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Multiple-Description Coding by Dithered

Delta-Sigma Quantization

Jan @stergaard and Ram Zamir

Abstract

We address the connection between the multiple-desanifiti®) problem and Delta-Sigma quanti-
zation. The inherent redundancy due to oversampling indB@igma quantization, and the simple linear-
additive noise model resulting from dithered lattice qimation, allow us to construct a symmetric and
time-invariant MD coding scheme. We show that the use of aenshaping filter makes it possible
to trade off central distortion for side distortion. Asyrapitally as the dimension of the lattice vector
quantizer and order of the noise shaping filter approachityfithe entropy rate of the dithered Delta-
Sigma quantization scheme approaches the symmetric taoneth MD rate-distortion function for a
memoryless Gaussian source and MSE fidelity criterion, gtséte-to-central distortion ratio and any
resolution. In the optimal scheme, the infinite-order nabaping filter must be minimum phase and
have a piece-wise flat power spectrum with a single jump discoity. An important advantage of the
proposed design is that it is symmetric in rate and distortip construction, so the coding rates of the

descriptions are identical and there is therefore no needdorce splitting.

Index Terms

delta-sigma modulation, dithered lattice quantizatiartr@py coding, joint source-channel coding,

multiple-description coding, vector quantization.

|. INTRODUCTION AND MOTIVATION

Delta-Sigma analogue to digital (A/D) conversion is a tegha where the input signal is

highly oversampled before being quantized by a low resmiugjuantizer. The quantization noise
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is then processed by a noise shaping filter which reducesrgeof the so-called in-band noise
spectrum, i.e. the part of the noise spectrum which overlapsspectrum of the input signal.
The end result is high bit-accuracy (A/D) conversion everthie presence of imperfections in
the analogue components of the system, cf. [1].

The process of oversampling and use of feedback to reducdigatgon noise is not limited
to A/D conversion of continuous-time signals but is in faqually applicable to, for example,
discrete time signals in which case we will use the term DB®ltgana quantization. Hence,
given a discrete time signal we can apply Delta-Sigma gmatiin in order to discretize the
amplitude of the signal and thereby obtain a digital sigitathould be clear that the process
of oversampling is not required in order to obtain a digiighal. However, oversampling leads
to a controlled amount of redundancy in the digital sign@lisTredundancy can be exploited in
order to achieve a certain degree of robustness againsturaay in the quantization, or partial
loss of information due to transmission of the digital sigoger error-prone channels. In this
paper we pursue the latter aspect, and relate it to the probfemultiple descriptions.

In the information theory community the problem of quartii@a is usually referred to as a
source coding problem whereas the problem of reliable tnggson is referred to as a channel
coding problem. Their combination then forms a joint sowrhannel coding problem. The
multiple-description (MD) problem [2], which has recentceived a lot of attention, is basically
a joint source-channel coding problem. The MD problem isceoned with lossy encoding of
information for transmission over an unrelialitechannel communication system. The channels
may break down resulting in erasures and a loss of informatidhe receiving side. Which of the
2K — 1 non-trivial subsets of thél channels that is working is assumed known at the receiving
side but not at the encoder. The problem is then to design ansyddem which, for given
channel rates, minimizes the distortions due to reconstruof the source using information
from any subsets of the channels. Currently, the achievisiiderate-distortion region is only
completely known for the case of two channels, squared-&delity criterion and a memoryless
Gaussian source [2], [3]. The bounds of [3] have been extktalstationary and smooth sources
in [4], [5], where they were proven to be asymptotically tigh high resolution. Inner and outer
bounds to the rate-distortion region for the caseof> 2 channels were presented in [6]-[8]
but it is not known whether any of the bounds are tight for> 2 channels.

The earliest practical MD schemes, which was shown to be ptioally optimal at high
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resolution and large lattice vector quantizer dimensiovese based on the principle of index
assignments, cf. [9]-[13]. Unfortunately, the existingthwels for constructing index assignments
in high vector dimensions are complex and computationa#ynanding. To avoid the difficulty
of designing efficient index assignments, it was suggestefd4] that the index assignments
of a two-description system can be replaced by successiantigation and linear estimation.
More specifically, the two side descriptions can be lineadynbined and further enhanced by a
refinement layer to yield the central reconstruction. Theigle of [14] suffers from a rate loss
of 0.5 bit/dim. at high resolution and is therefore not aldeathieve the MD rate-distortion
bound! Recently, however, this gap was closed by Chen et al. [15] vétognized that the
rate region of the MD problem forms a polymatroid, and showed the corner points of this
rate region can be achieved by successive estimation antdizatzon. The design of Chen et
al. is inherentlyasymmetridn the description rate since any corner point of a nondltivate
region will lead to asymmetric rates. To symmetrize the wgdiates, it is necessary to break
the quantization process into additional stages, whichnsethod known as “source splitting”
(following Urbanke and Rimoldi’s rate splitting approadr the multiple access channel). When
finite-dimensional quantizers are employed, there is aesfiling loss due to the fact that the
guantizer's Voronoi cells are finite dimensional and not ptately spherical, [16], and as such
each description suffers a rate loss. The rate loss of thgrdgs/en in [15] is that o2 K — 1
guantizers because source splitting is performed by usiredditional X’ — 1 quantizers besides
the conventional side quantizers.

An interesting open question is: can we avoid both the coxitylef the index assignments
and the extra space-filling loss due to source splitting mmsgtri¢é MD coding?

Inspired by the works presented in [14], [15], [17], we présetwo-channel MD scheme based
on two times oversampled dithered Delta-Sigma quantiaatichich is inherently symmetric

in the description rate and as such there is no need for s@pliténg? The rate loss when

1The termrate lossrefers to the rate redundancy of the specific implementatienthe additional rate required due to using
a sub-optimal MD scheme.

By use of time-sharing, the rate loss can be reduced to thahlgf X' quantizers. Moreover, in the two-description scalar
deterministic case, the rate loss can be further reducedi] i

3By symmetricwe refer to the case where the MD scheme has balanced dastriates and balanced side distortions.

“It should be noted that it is difficult to extend the proposedstruction to allow for asymmetric description rates.
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employing finite-dimensional quantizers (in parallel)heiefore given by that of two quantizers.
The side-to-central distortion ratio is controlled by these shaping filter; the more “high-pass”
the noise is, the larger is the side-to-central distortiatior Asymptotically as the dimension
of the vector quantizer and order of the noise shaping filpgr@ach infinity, we show that the
symmetric two-channel MD rate-distortion function for amm@yless Gaussian source and MSE
fidelity criterion can be achieved at any resolution. It isrthcemphasizing that our design is
not limited to two descriptions but, in fact, an arbitrarynmoer of descriptions can be created
simply by increasing the oversampling ratiéiowever, in this paper, we only prove optimality
for the case of two descriptions.

