectively. In the

equations above(a) follows sinceA′
k = Ak + Ẽk and ǫk = Ẽk + Ek. In (b) we used the

fact thatEk is the prediction error ofǫk given its past so thath(Ek) is the entropy rate ofǫ,

i.e. h̄(ǫ) = h̄(Ek) = h(Ek). Asymptotically asL → ∞, the quantization noise becomes ap-

proximately Gaussian distributed, and the equivalent ECDQchannel is AWGN (see Section II-C

below). Recall that, for a Gaussian process, disjoint frequency bands are statistically independent.

Therefore, since the inputA is lowpass, the mutual-information rate (12) is independent of the

out-of-band part of the noise processǫ. Thus, the joint-entropy coding rate is independent of

the out-of-band noise spectrum.8

C. Vector Delta-Sigma Quantization

To justify the use of high-dimensional vector quantizers wewill consider a setup involvingL

independent sources.9 These sources can, for example, be obtained by demultiplexing the original

memoryless processX into L independent parallel i.i.d. processesX(l) = {XnL+l}, ∀n ∈ Z and

l = 1, . . . , L.10 In this case thenth sample of thelth processX(l) is identical to the(n×L+ l)th

sample of the original processX. Let us give an example whereL = 3 so that we have three

processesX(1), X(2), andX(3). The three processes are each upsampled by a factor of two so

that we obtain the three processesA(1), A(2), and A(3), where each is input to a Delta-Sigma

quantization system as shown in Fig. 7. Hence, in this case, three coders are operating in parallel

8Interestingly as we shall see later, in the MD case the codingrate depends on the in-band as well as the out-of-band noise

spectra; see (27).

9The idea of applying lattice ECDQ to feedback coding systemsin parallel was first presented in [30].

10Notice that the delay between two consecutive samples of thelth process will be that ofL input samples.
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and instead of a single samplea′
k we have a triplet of independent samples(a

′(1)
k , a

′(2)
k , a

′(3)
k ). This

makes it possible to apply three-dimensional ECDQ on the vector formed by cascading the triplet

of scalars. IfL coders are operating in parallel, we can form the set ofL independent samples

(a
′(1)
k , a

′(2)
k , . . . , a

′(L)
k ) and make use ofL-dimensional ECDQ on the vector(a

′(1)
k , a

′(2)
k , . . . , a

′(L)
k ).

In general, we will allowL to become large so that, according to (4) and the paragraph that

follows just below (4), the rate loss1
2
log2(2πeGL) due to the quantization noise being non-

Gaussian can be made arbitrarily small. Thus, for largeL, Ek in (9) can indeed be approximated

as Gaussian noise.

2

2

2

a
(2)
k

a

a
(3)
k

xn

x
(1)
n′

x
(2)
n′

x
(3)
n′

a
(1)
kh(z)

h(z)

h(z)

(a) Demultiplexing the i.i.d. source intoL = 3

independent streams

−

+

+

−

+

+

−

+

+

a
(1)
k a

′(1)
k â

(1)
k

c′(z)

c′(z)

c′(z)

Q
(1)
3

Q
(2)
3

Q
(3)
3

e
(1)
k

ẽ
(1)
k

a
(2)
k a

′(2)
k â

(2)
k

e
(2)
k

ẽ
(2)
k

a
(3)
k a

′(3)
k â

(3)
k

e
(3)
k

ẽ
(3)
k

Q3

(b) Applying a three-dimensional lattice quantizerQ3

Fig. 7. The dashed box illustrates that the triplet of scalars (a
′(1)
k , a

′(2)
k , a

′(3)
k ) are jointly quantized using three-dimensional

ECDQ. Notice that we may see the three-dimensional lattice quantizerQ3 as a composition of three functions whereâ
(1)
k =

Q
(1)
3 (a

′(1)
k , a

′(2)
k , a

′(3)
k ), â

(2)
k = Q

(2)
3 (a

′(1)
k , a

′(2)
k , a

′(3)
k ) and â

(3)
k = Q

(3)
3 (a

′(1)
k , a

′(2)
k , a

′(3)
k ).

III. M ULTIPLE-DESCRIPTIONCODING

A. MD Delta-Sigma Quantization

In this section we show that the sequential dithered Delta-Sigma quantization system, which

is shown in Fig. 2, can be regarded as an MD coding system. For example, in the case of an

oversampling ratio of two, each input sample leads to two output samples and we have in fact

a two-channel MD coding system as shown in Fig. 8.
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In the MD scheme of Fig. 8, the first description is given by theeven outputs of the lattice

quantizer and the second description by the odd outputs. Each description is then entropy-coded

separately, conditioned upon its own dither, and transmitted to the decoder. Notice that although

the oversampled signalA has memory, the source part in each description is memoryless, because

we assume ideal interpolation so for a Gaussian source the even/odd splitting of the samples

corresponds to downsampling by two. However, unless the shaped and aliased noise is white

and Gaussian, there will be memory in the downsampled signalÂeven or Âodd. We show later

that, asymptotically as the vector dimension of the quantizer and the order of the noise-shaping

filter approach infinity, the downsampled noise becomes an i.i.d. process, and entropy coding

can therefore be done sample-by-sample (i.e. memorylessly) without loss of optimality. By (2),

the sample-by-sample ECDQ rate is given by the (per-sample)block-wise mutual information

R =
1

L
I(A′; A′ + E). (13)

At the decoder, if both descriptions are received, then theyare interlaced to form back the

oversampled signal̂A, an anti-aliasing filterha(z) (i.e. an ideal half-band lowpass filter) is

applied and the signal is then downsampled by two and scaled by β as shown in Fig. 9. If

only the even samples are received, we simply scale the signal by α. On the other hand, if

only the odd samples are received, we first apply an all-pass filter hp(z) to correct the phase

of the second description and then scale byα. The all-pass filterhp(z) is needed because the

upsampling operation performed at the encoder, i.e. upsampling by two followed by ideal lowpass

filtering (sinc-interpolation), shifts the phase of the oddsamples. The post multipliersα andβ

are described in Section IV-C.