In the Delta-Sigma quantization literature there seemsealronsensus of avoiding long
feedback filters. We suspect this is mainly due to the fadtttitequantization error in traditional
Delta-Sigma quantization is a deterministic non-linearction of the input signal, which makes
it difficult to perform an exact system analysis. Thus, thetght be concerns regarding the
stability of the system. In our work we use dithered (laitigeantization, so that the quantization
error is a stochastic process, independent of the inpuakigmd the whole system becomes
linear. This linearization is highly desirable, since itoals an exact system analysis for any
filter order and at any resolutidnThe case of infinite filter order has a very simple solution in
the frequency domain, which (for large lattice dimensionqugntees that the proposed scheme
achieves the symmetric two-channel MD rate-distortioncfiom [2], [3].

Besides the quantizer-based MD schemes mentioned abowe ¢hest several other ap-
proaches, e.g. MD schemes based on quantized overcompfetastons [19]-[22]. The works
of [19], [20] are based on finite frame expansions and tha2df, [[22] are based on redundant
M-channel filter banks.

It is well known that there is a connection between quantisedrcomplete expansions
and Delta-Sigma quantization, cf. [23]-[25]. Furthermaas mentioned above, the connection

between overcomplete expansions and the MD problem hasbakso established. Yet, to the

*When considering more than two descriptions, the distorienerally depends upon the particular subset of received
descriptions whereas the coding rate is the same for alrigéisos.

®Notice that our results are valid in steady state where tistesy is time invariant, i.e. we assume the system has been
operating for a long time so that possible short-time terapwansient effects can be ignored. When referring to naga and

power spectra we therefore always mean staionaryvariances andtationarypower spectra [18].
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best of the authors knowledge, none of the schemes preder{t?]-[22] are able to achieve the
above mentioned MD rate-distortion bounds. Furthermdre,use of Delta-Sigma quantization
explicitly for MD coding appears to be a new idea. In this pap& show that traditional Delta-
Sigma quantization can be recast in the context of MD codimd)farthermore, that it provides
an optimal solution to the MD problem in the symmetric case.

The paper is structured as follows: In Section Il, we provaie introduction to dithered
Delta-Sigma quantization. In Section Ill, a connectionwesn Delta-Sigma quantization and
MD coding is established and we present the main theoremsibrk. The proof of the theorem
is deferred to Section V. Section IV presents an asymptdtaracterization and performance
analysis of the proposed scheme in the limit of high dimemaioector quantization and high
order noise shaping filter. Section VI shows that the propasdeme is, in fact, asymptotically
optimal at high resolution for any i.i.d. source with finitdferential entropy. An extension to

K descriptions is presented in Section VII, and finally, SectVIll contains the conclusions.

[I. DITHERED DELTA-SIGMA QUANTIZATION

Throughout this paper we will use upper case letters forhstsiic variables and lower case
letters for their realizations. Infinite sequences @ndimensional vectors will be typed in bold
face. We letX ~ N(0,0%) denote a zero-mean Gaussian variable of variariceand X =
{X1, X5, ...} denote an infinite sequence of independent copies.ofhusX is an i.i.d. (white)
Gaussian process. Moreover= {xi, s, ..., } denotes a realization oX wherexz; is the kth

symbol of x.

A. Preliminaries: Entropy-Coded Dithered Quantization
Z Z

| ¢
S Q Entropy Entropy - S
L code decode

Fig. 1. Entropy-constrained dithered (lattice) quantaat(ECDQ). The dither signaZ is assumed known at the decoder.

The quantizeQ, is an L-dimensional lattice vector quantizer and the rate of theopy coder is given by the entropy of the

quantized output o), conditioned uponZ.
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Before introducing our dithered Delta-Sigma quantizatgstem, let us recall the properties
of entropy-coded dithered (lattice) quantization (ECDQ¥®][ ECDQ relies upon subtractive
dither; see Fig. 1. For ai-dimensional input vectosS, the ECDQ output is given by =
QL(S+ Z)— Z, where@, denotes ar_-dimensional lattice quantizer with Voronoi cells [27].
The dither vectotZ, which is known to both the encoder and the decoder, is ingrd of the
input signal and previous realizations of the dither, andrnigormly distributed over the basic

Voronoi cell of the lattice quantizer. It follows that the antization error
E=S5S-8S=Q.S+2)-S8-Z 1)

is statistically independent of the input signal. Furtherey E is an i.i.d.-vector process, where
eachL-block is uniformly distributed over the mirror image of thasic cell of the lattice, i.e.,
as—Z. In particular, it follows thatE is a zero-mean white vector with varianeg [26], [28].
The average code length of the quantized variables is giwerthb conditional entropy
H(QL(S + Z)|Z) of the quantizer) ., where the conditioning is with respect to the dither
vector Z. It is known that this conditional entropy is equal to the valtinformation over the
additive noise channd@” = S + E where E (the channel’s noise) is distributed a<Z; see [26]

for details. The coding rate (pdr-block) of the quantizer is therefore given by
H(QL(S + Z)|Z) = I(S;Y) = h(S + E) — h(E) (2

where(-,-) denotes the mutual information aid-) denotes the differential entropy. If subse-
guent quantizer outputs are entropy-coded jointly, thenmust change the blockwise mutual in-
formation in the rate formula (2) to the joint mutual infortia between input-output sequences
(if there is no feedback) [26], or to thdirected mutual information (if there is feedback) [29],
[30].

If the sourceS is white Gaussian, then the coding rate (2), normalizedsperple, is upper
bounded by

TH(QUS +2)2) < o, (1 ; Var(f“) + Llogy(2mey) 3)
oy 2
= Rs(D)+ % log, (2meGY) (4)

where( , is the dimensionless normalized second moment of Haémensional lattice quantizer

Q1 [27]. In the second equality) is the total distortion after a suitable post-filter (mulep)
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and Rs(D) is the rate-distortion function of the white Gaussian seufrsee [31]. The quantity
2we(Gy, is the space-filling loss of the quantizer aédiogQ(QweGL) is the divergence of the
guantization noise from Gaussianity. It follows that it issttable to have Gaussian distributed
guantization noise in order to maké, as small as possible and thereby drive the rate of
the filtered quantizer towardBs(D). Fortunately, it is known that there exists lattices where
G, — 1/2me as L — oo; the quantization noise of such quantizers is white, andines

asymptotically (in dimension) Gaussian distributed in disergence sense [28].

B. Delta-Sigma ECDQ

Dither - %gté?n%y | @ = H(Q_|Dither)

x a a, d j}
L» ?2 > h/(Z) k + k _ QL k ha<Z) _ ¢2 411
LPF LPF
€k _

/
‘)

Fig. 2. Dithered Delta-Sigma quantization.

We are now ready to introduce our dithered Delta-Sigma dgatiin system, which is
sketched in Fig. 2.The input sequence is first oversampled by a factor of two to produce the
oversampled sequenee It follows thata is a redundant representation of the input sequence
x, which can be obtained simply by inserting a zero betweenyesample ofx and applying
an interpolating (ideal lowpass) filtét(z). For a wide-sense stationary input process the
resulting oversampled signa would be wide-sense stationary, with the same variancees th
input, and the same power-spectrum only squeezed to hdifaeency band as shown in Fig. 3.

In particular, a white Gaussian input becomes a half-bandpass Gaussian process with
Var(A;) = Var(X) = o%. (5)

At the other end of the system we apply an anti-aliasing filigrz), i.e. an ideal half-band

lowpass filter, and downsample by two in order to get back &dtginal sampling rate.

"The Delta-Sigma quantization system shown in Fig. 2 is ardisetime version of thgeneral noise-shaping coderesented

in [32]. The system has an equivalent form where the feedimékst subtracted and this difference is then filtered [32].
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Sa
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NNNNNRR ok X A
I e e e I
- —7/2 0 72 7T w —r /2 0 w/2 T w
(@) Spectrum ofX (b) Oversampling by two (c) Spectrum ofA

Fig. 3. The power spectrum of (a) the input signal and (c) thersampled signal. (b) illustrates the oversampling msce
where the input signal is first upsampled by two and then éitdsy an ideal half-band lowpass filter.

We would like to emphasize that the dithered Delta-Sigmantization scheme is not limited
to oversampling ratios of two. In fact, arbitrary (even franal) oversampling ratios may be
used. This option is discussed further in Section VII.

The oversampled source sequernrces combined with noise feedbaak and the resulting
signala’ is sequentially quantized on a sample by sample basis usttipered quantizer. For
the simplicity of the exposition we shall momentarily assustalar quantization, i.el, = 1.
The extension td. > 1 is discussed in Section II-C. The quantization eerppof the kth sample,
given for a general ECDQ by (1), is fed back through the (cwer ¢/(z) = >7_, ¢;27* and
combined with the next source samplg,; to produce the next ECDQ inpuf . Thus, the
output of the quantizer can be written as

dk:a2+ek:ak+ék+ekéak+ek (6)

whereé(z) = d(z)e(z) or equivalently

p
ék: E Ci€Cl—jq.
i=1

V2

o /) cha%

Fig. 4. The dithered quantizer is replaced by the additiieenaodel.
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As explained above, the additive noise model is exact for @@Rd we can therefore represent
the quantization operation as an additive noise channshasn in Fig. 4. In view of this linear
model, the equivalent reconstruction error in the overdachplomain, denoted, in (6), is
statistically independent of the source. Thus we ealthe “equivalent noise”. Notice that,
is obtained by passing the quantization emprthrough the equivalenith order noise shaping

filter ¢(z),
p

c(z) = Zciz_i (7)

1=0
wherec, = 1 so thatc(z) = 1 + ¢/(z). Since the quantization errer of the ECDQ (1) is white

with variancec?, it follows that the equivalent noise spectrum is given by
Sc(w) = |e(e’)og. (8)

The fact that the outpui, is obtained by passing the quantization ergprthrough the noise
shaping filterc(z) and adding the result to the input can be illustrated using an equivalent

additive noise channel as shown in Fig. 5.

Tn

— 12 —= h(2)

Tyt

ha(2) - 2 —>

Fig. 5. The equivalent additive noise channel: The outpuis obtained by passing the quantization empithrough the noise
shaping filterc(z) and adding the result to the input,.

We may view the feedback filter'(z) as if its purpose is to predict the “in-band” noise
component ofé, based on the pasgt quantization error samples,_1,e;_s, ..., e,—, (at the
expense of possibly increasing the “out-of-band” noise ponent). The end result is that the
equivalent noise spectrum (8) is shaped away from the iwnhipamt of the spectrum, i.e., from
the frequency rangé—=/2, +7/2), as shown in Fig. 6. Notice that due to the anti-aliasingrfilte
h.(z), only the in-band noise determines the overall system diisto The exact guidelines for
this noise shaping are different in the single- and the mlgltdescription cases, and will become

clear in the sequel.
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|c<fw>|za%
Sa
RN 20%

Fig. 6. lllustrated on the left the case where there is nolfaekl and the quantization noise is therefore flat (in factteyhi
throughout the entire frequency range. On the right an el@wipnoise shaping is illustrated. The grey-shaded aréastriite

the power spectra of the noise and the hatched areas itlish@ power spectra of the source.

As previously mentioned, if we encode the quantizer outpuotl®ls independently, then the
rate R of the ECDQ is given by the mutual information between theutrgnd the output of the

quantizer. Thus, the rate (per sample) is given by
R = I(A}; Ay) = (A A}, + Ey) (9)

where Ej;, is independent of the present and past sampled;oby the dithered quantization

assumption. IfA, and E;, were Gaussian, as discussed in Section II-C below, then wiel get
Var(A;f))

1
RzilogQ (1+ P

(10)

where VafA),) denotes the variance of the random variallle At high resolution conditions
the variance of the error signal (and therefore ok) is small compared to the source, so by
(5) we have VafA,) + o% ~ 0% which implies that (10) becomes
R~ %log2 <%) (11)

where = in (11) is in the sense that the difference goes to zera?as— 0. We can now
combine (11) with the expression (8) for the noise spectranohtain a simple overall rate-
distortion characterization of the system. It can be olexbthat the resultingl(D) curve depends
on both the in-band and the out-of-band noise components.

If we apply joint entropy coding of the quantizer outputs, that is, we let theopy coder
take advantage of the memory inside the oversampled sainee,the rate of the Delta-Sigma
guantization scheme is independent of the out-of-bandengiectrum. To see this, recall that

for jointly-coded ECDQ within a feedback loop, the codingera given by thalirectedmutual
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information rate, that is, [30],

I(A, — AL+ Ey) = I(A AL+ ER|A,  + B 1, Ay o+ Epo,...)

= h(A; —+ Ek|A;€_1 + Ejy_q, A;_Z + Ej_o,.. ) — h(Ek)

@ h(Ag + €,|Ap—1 + €x—1, A2 + €1_2,...) — h(E})

—
=

D R(A+ €) — h(e)
= [(A;A+e) (12)

where h(-) and I(-) denote the entropy rate and mutual information rate, résehe In the
equations abovéa) follows since A; = Aj + FE, ande, = E, + Ei. In (b) we used the
fact that £}, is the prediction error ok, given its past so that(E}) is the entropy rate o€,

i.e. h(e) = h(Ey) = h(Ey). Asymptotically asL — oo, the quantization noise becomes ap-
proximately Gaussian distributed, and the equivalent ECbgnnel is AWGN (see Section II-C
below). Recall that, for a Gaussian process, disjoint feegqy bands are statistically independent.
Therefore, since the inpwt is lowpass, the mutual-information rate (12) is indepenasrihe
out-of-band part of the noise processThus, the joint-entropy coding rate is independent of

the out-of-band noise spectriin.