−

+

+

Dither Entropy

Entropy

Dither

Dither

coding

codingak a′
k âk

c′(z)
ek

ẽk

xn
h(z)2

âk,even

âk,odd

QL

Fig. 8. Two-channel MD coding based on dithered Delta-Sigmaquantization: Encoder.

The distortion due to reconstructing using both descriptions is traditionally called the central

distortion dc and the distortion due to reconstructing using only a singledescription is called

the side distortionds.
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Dither

Dither

decoding

decoding
Entropy

Entropy âk
ha(z) 2

α

α

β
âk,evenâk,even

âk,oddâk,odd

x̂0

x̂1

x̂c

hp(z)

Fig. 9. Two-channel MD coding based on dithered Delta-Sigmaquantization: Decoder.

B. The Symmetric MD Rate-Distortion Region

Let us recall the solution to the quadratic (memoryless) Gaussian MD problem, as proven by

Ozarow [3], in thesymmetriccase, i.e., when both descriptions have the same rateR and the

side distortions are equal. The set of achievable distortions for description rateR is the union

of all distortion pairs(dc, ds) satisfying

ds ≥ σ2
X2−2R (14)

and

dc ≥
σ2

X2−4R

1 − (
√

Π −
√

∆)2
(15)

where Π = (1 − ds/σ
2
X)2 and ∆ = d2

s/σ
4
X − 2−4R and where we requireΠ ≥ ∆ to avoid

degenerate cases.

Based on the results of [3], it was shown in [33] that at high resolution, for fixed central-to-side

distortion ratiodc/ds, the product of the central and side distortions of an optimal two-channel

MD scheme approaches

dcds
∼
=

σ4
X

4

1

1 − dc/ds

2−4R (16)

where the approximation
∼
= here is in the sense that the ratio between both sides goes to 1as

ds → 0 (or R → ∞). If ds/dc ≫ 1, i.e., at high side-to-central distortion ratio, this simplifies to

dcds
∼
=

σ4
X

4
2−4R. (17)

C. Main Theorem

We now present the main theorem of this work, which basicallystates that the MD Delta-

Sigma quantization scheme (presented in Section III-A) canasymptotically achieve the lower

bound of Ozarow’s MD distortion region (presented in Section III-B).
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Theorem 1:Asymptotically as the noise-shaping filter orderp and the vector-quantizer di-

mensionL are going to infinity, the entropy rate and the distortion levels of the dithered Delta-

Sigma quantization scheme (of Figs. 8 and 9) with optimum filters and lattice quantizer achieve

the symmetric two-channel MD rate-distortion function (14) – (15) for a memoryless Gaussian

source and MSE fidelity criterion, at any side-to-central distortion ratiods/dc and any resolution.

Furthermore, the optimal infinite-order noise shaping filter is unique, minimum phase, and its

magnitude spectrum|c(ejω)| is piece-wise flat with a single jump discontinuity atω = π/2.

Before presenting the proof of the theorem, we provide in thefollowing sections a series of

supporting lemmas. The proof of the theorem can be found in Section V.

IV. A SYMPTOTIC CHARACTERIZATION AND PERFORMANCE ANALYSIS

In this section we concentrate on the asymptotic case wherep, L → ∞, i.e. infinite noise

shaping filter order and infinite vector quantizer dimension. For analysis purposes, this allows

us to assume Gaussian quantization noise in the system modelof Fig. 4, with arbitrarily shaped

equivalent noise spectrum (8).

A. Frequency Interpretation of Delta-Sigma Quantization

We first give an intuitive frequency interpretation of the proposed Delta-Sigma quantization

scheme. This frequency interpretation reveals that the role of the noise shaping filter is not simply

to shape away the quantization noise from the in-band spectrum, as is the case in traditional Delta-

Sigma quantization, but rather to delicately control the tradeoff between the in-band noise versus

the out-of-band noise, which translates into a tradeoff between the central and side distortions.

This tradeoff is done while keeping the coding rate fixed, which, at least at high resolution, is

equivalent to keeping the quantizer varianceσ2
E fixed. See (11).

Recall that we, at the central decoder, apply an anti-aliasing filter (ideal lowpass filtering)

before downsampling. Hence, the central distortion is given by the energy of the quantization

noise that falls within the in-band spectrum. The inclusionof a noise shaping filter at the encoder

makes it possible to shape away the quantization noise from the in-band spectrum and thereby

reduce the central distortion. By increasing the order of the noise shaping filter it is possible to

reduce the central distortion accordingly.
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It is also interesting to understand what influences the sidedistortion. Recall that the side

descriptions are constructed by using either all odd samples or all even samples of the output

A. Hence, we effectively downsampleA by a factor of two. It is important to see that this

downsampling process takes place without first applying an anti-aliasing filter. Thus, aliasing is

inevitable. It follows, that not only the noise which falls within the in-band spectrum contributes

to the side distortion but also the noise that falls outside the in-band spectrum (i.e. the out-of-

band noise) affects the distortion. Since, in traditional Delta-Sigma quantization, the noise is

shaped away from the in-band spectrum as efficiently as possible, the out-of-band noise is likely

to be the dominating contributor to the side distortion. We have illustrated this in Fig. 10.

SE

π−π π/2−π/2 ω0

σ2
E

(a) Spectrum ofE

π−π

|c(ejω)|2σ2

E

π/2−π/2 ω0

σ2
E

σ2
Eδ

σ2
E/δ

(b) Spectrum of shapedE

Fig. 10. The power spectrum of (a) the quantization noise (b)the shaped quantization noise. In (b) the energy of the lowpass

noise spectrum (the bright region) corresponds to the central distortion and the energy of the full spectrum corresponds to the

side distortion.