C. Vector Delta-Sigma Quantization

To justify the use of high-dimensional vector quantizerswik consider a setup involvingd.
independent sourc@sThese sources can, for example, be obtained by demultigefe original
memoryless procesk into L independent parallel i.i.d. process&$) = {X,,;,;},¥n € Z and
I =1,...,LYIn this case theith sample of théth processX ) is identical to the(n x L +1)th
sample of the original process. Let us give an example whete = 3 so that we have three
processes¥ M, X® and X®). The three processes are each upsampled by a factor of two so
that we obtain the three processés), A® and A®), where each is input to a Delta-Sigma

guantization system as shown in Fig. 7. Hence, in this chsee tcoders are operating in parallel

8Interestingly as we shall see later, in the MD case the cotitgy depends on the in-band as well as the out-of-band noise
spectra; see (27).
The idea of applying lattice ECDQ to feedback coding systemsarallel was first presented in [30].

ONotice that the delay between two consecutive samples oftthprocess will be that of. input samples.
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and instead of a single sample we have a triplet of independent samples", >, a/*)). This
makes it possible to apply three-dimensional ECDQ on théovéarmed by cascading the triplet
of scalars. IfL coders are operating in parallel, we can form the set afidependent samples
(@M, a® ..., a™) and make use af-dimensional ECDQ on the vectér, ", o, ... a/™).

In general, we will allowL to become large so that, according to (4) and the paragragh th
follows just below (4), the rate Ios§log2(27reGL) due to the quantization noise being non-
Gaussian can be made arbitrarily small. Thus, for Idrgé’,. in (9) can indeed be approximated

as Gaussian noise.

+® a®
— )
(a) Demultiplexing the i.i.d. source intd = 3 (b) Applying a three-dimensional lattice quantiz@g

independent streams

Fig. 7. The dashed box illustrates that the triplet of sea(a@(l), a;@), a;§3>) are jointly quantized using three-dimensional

ECDQ. Notice that we may see the three-dimensional latti@ntizerQs as a composition of three functions wheig) =
QP (@, 0, a), o = QP @™, a®,a®) andaf? = QP (P, d, al).

[1I. M ULTIPLE-DESCRIPTIONCODING

A. MD Delta-Sigma Quantization

In this section we show that the sequential dithered Dalj@8 quantization system, which
is shown in Fig. 2, can be regarded as an MD coding system. @ng@e, in the case of an
oversampling ratio of two, each input sample leads to tw@uusamples and we have in fact

a two-channel MD coding system as shown in Fig. 8.
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In the MD scheme of Fig. 8, the first description is given by éven outputs of the lattice
guantizer and the second description by the odd output$ &ascription is then entropy-coded
separately, conditioned upon its own dither, and transehittb the decoder. Notice that although
the oversampled signal has memory, the source part in each description is memaryesause
we assume ideal interpolation so for a Gaussian source t@/ald splitting of the samples
corresponds to downsampling by two. However, unless thpeshand aliased noise is white
and Gaussian, there will be memory in the downsampled sidnal, or A,.;. We show later
that, asymptotically as the vector dimension of the quantand the order of the noise-shaping
filter approach infinity, the downsampled noise becomes iah process, and entropy coding
can therefore be done sample-by-sample (i.e. memory)essyout loss of optimality. By (2),

the sample-by-sample ECDQ rate is given by the (per-sanighbek-wise mutual information
R = %I(A’; A'+E). (13)

At the decoder, if both descriptions are received, then teyinterlaced to form back the
oversampled signad, an anti-aliasing filterh,(z) (i.e. an ideal half-band lowpass filter) is
applied and the signal is then downsampled by two and scajled Bs shown in Fig. 9. If
only the even samples are received, we simply scale the Isigha. On the other hand, if
only the odd samples are received, we first apply an all-péss fi,(z) to correct the phase
of the second description and then scaledbyThe all-pass filterh,(z) is needed because the
upsampling operation performed at the encoder, i.e. upsagrpy two followed by ideal lowpass
filtering (sinc-interpolation), shifts the phase of the ainples. The post multipliers and 5
are described in Section IV-C.

Ditheri
Ditheri Q even Entorlppyq
) ) y 4 coding
T o L0 ko k QL k
] Entropy|
. , ~ &kpdd coding
o) T
€ Dither

Fig. 8. Two-channel MD coding based on dithered Delta-Sigmantization: Encoder.

The distortion due to reconstructing using both descniis traditionally called the central
distortion d. and the distortion due to reconstructing using only a sirgscription is called
the side distortionl;.
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Ditheri

Entropy CAlk,even

| decoding E
s ha(2) e 42 »@»x
_ .| Entropy k
decoding Ak.odd I (2) o i
pl2) ————~
DitherT

Fig. 9. Two-channel MD coding based on dithered Delta-Sigjmantization: Decoder.

B. The Symmetric MD Rate-Distortion Region

Let us recall the solution to the quadratic (memoryless)SSiam MD problem, as proven by
Ozarow [3], in thesymmetriccase, i.e., when both descriptions have the sameRad@d the
side distortions are equal. The set of achievable distwstior description rate? is the union

of all distortion pairs(d., ds) satisfying
dy > 0527 (14)

and .
4> ox2
1 — (VI — VA2

whereIl = (1 —d,/0%)? and A = d?/o% — 27*% and where we requirél > A to avoid

(15)

degenerate cases.

Based on the results of [3], it was shown in [33] that at higdohetion, for fixed central-to-side
distortion ratiod./d,, the product of the central and side distortions of an ogtimwa-channel
MD scheme approaches

4
~ Oy 1

dd, =X~ o4k 16
4 1—d./d, (16)

where the approximatios: here is in the sense that the ratio between both sides goesso 1

ds — 0 (or R — o0). If ds/d. > 1, i.e., at high side-to-central distortion ratio, this slifips to

- ok
dody = sz—‘m. (17)

C. Main Theorem

We now present the main theorem of this work, which basicsiftes that the MD Delta-
Sigma quantization scheme (presented in Section IlI-A) asymptotically achieve the lower

bound of Ozarow’s MD distortion region (presented in Setctiid-B).
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Theorem 1:Asymptotically as the noise-shaping filter orderand the vector-quantizer di-
mensionL are going to infinity, the entropy rate and the distortiorelswof the dithered Delta-
Sigma quantization scheme (of Figs. 8 and 9) with optimurarfltand lattice quantizer achieve
the symmetric two-channel MD rate-distortion function \*4(15) for a memoryless Gaussian
source and MSE fidelity criterion, at any side-to-centratdlition ratiod,/d. and any resolution.
Furthermore, the optimal infinite-order noise shaping rfilleunique, minimum phase, and its
magnitude spectrurfr(e’*)| is piece-wise flat with a single jump discontinuityat= /2.

Before presenting the proof of the theorem, we provide inftlewing sections a series of

supporting lemmas. The proof of the theorem can be found ati@eV.

IV. ASYMPTOTIC CHARACTERIZATION AND PERFORMANCE ANALYSIS

In this section we concentrate on the asymptotic case whete— oo, i.e. infinite noise
shaping filter order and infinite vector quantizer dimensieor analysis purposes, this allows
us to assume Gaussian quantization noise in the system mbBaj. 4, with arbitrarily shaped

equivalent noise spectrum (8).