It should now be clear that, in two-channel MD Delta-Sigma quantization, the role of the

noise shaping filter is to trade off the in-band noise versus the out-of-band noise. In particular,

in the asymptotic case where the order of the noise shaping filter goes to infinity, it is possible

to construct a brick-wall filter which has a squared magnitude spectrum of1/δ in the passband

(i.e. for |ω| ≤ π/2) and of δ in the stopband (i.e. forπ/2 < |ω| < π). In this case, the central

distortion is proportional to1/δ whereas the side distortion is proportional to1/δ + δ. This

situation, which is illustrated in Fig. 10(b), will be discussed in more detail in the next section.

B. Achieving the MD Distortion Product at High Resolution

It is possible to take advantage of the frequency interpretation given in Section IV-A in order to

show that the optimum central-side distortion product at high-resolution (16) can be achieved by

Delta-Sigma quantization. We later extend this result and show that with suitable post-multipliers

at the decoders, optimum performance are achieved atany resolution.
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Lemma 1:At high resolution and asymptotically asp, L → ∞, the distortion product given

by (16) is achievable by Delta-Sigma quantization.

Proof: The central distortion is equal to the total energyPdc of the in-band noise spectrum

where

Pdc =
σ2

E

2π

∫ π/2

−π/2

|c(ejω)|2dω. (18)

The side distortion is equal to the energyPds of the in-band noise spectrum of the side

descriptions which contains aliasing due to the subsampling process. Since we downsample by

two we have

Pds =
σ2

E

4π

∫ π

−π

|c(ejω/2)|2 + |c(ej(ω/2+π))|2dω. (19)

Let us shape the noise spectrum as illustrated in Fig. 10(b).Thus, we let|c(ejω)|2 = 1/δ for

|ω| ≤ π/2 and |c(ejω)|2 = δ for π/2 < |ω| < π where0 < δ ∈ R. It follows from (19) that, for

anyδ > 0, ds = 1
2
σ2

E(δ+ δ−1) and from (18) we see thatdc = 1
2
σ2

E/δ which yields the distortion

product

dcds =
δ + δ−1

4δ
σ4

E . (20)

From (11) we know that at high resolutionR ≈ log2(σ
2
X/σ2

E) (where≈ is in the sense that the

difference goes to zero asR → ∞), so that

σ4
E

∼
= σ4

X2−4R (21)

(where
∼
= is in the sense that the ratio goes to one asR → ∞). Finally, sincedc/ds = δ−1/(δ +

δ−1) it follows that
1

1 − dc/ds

=
δ + δ−1

δ
(22)

and the lemma is proved by inserting (21) and (22) into (20) and comparing the resulting

expression to (16).

C. Optimum Performance for General Resolution

In this section we extend the optimality result of Section IV-B above, and show that the

two-channel Delta-Sigma quantization scheme achieves thesymmetric quadratic Gaussian rate-

distortion function at any resolution.

Let Ui denote the reconstructions before the side post multipliers so thatX̂i = αUi, i = 0, 1,

and letE denote the expectation operator. It can then be shown thatEXUi = σ2
X and EU2

i =
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σ2
X + σ2

E(δ + δ−1)/2. Moreover, letU denote the reconstruction before the central multiplierβ.

ThenEU2 = σ2
X + σ2

Eδ−1/2. Finally, let the post multipliers be given by

α =
σ2

X

σ2
X + σ2

E(δ + δ−1)/2

and

β =
σ2

X

σ2
X + σ2

Eδ−1/2
.

It follows that the side distortion is given by

ds = E(X̂i − X)2

= E(αUi − X)2

= σ2
X − 2ασ2

X + α2(σ2
X + σ2

E(δ + δ−1)/2) (23)

=
σ2

Xσ2
E(δ + δ−1)

2σ2
X + σ2

E(δ + δ−1)
. (24)

Similarly, let X̂c = βU so that the central distortion is given by

dc = E(X̂c − X)2

= E(βU − X)2

= σ2
X + β2(σ2

X + σ2
Eδ−1/2) − 2βσ2

X (25)

=
σ2

Xσ2
Eδ−1

2σ2
X + σ2

Eδ−1
. (26)

Lemma 2:For a given description rateR and asymptotically asp, L → ∞ (i.e., assuming

Gaussian quantization noise and equivalent noise spectrumas in Fig. 10(b)), the side distortion

given by (24) and the central distortion given by (26) achieve the lower bound (15) of Ozarow’s

symmetric MD distortion region.

Proof: Recall from Section II, that the rate of memoryless-ECDQ (assuming that the entropy

coding is conditioned upon the dither signal and that the dither signal is known at the decoder)

is equal to the mutual information between the input and the output of an additive noise channel

(13). For largeL, this mutual information can be calculated as if the additive noiseEk was

approximately Gaussian distributed. It thus follows from (9) and (10) that asL → ∞ the
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description rate becomes

R = I(A′
k; Âk)

= h(Âk) − h(Ek)

=
1

2
log2(2πe(σ2

X + σ2
E(δ + δ−1)/2)) − 1

2
log2(2πeσ2

E)

=
1

2
log2

(

σ2
X + σ2

E(δ + δ−1)/2

σ2
E

)

. (27)

We can rewrite (27) as

2−4R =
4δ2σ4

E

(2σ2
Xδ + σ2

Eδ2 + σ2
E)2

. (28)

By use of (24) and (28) we then get

∆ =
σ4

E(δ4 − 2δ2 + 1)

(2σ2
Xδ + σ2

Eδ2 + σ2
E)2

and

Π =
4δ2σ4

X

(2σ2
Xδ + σ2

Eδ2 + σ2
E)2

so that

1 − (
√

Π −
√

∆)2 =
4σ2

Eδ2(2σ2
Xδ + σ2

E)

(2σ2
Xδ + σ2

Eδ2 + σ2
E)2

. (29)

Finally, inserting (29) in (15) leads to

σ2
X2−4R

1 − (
√

Π −
√

∆)2
=

σ2
Xσ2

E

2σ2
Xδ + σ2

E

which is identical to (26) and therefore proves the lemma.

D. Relation to Ozarow’s Double Branch Test Channel

Let us now revisit Ozarow’s double branch test channel as shown in Fig. 11. In this model the

noise pair(N0, N1) is negativelycorrelated (except from the case of no-excess marginal rates, in

which case the noises are independent). Notice that this is in line with the above observations,

since the highpass nature of the noise shaping filter causes adjacent noise samples to be negatively

correlated. The more negatively correlated they are, the greater is the ratio of side distortion to

central distortion. Furthermore, at high resolution, the “filters” (αi andβi, i = 0, 1) in Ozarow’s

test channel degenerate and the central reconstruction is simply given by the average of the

two side channels. This averaging operation can be seen as a lowpass filtering operation, which
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+

+

+

N0

N1

X

X̂0

X̂1

X̂c

α0

α1

β0

β1

U0

U1

Fig. 11. The MD optimum test channel of Ozarow [3]. At high resolution αi = 1 and βi = 1/2, i = 0, 1 so thatX̂0 =

U0, X̂1 = U1 and X̂c = 1
2
(X̂0 + X̂1).

leaves the signal (since it is lowpass) and the in-band noiseintact but removes the out-of-band

noise.

More formally, for the symmetric case (whereσ2
N = σ2

Ni
, i = 0, 1 and ρ is the correlation

coefficient of the noises), we have the following high-resolution relationships between(ρ, σ2
N )

of Ozarow’s test channel and(δ, σ2
E) of the proposed Delta-Sigma quantization scheme.

Lemma 3:At high-resolution conditions, we have

σ2
E = σ2

N

√

1 − ρ2 (30)

and

δ =

√
1 − ρ√
1 + ρ

. (31)

Proof: From [4], [5] it follows that Ozarow’s sum rateR0 + R1 satifies

R0 + R1 ≥ I(X; X + N0) + I(X; X + N1) + I(X + N0; X + N1) (32)

= I(X; X + N0) + I(X; X + N1) + I(N0; N1) (33)

= I(X; X + N0) + I(X; X + N1) +
1

2
log2

(

1

1 − ρ2

)

(34)

= h(X + N0) − h(X + N0|X) + h(X + N1) − h(X + N1|X) − log2(
√

1 − ρ2) (35)

= log2

(

σ2
X + σ2

N

σ2
N

)

− log2

(

√

1 − ρ2
)

(36)

where the last equality follows since the noises have equal variances. By equating (36) to (27),

i.e. 2R = log2(
σ2

X+σ2
E(δ+δ−1)/2

σ2
E

) and solving forσ2
E we obtain

σ2
E =

2σ2
Xσ2

N

√

1 − ρ2

2(σ2
X + σ2

N) − (δ + δ−1)σ2
N

√

1 − ρ2
. (37)
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If σ2
N ≪ σ2

X , this reduces toσ2
E ≈ σ2

N

√

1 − ρ2 and we obtain (30).

The MMSE when estimatingX from two jointly Gaussian noisy observationsUi = X+Ni, i =

0, 1 (where the Gaussian noises have equal variances), is given by

MMSE =
σ2

N (1 + ρ)

σ2
N (1 + ρ) + 2

. (38)

Thus, the central distortion of Ozarow’s test channel is given by (38), which we equate to the

central distortion (26), solve forδ and insertσ2
E from (37), that is

δ =
σ2

X(σ2
N (1 + ρ) + 2)

2(σ2
X + σ2

N) − (δ + δ−1)σ2
N

√

1 − ρ2
·
√

1 − ρ√
1 + ρ

− σ2
N

√

1 − ρ2

2(σ2
X + σ2

N ) − (δ + δ−1)σ2
N

√

1 − ρ2
. (39)

Once again, lettingσ2
N ≪ σ2

X it follows that δ ≈
√

1−ρ√
1+ρ

, which yields (31) and thereby proves

the lemma.

Remark 1:The relationship between Ozarow’s test-channel and the Delta-Sigma quantization

scheme at general resolution is provided by (37) and (39).

V. PROOF OFTHEOREM 1

We are now in a position to wrap up the proof of Theorem 1. Lemma2 actually shows that it

is possible to achieve the quadratic Gaussian rate-distortion function if we replace the ECDQ by

a Gaussian noise, and the equivalent noise spectrum (8) by a brick wall spectrum. This can be

viewed as setting the lattice quantizer dimensionL and the feedback filter orderp to be equal

to infinity. Thus, what is still missing is the characterization of the limit behavior of the coding

rate asL, p → ∞, and the distortion asp → ∞.

A. Distortion loss

We first present Lemma 4 (with a proof in the appendix) which describes the central and the

side distortions at general resolution when using an arbitrary noise-shaping filterc(ejω).

Lemma 4:For any givenpth-order noise-shaping filterc(ejω) and optimal multipliers (α and

β), the central distortion is given by

dc =
σ2

Xσ2
EPdc

σ2
X + σ2

EPdc

(40)

and the side distortion is given by

ds =
σ2

Xσ2
EPds

σ2
X + σ2

EPds

(41)
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where

Pdc =
1

2π

∫

|ω|≤π
2

|c(ejω)|2dω =
1

2

p
∑

i=0

p
∑

j=0

sinc

(

i − j

2

)

cicj (42)

and

Pds =
1

2π

∫

|ω|≤π

|c(ejω)|2dω =

p
∑

j=0

c2
j . (43)

△
The noise shaping filter used in the proof of Lemma 2 to show achievability of the quadratic

Gaussian rate-distortion function is of infinite order, andit satisfies

1

2π

∫ π

−π

log2 |c(ejω)|2dω = 0. (44)

It follows that the area underlog2 |c(ejω)|2 is equally distributed above and below the 0 dB line,

which is a unique property of minimum-phase filters [34]. In fact, the following Lemma proves

that, in order forc(z) to be optimal, it must be of infinite-order and minimum phase (see the

appendix for the proof). This means that the optimum noise shaping filter is unique.