A. Frequency Interpretation of Delta-Sigma Quantization

We first give an intuitive frequency interpretation of theposed Delta-Sigma quantization
scheme. This frequency interpretation reveals that treeabthe noise shaping filter is not simply
to shape away the quantization noise from the in-band spactis is the case in traditional Delta-
Sigma quantization, but rather to delicately control tlaeléoff between the in-band noise versus
the out-of-band noise, which translates into a tradeofivbet the central and side distortions.
This tradeoff is done while keeping the coding rate fixed,clhiat least at high resolution, is
equivalent to keeping the quantizer variance fixed. See (11).

Recall that we, at the central decoder, apply an anti-alip$iter (ideal lowpass filtering)
before downsampling. Hence, the central distortion is mjileg the energy of the quantization
noise that falls within the in-band spectrum. The inclusdb@a noise shaping filter at the encoder
makes it possible to shape away the quantization noise fh@mntband spectrum and thereby
reduce the central distortion. By increasing the order efrithise shaping filter it is possible to

reduce the central distortion accordingly.
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It is also interesting to understand what influences the didtortion. Recall that the side
descriptions are constructed by using either all odd sasnpiteall even samples of the output
A. Hence, we effectively downsamplé by a factor of two. It is important to see that this
downsampling process takes place without first applyingranadiasing filter. Thus, aliasing is
inevitable. It follows, that not only the noise which fallstiun the in-band spectrum contributes
to the side distortion but also the noise that falls outsldeih-band spectrum (i.e. the out-of-
band noise) affects the distortion. Since, in tradition&lt®-Sigma quantization, the noise is
shaped away from the in-band spectrum as efficiently as lplessihe out-of-band noise is likely

to be the dominating contributor to the side distortion. Veeehillustrated this in Fig. 10.

Sk e(e) 0%

| | 7k

—r —m/2 0 7TI/2 ™ w - —7/2 0

(a) Spectrum offf (b) Spectrum of shapefl

Fig. 10. The power spectrum of (a) the quantization noiseh{)shaped quantization noise. In (b) the energy of the les/pa
noise spectrum (the bright region) corresponds to the akedistortion and the energy of the full spectrum corresgotdthe

side distortion.

It should now be clear that, in two-channel MD Delta-Sigmaarmfization, the role of the
noise shaping filter is to trade off the in-band noise verbgsaut-of-band noise. In particular,
in the asymptotic case where the order of the noise shapieg §ibes to infinity, it is possible
to construct a brick-wall filter which has a squared magrétadectrum oft /§ in the passband
(i.e. for |w| < w/2) and of § in the stopband (i.e. forr/2 < |w| < 7). In this case, the central
distortion is proportional tal/§ whereas the side distortion is proportional g + §. This

situation, which is illustrated in Fig. 10(b), will be disssed in more detail in the next section.

B. Achieving the MD Distortion Product at High Resolution

It is possible to take advantage of the frequency interpoetgiven in Section IV-A in order to
show that the optimum central-side distortion product ghkiesolution (16) can be achieved by
Delta-Sigma quantization. We later extend this result drmhsthat with suitable post-multipliers

at the decoders, optimum performance are achievedhyatesolution.
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Lemma 1:At high resolution and asymptotically as . — oo, the distortion product given

by (16) is achievable by Delta-Sigma quantization.
Proof: The central distortion is equal to the total enerfgy of the in-band noise spectrum
where
P, = ﬁ v () |*dw. (18)
© 2 7

The side distortion is equal to the enerdy, of the in-band noise spectrum of the side

descriptions which contains aliasing due to the subsampglnocess. Since we downsample by

two we have

o2 [T
R ¥/

Let us shape the noise spectrum as illustrated in Fig. 10¢)s, we let/c(e’*)|> = 1/4 for

P, (72 + |e(e @) 2 dw. (19)

lw| < /2 and |e(e?*)|? = § for /2 < |w| < = where(0 < § € R. It follows from (19) that, for
anyd >0, d, = 305(6+6') and from (18) we see that = 0%,/ which yields the distortion
product

1
dd, =2 Z? o (20)

From (11) we know that at high resolutidi ~ log,(0% /0%) (where= is in the sense that the

difference goes to zero & — o), so that
op = o327 (21)

(where= is in the sense that the ratio goes to ondias: o). Finally, sinced,/d, = §=1/(6 +

6~1) it follows that
I
1—d,/d, o

and the lemma is proved by inserting (21) and (22) into (20 aomparing the resulting

(22)

expression to (16). [ |

C. Optimum Performance for General Resolution

In this section we extend the optimality result of SectiorB\above, and show that the
two-channel Delta-Sigma quantization scheme achievesythenetric quadratic Gaussian rate-
distortion function at any resolution.

Let U; denote the reconstructions before the side post muItispBerthatX’i =alU;,i =0,1,

and letE denote the expectation operator. It can then be shownRA&l; = ¢% and EU? =
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0% + 0%(6 +67)/2. Moreover, letU denote the reconstruction before the central multiplier
ThenEU? = ¢% + 0261 /2. Finally, let the post multipliers be given by
2

o= ox
N 0% +oL(0+071)/2

and

2
T =
0% +05071/2

It follows that the side distortion is given by

dy, = E(X; — X)?

=E(alU; — X)?
=0y — 2a0% + (0% + o056 +4671)/2) (23)
2 2 -1
_ oxop(d+47h)
C 20% +op(0+671) (24)
Similarly, let X, = SU so that the central distortion is given by
d,=E(X, — X)?
=E(BU — X)?
= 0% + (0% + 0pd 1 /2) — 280% (25)
02025t (26)

T 202 + 0261

Lemma 2:For a given description rat& and asymptotically ag, L — oo (i.e., assuming
Gaussian quantization noise and equivalent noise speasuim Fig. 10(b)), the side distortion
given by (24) and the central distortion given by (26) ackidvwe lower bound (15) of Ozarow’s
symmetric MD distortion region.

Proof: Recall from Section I, that the rate of memoryless-ECDQ@(asing that the entropy
coding is conditioned upon the dither signal and that theedisignal is known at the decoder)
is equal to the mutual information between the input and thtpwt of an additive noise channel
(13). For largeL, this mutual information can be calculated as if the additiwise £, was

approximately Gaussian distributed. It thus follows frof) énd (10) that ad. — oo the
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description rate becomes

R =I(A; Ak)
= h(Ag) — h(E})
1
=3 log,(2me(0% +on(d+071)/2)) — = 10g2(27reaE)
— llogg <UX _‘_UE((Z_‘_(S_ )/2) ) (27)
2 oy
We can rewrite (27) as
46%0%
2—4R _ E 2
(20%0 + 0262 + 0%,)? (28)
By use of (24) and (28) we then get
(6t =282 41)
- (20%5 + 0262 + 022
and
46205
(20X5 + 0202 + 0%,)?
so that
403,0%(20%0 + o)
29
- (V- VAy = (20%0 + 0262 + 02)? (29)
Finally, inserting (29) in (15) leads to
2074k 0% 0%,
1- M VAR 20%0 + 0%
which is identical to (26) and therefore proves the lemma. [ ]