Lemma 5: In order to achieve the quadratic Gaussian rate-distortionfunction, it is required

that the noise shaping filterc(z) is of infinite order, minimum-phase, and have a piece-wise flat

power spectrum of powerδ−1 in the lowpass band (i.e. for|ω| < π/2) and of powerδ in the

highpass band (i.e. forπ/2 < |ω| < π) where1 ≤ δ ∈ R. △
We now assess the distortion loss due to using a finite order noise-shaping filter. LetSopt

ǫ (ω) =

σ2
E|copt(ejω)|2 denote the power spectrum of the shaped noise when using the ideal infinite-

order noise shaping filtercopt(ejω), which is optimal and unique as proven by Lemma 5. Thus,

|copt(ejω)|2 is piece-wise flat with a jump discontinuity atω/2, cf. Fig. 10(b). For such a function,

point-wise convergence of the Fourier coefficients cannot be guaranteed. However, we do have

convergence in the mean square sense [35]. Specifically, letS
(p)
ǫ (ω) denote thepth order Fourier

approximation toSopt
ǫ (ω). Then [35]

lim
p→∞

1

2π

∫

|ω|≤π

∣

∣Sopt
ǫ (ω) − S(p)

ǫ (ω)
∣

∣

2
dω = 0 (45)

which asserts that the limit forp → ∞ exists. In addition, it can be shown that the error (MSE)

of the pth order Fourier approximation of this step function is of the orderO(1/p) [36]. It

follows that for anyp we have

dc =
σ2

Xσ2
E(Pdc + O(1/p))

σ2
X + σ2

E(Pdc + O(1/p))
, ds =

σ2
Xσ2

E(Pds + O(1/p))

σ2
X + σ2

E(Pds + O(1/p))
. (46)

and the desired continuity in the limitp → ∞ is established.
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B. Coding rate loss

By similar arguments as leading to (46), for a finitep, the variance ofÂk is given by

V ar(Âk) = E[(A′
k + Ek)

2] (47)

= σ2
X + σ2

E(Pds + O(1/p)) (48)

Moreover, the coding rate (9) when using memoryless entropycoding is given by

R = I(A′
k; Âk) = h(Âk) − h(Ek) (49)

= h(Âk) − h(E∗
k) +

1

2
log2(GL2πe) (50)

= h(Âk) − h(E∗
k) + O(log2(L)/L) (51)

whereh(Âk) is an increasing function inV ar(Âk) andE∗
k denotes a Gaussian variable (process)

with the same variance (spectrum) asEk. Eq. (50) follows from the discussion after (4) where it

may be noticed that the term1
2
log2(GL2πe) describes the divergence of the quantization noise

from Gaussianity; see also [31]. This divergence term corresponds to an excess rate due to using

a finite dimensional lattice quantizer and may be upper bounded byO(log2(L)/L) when optimal

L-dimensional lattice quantizers are used, see [28] for details. Thus, if we keepσ2
E fixed, then

the coding rate is increased due to theO(1/p) variance increase given in (48) and due to the

excess termO(log2(L)/L) in (51). These rate penalties vanish asp, L → ∞ and the desired

convergence in coding rate is proved.

In order to complete the proof of the theorem, we need to show that an optimal monic

minimum phase filter always exists for any ratio ofPds/Pdc. Towards that end, we keep the

post multipliers fixed and defineJ = λcPdc + λsPds as the cost function to be minimized by

the pth-order noise-shaping filter. Notice that if we letλs = 0 we are only concerned about

minimizing the noise power than falls in the in-band region.Thus, we are aiming at minimizing

the central distortion. On the other hand, lettingλc ≪ λs gives priority to the side distortion since

the total noise power is minimized. Letc0 = 1 and c = (c1, . . . , cp) be the filter coefficients.

Moreover, letg be thep-vector with elementsgi = sinc(i/2), i = 1, . . . , p, and letG be the

p× p autocorrelation matrix with elementsGi,j = sinc((i− j)/2), wherei, j ∈ {1, . . . , p}. With

this it follows that

Pds =

p
∑

i=0

c2
i = (1 + cT c) (52)
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and

Pdc =
1

2

p
∑

i=0

p
∑

j=0

sinc

(

i − j

2

)

cicj

=
1

2
(1 + 2

p
∑

i=1

sinc(i/2)ci +

p
∑

i=1

p
∑

j=1

sinc((i − j)/2)cicj)

=
1

2
(1 + 2cT g + cT Gc)

(53)

so that

λcPdc + λsPds =
1

2

(

λc(1 + 2cT g + cT Gc) + 2λs(1 + cT c)
)

=
1

2

(

λc + 2λs + 2λcc
T g + cT (λcG + 2λsI)c

)

.

(54)

The optimal filter coefficients are found by solving the differential equation∂λcPdc+λsPds

∂c
= 0,

that is

c = −(G + 2
λs

λc
I)−1g (55)

where I is the p × p identity matrix. Notice thatG + 2λs

λc
I is a symmetric and full rank

matrix and (55) therefore defines a well-posed problem. The solution to (55) can be found by

the Yule-Walker method, which yields a unique minimum-phase filter [37]. As p → ∞, the

autocorrelation sequence of the impulse response of the obtained filterc(z) becomes identical

to the ideal autocorrelation sequence whose Fourier transform describes the optimum shaped

noise spectrum [37]. Thus, the resulting spectrum of the shaped noise becomes identical to the

optimum spectrum. This proves the theorem.

VI. UNIVERSALITY OF DITHERED DELTA-SIGMA QUANTIZATION

In this section we discuss the universality of the proposed scheme at high resolution. First,

notice that the central and side distortions depend only upon the second-order statistics of the

source and the quantization noise, i.e.σ2
X and σ2

E, and as such not on the Gaussianity of the

source. Second, independent of the source distribution, the distribution of the quantization noise

becomes approximately Gaussian distributed (in the divergence sense) in the limit of high vector

quantizer dimensionL. Finally, the ECDQ is allowed to encode each description according to

its entropy. Thus, the coding rate is equal to the mutual information (13) of the source over

the Gaussian test channel. For memoryless sources of equal variances, this coding rate is upper
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bounded by that of the Gaussian source. Moreover, Zamir proved in [4] that Ozarow’s test

channel becomes asymptotically optimal in the limit of highresolution for any i.i.d. source

provided it has a finite differential entropy. Thus, since the dithered Delta-Sigma quantization

scheme resembles Ozarow’s test channel in the limit asp, L → ∞, we deduce that the proposed

scheme becomes asymptotically optimal for general i.i.d. sources with finite differential entropy.

A delicate point to note, though, is that due to the sinc interpolation, the odd samples might

not be i.i.d. and joint entropy coding within the packet is necessary in order to be optimal.

Specifically, with joint entropy coding the rate is given by the directed mutual information

formula (12) applied to the sub-sampled sourceÂk,odd. The resulting rate for the odd packet is

h̄(Ak,odd) − h(Ek), which (at high resolution) is≈ h(X) − 1
2
log2(2πeσ2

E), as desired [4].

If we have a source with memory, and we allow joint entropy coding within each of the two

packets, then a similar derivation shows that we would achieve rateR ≈ h̄(X)− 1
2
log2(2πeσ2

E)

in each packet. This rate is the mutual information rate of the source over the Gaussian test

channel. Since Ozarow’s test channel is asymptotically optimal in the limit of high resolution

for any stationary source with finite differential entropy rate, [5], it follows that the proposed

scheme is asymptotically optimal for such sources as well.

VII. EXTENSION TO K > 2 DESCRIPTIONS

We end this paper by presenting a straight-forward extension of the proposed design toK

descriptions, though without any claim of optimality. The basic idea is to change the oversampling

ratio from two toK and then decide which output samples should make up a description.11 When

dealing withK descriptions,2K − 1 distinct subsets of descriptions can be created. Thus, the

design of the decoders is generally more complex for greaterK. For example, if two out three

descriptions are received, aliasing is unavoidable (as wasthe case forK = 2 descriptions).

Moreover, due to the fractional (non-uniform) downsampling process, the simple brick-wall

lowpass filter operation is not necessarily the optimal reconstruction rule. In fact, the optimal

reconstruction rule depends not only upon the number of received descriptions but (generally)

also upon which descriptions are received. However, in thissection we will restrict attention to

11Notice that even fractional oversampling ratios can be usedin which case we might also have aliasing of the source spectrum.
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cases leading to uniform sampling.12 Thus, the design of the decoders is simplified.

We use the previously presented Delta-Sigma quantization scheme (of Figs. 8 and 9) but

oversample now byK instead of two. More specifically, let us assume thatK = 4 and that

every fourth sample make up a description. We notice that theextension to an arbitrary number

of descriptions is straight forward. We consider only the cases that leads to uniform (non-

fractional) downsampling, i.e. reception of any single description, every other description (i.e.

two out of four), or all four descriptions.

It can easily be seen that if we receive all four descriptions, the central distortiondc is given

by the noise that falls within the in-band spectrum. In otherwords,

dc =
1

2π

∫ π/4

−π/4

Sǫ(ω)dω (56)

whereSǫ(ω) = |c(ejω)|2σ2
E denotes the power spectrum of the shaped noise. Similarly, when

receveiving two out of four descriptions (i.e. one of the pair of descriptions (0,2) or (1,3)) the

side distortiond2 is given by

d2 =
1

2π

∫ π/4

−π/4

Sǫ(ω)dω +
1

2π

∫

3
4
π≤|ω|<π

Sǫ(ω)dω (57)

where the latter term is due to aliasing (since we downsampleby two without applying any

anti-aliasing filter). Finally, if we receive only a single description and thereby downsample by

four, the side distortiond1 is given by the complete shaped noise spectrum, that is

d1 =
1

2π

∫ π

−π

Sǫ(ω)dω. (58)

Once again, we letp → ∞ and take advantage of the frequency-domain interpretation, which

we previously presented for the case of two descriptions. Wedivide the power spectrum of the

shaped noise into three flat regions as shown in Fig. 12. The low frequency band (i.e.|ω| ≤ π/4)

is of powerδ0, the middle band (i.e.π/4 < |ω| ≤ 3π/4) is of powerδ2, and the high band (i.e.

3π/4 < |ω| < π) is of powerδ1. With this choice of noise shaping, we guarantee thatc(z) is

minimum phase simply by lettingδ2 = 1/
√

δ0δ1 so that
∫ π

−π
log2 Sǫ(ω)dω = 0. From (56) – (58)

12We suspect that results from non-uniform sampling or non-uniform filterbank theory will prove advantageous for constructing

the optimal decoders in the most general situation. However, this is a topic of future research.
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it follows that13

dc =
σ2

E

4
δ0, (59)

d2 =
σ2

E

4
(δ0 + δ1)

= dc +
σ2

E

4
δ1

(60)

and

d1 =
σ2

E

4
(δ0 + δ1 + 2/

√

δ0δ1)

= d2 +
σ2

E

2
√

δ0δ1

.

(61)

0 π
4

π
2

3π
4

π

δ0

δ1

δ2 = 1/
√

δ0δ1

|c(ejω)|2σ2

E

ω

Fig. 12. An example of a shaped noise power spectrum|c(ejω)|2σ2
E for K = 4 descriptions.