D. Relation to Ozarow’s Double Branch Test Channel

Let us now revisit Ozarow’s double branch test channel awshio Fig. 11. In this model the
noise pair(Ny, V1) is negativelycorrelated (except from the case of no-excess marginad, riate
which case the noises are independent). Notice that this liseé with the above observations,
since the highpass nature of the noise shaping filter cadgmseat noise samples to be negatively
correlated. The more negatively correlated they are, tkatgr is the ratio of side distortion to
central distortion. Furthermore, at high resolution, thkers” («; and3;,7 = 0, 1) in Ozarow’s
test channel degenerate and the central reconstructiomysgiven by the average of the

two side channels. This averaging operation can be seenasgpags filtering operation, which
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No

\L Uo %) XO
%5@
X ~
% O X,
G .
1 X1
! G
N

Fig. 11. The MD optimum test channel of Ozarow [3]. At highadlesion a; = 1 and3; = 1/2,7 = 0,1 so that X, =
U07X1 =U: anch = %(Xo +X1)

leaves the signal (since it is lowpass) and the in-band riotset but removes the out-of-band
noise.

More formally, for the symmetric case (wheog, = a?vi,z' = 0,1 and p is the correlation
coefficient of the noises), we have the following high-resioh relationships betweefp, 0%/)
of Ozarow’s test channel and, 0%) of the proposed Delta-Sigma quantization scheme.

Lemma 3:At high-resolution conditions, we have

0% = o3/1— 2 (30)

and
5= ﬁ;_g (31)
Proof: From [4], [5] it follows that Ozarow’s sum rat&, + R; satifies
Ro+ Ry > I(X; X + No)+ I[(X; X + Ny) + I(X + No; X + Np) (32)
=I(X; X+ No)+ I(X; X + Ny) + I(Ng; Nq) (33)
= 1(X; X + No) + I(X; X + Ny) +%log2 (ﬁ) (34)

= (X + Ng) — (X + No|X) + h(X + Ny) — h(X + N1|X) —logy(1/1 — p?) (35)

2 2
~ log, ("XU#) ~log, (V1= /%) (36)

N
where the last equality follows since the noises have ecaignces. By equating (36) to (27),

i.e.2R = logz(w) and solving foro% we obtain
E

_ 20%03%+/1 — p? (37)

203 +0%) — (040 21—

Ok
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If 0% < 0%, this reduces t@% ~ 0%,1/1 — p? and we obtain (30).
The MMSE when estimating from two jointly Gaussian noisy observatiobis= X +1V;,i =

0,1 (where the Gaussian noises have equal variances), is giwen b
ox(1+p)
MMSE = 2~ 7 38
ox(1+p)+2 (38)
Thus, the central distortion of Ozarow’s test channel igiby (38), which we equate to the
central distortion (26), solve fof and inserto% from (37), that is
_ 0%(0%(1+p)+2) Vi-p oxv/1—p’
d= : — . (39)
2(0% +03) — (6 + 60X /T—p2 VI+p 200%+0%)— (6+61)o%/1—p?
Once again, letting?, < o it follows that§ ~ \/\IC which yields (31) and thereby proves
the lemma. u

Remark 1: The relationship between Ozarow’s test-channel and the&aE®fgma quantization

scheme at general resolution is provided by (37) and (39).

V. PROOF OFTHEOREM 1

We are now in a position to wrap up the proof of Theorem 1. Len@naatually shows that it
is possible to achieve the quadratic Gaussian rate-dmtditinction if we replace the ECDQ by
a Gaussian noise, and the equivalent noise spectrum (8) biglaviall spectrum. This can be
viewed as setting the lattice quantizer dimensioand the feedback filter orderto be equal
to infinity. Thus, what is still missing is the characterization of timeitl behavior of the coding

rate asL,p — oo, and the distortion agp — ~c.

A. Distortion loss

We first present Lemma 4 (with a proof in the appendix) whickctibes the central and the
side distortions at general resolution when using an amyitnoise-shaping filtee(e’*).
Lemma 4:For any givenpth-order noise-shaping filter(e’~) and optimal multipliers¢ and

(), the central distortion is given by

2 2
ox0gFa.
de = o% +o%P, (40)
X E+de
and the side distortion is given by
° O’X + O‘EPd

December 15, 2008 DRAFT



22 SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY, AUGST 2007

where
p, = L le(e?)2d —1§p:§p:sinc LT e, (42)
de = 5 <£ce w-2' ' 5 CiC;
|UJ|72 =0 j:(]
and
P, = —1 |c(ejw)|2dw: Ep 2 (43)
S 27T |W|S7T JZO ]'

A
The noise shaping filter used in the proof of Lemma 2 to shovieaability of the quadratic

Gaussian rate-distortion function is of infinite order, andatisfies
1 4 )
Dy log, |c(e’)Pdw = 0. (44)

It follows that the area undéog, |c(e’~)|? is equally distributed above and below the 0 dB line,

—T

which is a unique property of minimum-phase filters [34]. &ctf the following Lemma proves
that, in order fore(z) to be optimal, it must be of infinite-order and minimum phasee(the
appendix for the proof). This means that the optimum noisgisty filter is unique.

Lemma 5:In order to achieve the quadratic Gaussian rate-distoftioction, it is required
that the noise shaping filteXz) is of infinite order, minimum-phase, and have a piece-wide fla
power spectrum of powei~! in the lowpass band (i.e. fdw| < 7/2) and of powers in the
highpass band (i.e. far/2 < |w| < 7) wherel < ¢ € R. A

We now assess the distortion loss due to using a finite ordsessthaping filter. Le6% (w) =
o%|cPt(e’+)|? denote the power spectrum of the shaped noise when usingl¢a infinite-
order noise shaping filter’?!(e’), which is optimal and unique as proven by Lemma 5. Thus,
|coPt(e7+)|? is piece-wise flat with a jump discontinuity at/2, cf. Fig. 10(b). For such a function,
point-wise convergence of the Fourier coefficients canmogbaranteed. However, we do have
convergence in the mean square sense [35]. Specificallyﬁ)éw) denote thepth order Fourier
approximation taS?"*(w). Then [35]

lim — / | 507! (w) — SP) (w)f dw =0 (45)
jwl<m

which asserts that the limit fgr — oo exists. In addition, it can be shown that the error (MSE)
of the pth order Fourier approximation of this step function is oé tarder O(1/p) [36]. It
follows that for anyp we have

oxop(La. +O(/p)) —  _ oxop(Fa, +O(1/p))
0% +op(Pe. +O(1/p)) 7 ok +oh(Pa, +O(1/p))
and the desired continuity in the limit— oo is established.

de. = (46)
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B. Coding rate loss
By similar arguments as leading to (46), for a finitethe variance ofd, is given by
Var(Ay) = E[(A}, + Ep)’] (47)
= 0% + 0z (Pas + O(1/p)) (48)

Moreover, the coding rate (9) when using memoryless entomolng is given by

R = I(Al; Ay) = h(Ay) — h(Ey) (49)
= h(Ay) ~ () + 5 logy(Gr2me) (50)
— h(Ax) = h(E}) + O(logy(L)/L) (51)

whereh(A}) is an increasing function ifrar(A,) and E denotes a Gaussian variable (process)
with the same variance (spectrum)@s Eq. (50) follows from the discussion after (4) where it
may be noticed that the terflog, (G 27e) describes the divergence of the quantization noise
from Gaussianity; see also [31]. This divergence term epoads to an excess rate due to using
a finite dimensional lattice quantizer and may be upper bedry O(log,(L)/L) when optimal
L-dimensional lattice quantizers are used, see [28] forildetBhus, if we keepr? fixed, then
the coding rate is increased due to té1/p) variance increase given in (48) and due to the
excess termO(log,(L)/L) in (51). These rate penalties vanishjad. — oo and the desired
convergence in coding rate is proved.