The description rate follows easily from previous results since the source is memoryless after

downsampling. Specifically, it is easy to show that when using memoryless entropy coding the

rate is given by

R =
1

2
log2

(

σ2
X + σ2

E(δ0 + δ1 + 2/
√

δ0δ1)/4

σ2
E

)

≈ 1

2
log2(σ

2
X/σ2

E),

where the approximation becomes exact at high resolution.

It is worth emphasizing that in this example we have two controlling parameters, i.e.δ0 and

δ1, whereδ0 ≤ 1 and δ0δ1 ≤ 1. It is therefore possible to achieve almost arbitrary distortion

ratios d1/d2, d1/dc and d2/dc. It was recently shown, see [38], that it is also possible to use

several distortion controlling parameters in the source-splitting design of Chen et al. [15] and

furthermore, by exploiting random binning, the achievableK-channel rate region of Pradhan et

13For clarity we have excluded the post multipliers, which arerequired for optimal reconstruction at general resolution. At

high resolution conditions, the post multipliers become trivial and will not affect the distortions.
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al. [7], [8] can be achieved. Random binning can also be used to enlargen the rate region of the

index-assignment based schemes, cf. [13], [39].

For the case of distributed source coding problems, e.g. theWyner-Ziv problem, efficient

binning schemes based on nested lattice codes have been proposed by Zamir et al. [40]. How-

ever, these binning schemes are not (directly) applicable for the MD problem.14 An alternative

binning approach based on generalized coset codes has recently been proposed by Pradhan and

Ramchandran [41]. It was indicated in [41] that the coset-based binning approach is applicable

also for MD coding but the inherent rate loss was not addressed. Thus, the problem of designing

efficient capacity achieving binning codes for the MD problem appears to be unsolved. From a

practical point of view, it is therefore desirable to avoid binning. While the proposed MD design

based on Delta-Sigma quantization avoids binning, we do notknow whether there is a price to

be paid in terms of rate loss.15 We Leave it as a topic of future research, to construct optimal

reconstruction rules for the cases of non-uniform downsampling and furthermore addressing the

issue whether the achievableK-channel rate-distortion region coincide with the one obtained by

Pradhan et al. [7], [8].

VIII. C ONCLUSIONS AND DISCUSSION

We proposed a symmetric two-channel MD coding scheme based on dithered Delta-Sigma

quantization. We showed that for large vector quantizer dimension and large noise shaping filter

order it was possible to achieve the symmetric two-channel MD rate-distortion function for

a memoryless Gaussian source and MSE fidelity criterion. Theconstruction was shown to be

inherently symmetric in the description rate and there was therefore no need for source-splitting

as were the case with existing related designs. It was shown that by simply increasing the

oversampling ratio from two toK it was possible to constructK descriptions. The design of

optimal reconstruction rules forK > 2 descriptions was left as an open problem. Currently,

we are working on extending the scheme to include prediction, in order to make it optimal for

encoding sources with memory, without requiring entropy coders with memory, see [42].

14By making use of time-sharing, it is possible to apply the binning schemes presented in [40] to the MD problem.

15Notice that we can reduce the coding rate by undersampling the signal so that the source spectrum will contain aliasing. As

more descriptions are received, the lesser aliasing and a better reconstruction quality can be achieved. This stands incontrast to

binning, where one can usually not reconstruct at all when too few descriptions are received.
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APPENDIX

PROOF OFLEMMA 4

We first find the central distortion (at high-resolution) through a time-domain approach and

use the insights in order to find the optimalβ, which will then lead to the central distortion at

general resolution.

Let ǫn = x̂n −xn be the error signal. Without loss of generality, we may view the upsampling

operation followed by ideal lowpass filtering as an over-complete expansion of the source, where

the infinite-dimensional analysis frame vectors with coefficientsh̃k,n = sinc(n−k
2

) are translated

sinc functions16. Thus, adopting the notation of [25], we have that

ak =
∞
∑

n=−∞
xnsinc

(

n − k

2

)

and the synthesis filters are given byhk,n = 1
2
sinc(n−k

2
), so that

xn =
1

2

∞
∑

k=−∞
aksinc

(

n − k

2

)

.

Sinceâk = ak + ek +
∑p

i=1 ciek−i, the errorǫn = x̂n − xn is given by

ǫn =
∞
∑

k=−∞
hk,n

(

p
∑

i=0

ciek−i

)

. (62)

The (per sample) mean squared error (MSE) is (by use of (62)) given by

Eǫ2
n = E





( ∞
∑

k=−∞
hk,n

(

p
∑

i=0

ciEk−i

))2


 (63)

= E

[ ∞
∑

k=−∞

∞
∑

l=−∞
hk,nhl,n

(

p
∑

i=0

ciEk−i

)(

p
∑

i=0

ciEl−i

)]

(64)

=
1

4
E

[ ∞
∑

k=−∞

∞
∑

l=−∞
sinc

(

n − k

2

)

sinc

(

n − l

2

)

(

p
∑

i=0

ciEk−i

)(

p
∑

i=0

ciEl−i

)]

(65)

=
1

4

∞
∑

k=−∞

∞
∑

l=−∞
sinc

(

n − k

2

)

sinc

(

n − l

2

) p
∑

i=0

p
∑

j=0

cicjE[Ek−iEl−j ] (66)

16The sinc function is defined by

sinc(x) ,

8

>

<

>

:

sin(πx)
πx

, x 6= 0

1, x = 0.
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=
1

4

∞
∑

k=−∞
sinc

(

n − k

2

) p
∑

i=0

p
∑

j=0

cicjE

[

Ek−i

∞
∑

l=−∞
sinc

(

n − l

2

)

El−j

]

(67)

(a)
=

1

4

∞
∑

k=−∞
sinc

(

n − k

2

) p
∑

i=0

p
∑

j=0

cicjE

[

E2
k−isinc

(

n − k − i + j

2

)]

(68)

(b)
=

σ2
E

2

p
∑

i=0

p
∑

j=0

sinc

(

i − j

2

)

cicj , (69)

where (a) follows from the fact thatEEk−iEl−j is non-zero only whenl − j = k − i which

implies thatl = k − i + j and (b) is due to the following property of the sinc function [43]
∞
∑

k=−∞
sinc

(

c0 −
k

r

)

sinc

(

c0 −
k − c1

r

)

= r sinc
(c1

r

)

.

Let U denote the reconstruction before the central post multiplier β, i.e. U is the variable

obtained by first lowpass filteringAk and then downsampling by two. It follows immediately

that EU2 = σ2
X + 1

2π

∫

|ω|< π
2
|c(ejω)|2σ2

Edω = σ2
X + σ2

EPdc . Furthermore, from (69) it can be seen

that

EU2 = σ2
X +

σ2
E

2

p
∑

i=0

p
∑

j=0

sinc

(

i − j

2

)

cicj. (70)

so using thatE[X|U ] = βU yields

β =
σ2

X

σ2
X +

σ2
E

2

∑p
i=0

∑p
j=0 sinc( i−j

2
)cicj

=
σ2

X

σ2
X + σ2

EPdc

. (71)

The central distortion at general resolution now follows byinsertingβ (71) into (25), which

leads to (40).

We will now derive the side distortion. First notice that since we only receive either all odd

samples or all even samples, we should only sum over terms in (69) where the lag|i − j| is

even. However, all cross-terms,cicj , i 6= j, vanish since sinc(x/2) = 0 for x = ±2,±4, . . . , so

only thep+1 auto-terms,c2
i , i = 0, . . . , p, contribute to the distortion. In addition, we make use

of the following property of the sinc function [43]
∞
∑

k=−∞
sinc

(

xk

r

)

sinc

(

xk − c

r

)

=
r

x
sinc

(c

r

)

. (72)

With this, it follows that the high-resolution side distortion dhr
s is given by

dhr
s = σ2

E

p
∑

i=0

c2
i = σ2

EPds . (73)
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At this point, we letUi denote the reconstruction before the multiplierα such thatX̂i = αUi, i =

0, 1. It should be clear thatEXUi = σ2
X .17 Recall that the auto-correlation of the even lags of

Ui vanish so that

EU2
i = σ2

X + σ2
E

p
∑

i=0

c2
i = σ2

X + σ2
EPds (74)

Since,E[X|Ui] = αUi, it follows that

α =
σ2

X

σ2
X + σ2

E

∑p
i=0 c2

i

. (75)

Inserting (75) into (23) leads to (41), which is the side distortion at general resolution. This

completes the proof.

PROOF OFLEMMA 5

A minimum-phase filterH(z) with power spectrumS(f) = |H(ej2πf)|2, −1/2 < f ≤ 1/2

satisfies

e
R 1/2
−1/2

ln S(f)df
= |h0|2

whereh0 is the zero-tap of the filter. It is also known that the zero-tap of a minimum-phase

filter is strictly larger than the zero-tap of a non-minimum-phase filter having the same power

spectrum [44]. Thus, for an arbitrary filterH(z) with power spectrumS(f) and zero-taph0

e
R 1/2
−1/2

ln S(f)df ≥ |h0|2

with equality if and only ifH(z) is minimum phase. Furthermore, from the geometric-arithmetic

means inequality it can be shown that

2

√

∫

|f |≤1/4

S(f)df

∫

1/4<|f |<1/2

S(f)df ≥ e
R 1/2
−1/2

ln S(f)df (76)

≥ 1 (77)

where we used the fact that in our case the filter is monic, soh0 = 1 and where we have

equality in (76) and (77) if and only if the filterH(z) is minimum phase and the power spectrum

consists of two flat regions;S(f) = δ−1 for |f | ≤ 1/4 and S(f) = δ for 1/4 < |f | < 1/2.

17The even samples are noisy versions ofX where the noise is independent ofX. The odd samples are noisy and phase

shifted versions ofX. However, the phase shift is corrected by the all-pass filterhp(z) before the post multiplier. Thus,

EXUi = σ2
X , i = 0, 1.
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Let us now fix the energy ratioPds/Pdc = γ, where1 ≤ γ ∈ R, Pdc =
∫

|f |≤1/4
S(f)df and

Pds =
∫

|f |≤1/4
S(f)df +

∫

1/4<|f |<1/2
S(f)df . With this, it follows that

∫

1/4<|f |<1/2
S(f)df

∫

|f |≤1/4
S(f)df

= γ − 1. (78)

Using (78) in the left-hand-side of (76) leads to the following two inequalities

Pdc ≥
1

2

1√
γ − 1

=
1

2
δ−1 (79)

and

Pds ≥
1

2

√

γ − 1 +
1

2

1√
γ − 1

=
1

2
(δ + δ−1) (80)

where we have equality in both (79) and (80) (at the same time)if and only if the filter is

minimum phase and the power spectrum is a two-step function,i.e. it has constant powerδ−1 =

1/
√

γ − 1 through-out the lowpass band andδ through-out the highpass band.

At this point we letα =
σ2

X

σ2
X+σ2

EPds
and β =

σ2
X

σ2
X+σ2

EPdc
from which it can be shown that the

distortions at general resolution are given by

dc =
σ2

Xσ2
EPdc

σ2
X + σ2

EPdc

(81)

and

ds =
σ2

Xσ2
EPds

σ2
X + σ2

EPds

. (82)

Inserting the lower bounds of (79) and (80) into (81) and (82)yields Ozarow’s symmetric rate-

distortion function (see (26) and (24)). Moreover, (81) and(82) are strictly increasing inPdc

andPds , respectively. Thus, for a fixed ratioγ, any other spectrum than the two-stepS(f) given

above must necessarily lead to a greater distortion. To complete the proof, we remark that in

order to have such an ideal brick-wall power spectrum, the order of the filter must necessarily

be infinite.
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