In order to complete the proof of the theorem, we need to shwat &n optimal monic
minimum phase filter always exists for any ratio Bf /P, . Towards that end, we keep the
post multipliers fixed and defind = A\.P;. + A\;P,, as the cost function to be minimized by
the pth-order noise-shaping filter. Notice that if we l&f = 0 we are only concerned about
minimizing the noise power than falls in the in-band regi®hus, we are aiming at minimizing
the central distortion. On the other hand, lettig< A, gives priority to the side distortion since
the total noise power is minimized. Lef = 1 andc = (cy,...,c,) be the filter coefficients.
Moreover, letg be thep-vector with elementg; = sindi/2),7 = 1,...,p, and letG be the
p % p autocorrelation matrix with elements; ; = sind (i — j)/2), wherei, j € {1,...,p}. With

this it follows that
P, = Z 2= (1+ce) (52)
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and
P —lzpzzp:sinc I e
EEPaP. 2 )Y
=0 j=0
1 p p p (53)
=501+ 2;smo(z/2)q + ;;smo((z — §)/2)eic;)
1 T T
= 5(1+2c g+c Ge)
so that
1
NPy, + NPy, = 3 (Ae(142c¢"g + c"Ge) + 20,(1 + "))
. (54)
=3 ()\c 42X +2Xc’g + T (NG + 2)\8I)c) )
The optimal filter coefficients are found by solving the diffetial equation% =0,
that is
As
c=—(G+22I)"'g (55)

A
where I is the p x p identity matrix. Notice thatG + 2§—Z‘I is a symmetric and full rank
matrix and (55) therefore defines a well-posed problem. Thetisn to (55) can be found by
the Yule-Walker method, which yields a unique minimum-ghéiter [37]. Asp — oo, the
autocorrelation sequence of the impulse response of trenelok filterc¢(z) becomes identical
to the ideal autocorrelation sequence whose Fourier transform desctibe optimum shaped
noise spectrum [37]. Thus, the resulting spectrum of theethanoise becomes identical to the

optimum spectrum. This proves the theorem.

VI. UNIVERSALITY OF DITHERED DELTA-SIGMA QUANTIZATION

In this section we discuss the universality of the proposdteme at high resolution. First,
notice that the central and side distortions depend onlynupe second-order statistics of the
source and the quantization noise, iv8. and 0%, and as such not on the Gaussianity of the
source. Second, independent of the source distributienditribution of the quantization noise
becomes approximately Gaussian distributed (in the dererg sense) in the limit of high vector
guantizer dimensior.. Finally, the ECDQ is allowed to encode each descriptioroating to
its entropy. Thus, the coding rate is equal to the mutualrmédion (13) of the source over

the Gaussian test channel. For memoryless sources of eguahees, this coding rate is upper
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bounded by that of the Gaussian source. Moreover, Zamirepron [4] that Ozarow’'s test
channel becomes asymptotically optimal in the limit of higdsolution for any i.i.d. source
provided it has a finite differential entropy. Thus, since thithered Delta-Sigma quantization
scheme resembles Ozarow’s test channel in the limjit &s— oo, we deduce that the proposed
scheme becomes asymptotically optimal for general i.odrees with finite differential entropy.

A delicate point to note, though, is that due to the sinc pa&ation, the odd samples might
not be i.i.d. and joint entropy coding within the packet i<e&sary in order to be optimal.
Specifically, with joint entropy coding the rate is given Hyetdirected mutual information
formula (12) applied to the sub-sampled souﬁb&dd. The resulting rate for the odd packet is
h(A.aa) — h(Ey), which (at high resolution) isv h(X) — 1 log,(2res?), as desired [4].

If we have a source with memory, and we allow joint entropyiegdvithin each of the two
packets, then a similar derivation shows that we would aehiate R ~ h(X) —  log,(2reot)
in each packet. This rate is the mutual information rate ef sburce over the Gaussian test
channel. Since Ozarow’s test channel is asymptoticallynggtin the limit of high resolution
for any stationary source with finite differential entromte, [5], it follows that the proposed

scheme is asymptotically optimal for such sources as well.

VII. EXTENSION TO K > 2 DESCRIPTIONS

We end this paper by presenting a straight-forward extensfothe proposed design t&
descriptions, though without any claim of optimality. Theskz idea is to change the oversampling
ratio from two to/” and then decide which output samples should make up a deésoripWhen
dealing with K descriptions2” — 1 distinct subsets of descriptions can be created. Thus, the
design of the decoders is generally more complex for gred@telFor example, if two out three
descriptions are received, aliasing is unavoidable (as thvascase forK = 2 descriptions).
Moreover, due to the fractional (non-uniform) downsamgliprocess, the simple brick-wall
lowpass filter operation is not necessarily the optimal metction rule. In fact, the optimal
reconstruction rule depends not only upon the number ofivedalescriptions but (generally)

also upon which descriptions are received. However, inghidion we will restrict attention to

"Notice that even fractional oversampling ratios can be irsechich case we might also have aliasing of the source spractr
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cases leading to uniform samplitgThus, the design of the decoders is simplified.

We use the previously presented Delta-Sigma quantizatberse (of Figs. 8 and 9) but
oversample now by instead of two. More specifically, let us assume that= 4 and that
every fourth sample make up a description. We notice thaettension to an arbitrary number
of descriptions is straight forward. We consider only theesathat leads to uniform (non-
fractional) downsampling, i.e. reception of any singleadgdion, every other description (i.e.
two out of four), or all four descriptions.

It can easily be seen that if we receive all four descriptidhe central distortion,. is given

by the noise that falls within the in-band spectrum. In otwerds,

d ! 7r/45 d 56
=g [ S (56)

where S (w) = |c(e?)|?c% denotes the power spectrum of the shaped noise. SimilaHgnw
receveiving two out of four descriptions (i.e. one of therpai descriptions (0,2) or (1,3)) the
side distortiond, is given by
1 1
dy = — Se(w)dw + — Se(w)dw (57)

2 —n/4 2T Snlwl<n
where the latter term is due to aliasing (since we downsaropléwvo without applying any
anti-aliasing filter). Finally, if we receive only a singlestription and thereby downsample by
four, the side distortionl; is given by the complete shaped noise spectrum, that is
_ [
2 J_.

d; S. (w)dw. (58)

Once again, we lgt — oo and take advantage of the frequency-domain interpretatvbich
we previously presented for the case of two descriptionsdiMele the power spectrum of the
shaped noise into three flat regions as shown in Fig. 12. Madremuency band (i.dw| < 7/4)
is of powerd,, the middle band (i.er/4 < |w| < 37/4) is of powerd,, and the high band (i.e.
3r/4 < |w| < m) is of powerd;. With this choice of noise shaping, we guarantee thaj is
minimum phase simply by letting, = 1/1/6,0; so that|”_log, S.(w)dw = 0. From (56) — (58)

2We suspect that results from non-uniform sampling or noifeum filterbank theory will prove advantageous for consting

the optimal decoders in the most general situation. Howehes is a topic of future research.
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it follows that?

dc = I(SO? (59)
0%
dy = —=(do + &1)
52 (60)
=d, “Es
+ 1 1
and
2
o
di = ZE (80 + 81 +2/v/301)
- (61)
=dy + —~2—.
24/0001
lc(e?)Po%;
6y =1/\/5001
L8
do
U I
Fig. 12. An example of a shaped noise power spectie(af*)|?c% for K = 4 descriptions.

The description rate follows easily from previous resuites the source is memoryless after
downsampling. Specifically, it is easy to show that when gismemoryless entropy coding the

rate is given by

1 0% + 0%(6g + 61 + 2/1/0001) /4 1
R = 5 tog, (AT LR LAY Lo, (03 /02,
E

where the approximation becomes exact at high resolution.

It is worth emphasizing that in this example we have two adhiig parameters, i.ej, and
01, Wheredy < 1 and dpd; < 1. It is therefore possible to achieve almost arbitrary digio
ratios d, /ds, dy/d. and dy/d.. It was recently shown, see [38], that it is also possible g6 u
several distortion controlling parameters in the soupdétsg design of Chen et al. [15] and

furthermore, by exploiting random binning, the achievaklehannel rate region of Pradhan et

BFor clarity we have excluded the post multipliers, which seguired for optimal reconstruction at general resolutiah

high resolution conditions, the post multipliers becomeidtr and will not affect the distortions.
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al. [7], [8] can be achieved. Random binning can also be useshliargen the rate region of the
index-assignment based schemes, cf. [13], [39].

For the case of distributed source coding problems, e.gWheer-Ziv problem, efficient
binning schemes based on nested lattice codes have beerspdopy Zamir et al. [40]. How-
ever, these binning schemes are not (directly) applicailénfe MD problem* An alternative
binning approach based on generalized coset codes hadlydoeen proposed by Pradhan and
Ramchandran [41]. It was indicated in [41] that the cosekbabinning approach is applicable
also for MD coding but the inherent rate loss was not adddesdeus, the problem of designing
efficient capacity achieving binning codes for the MD problappears to be unsolved. From a
practical point of view, it is therefore desirable to avoidrbng. While the proposed MD design
based on Delta-Sigma quantization avoids binning, we ddknotv whether there is a price to
be paid in terms of rate los8.We Leave it as a topic of future research, to construct optima
reconstruction rules for the cases of non-uniform downgerg@and furthermore addressing the
issue whether the achievablé-channel rate-distortion region coincide with the one oid by
Pradhan et al. [7], [8].

VIIl. CONCLUSIONS ANDDISCUSSION

We proposed a symmetric two-channel MD coding scheme baseditbered Delta-Sigma
guantization. We showed that for large vector quantizeretision and large noise shaping filter
order it was possible to achieve the symmetric two-channBl mdte-distortion function for
a memoryless Gaussian source and MSE fidelity criterion. ddvestruction was shown to be
inherently symmetric in the description rate and there \haseffore no need for source-splitting
as were the case with existing related designs. It was shbanhy simply increasing the
oversampling ratio from two td< it was possible to construdt’ descriptions. The design of
optimal reconstruction rules foK > 2 descriptions was left as an open problem. Currently,
we are working on extending the scheme to include prediciiorder to make it optimal for

encoding sources with memory, without requiring entropgles with memory, see [42].

1By making use of time-sharing, it is possible to apply thenbig schemes presented in [40] to the MD problem.

Notice that we can reduce the coding rate by undersampliagitnal so that the source spectrum will contain aliasirgy. A
more descriptions are received, the lesser aliasing andter lbeconstruction quality can be achieved. This standsntrast to

binning, where one can usually not reconstruct at all whenféav descriptions are received.
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APPENDIX
PROOF OFLEMMA 4

We first find the central distortion (at high-resolution)dbgh a time-domain approach and
use the insights in order to find the optimal which will then lead to the central distortion at
general resolution.

Lete, = 7, — x, be the error signal. Without loss of generality, we may viee tipsampling
operation followed by ideal lowpass filtering as an over-ptate expansion of the source, where
the infinite-dimensional analysis frame vectors with cciﬁfitsﬁk,n = sino("T"“) are translated

sinc function&®. Thus, adopting the notation of [25], we have that

- . —k
ay = Z anInC<n )

and the synthesis filters are given hy,, = % mo(”T‘k), so that
1 & . n—=k
n=- sinc{ —— | .

Sinceay, = ax + ex + >, ¢;ex—i, the errore, = z,, — x,, is given by

Z hkn (Z Ci€l— z) . (62)

k=—o00

The (per sample) mean squared error (MSE) is (by use of (62¢hdoy

Ee2 = ( > hin (Z ;B )) (63)

k=—00

—E k_z_:wl;o Biewhin (Z o ) (Z By ) (64)
B[S S () (£ ) (0]

= Z Z smc< )smc(T_l) > cic;E[Ey_iFy_j] (66)

k——oo l=—

®The sinc function is defined by

Il
e

1, T

sin(wx) T 7& 0
singz) £ { e
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1 00 - —k P p 0 —1
-1 > s|nc<n )ZZ%E Epi Y smc( 5 )El S (67)
k=—o0 i=0 j=0 l=—c0
(a) ]_ > n—=k u u 2 . n—k—1 +]
) Z Z > ) cieE | E}_sinc — (68)
i=0 j=0

q

® 7% zp: Z smc( ) cicj, (69)
=0 j=0

where (a) follows from the fact thatEE),_;E;_; is non-zero only whert — j = k — ¢ which

implies that! = k — 7 + j and (b) is due to the following property of the sinc function [43]

N sinc CO—E sinc co—k_cl — rsinc(2) .
T T T

k=—o00

Let U denote the reconstruction before the central post muétigli i.e. U is the variable
obtained by first lowpass filteringl, and then downsampling by two. It follows immediately
thatEU? = 0% + o f\w\<g lc(e/)|*0%dw = 0% + 0% P,,. Furthermore, from (69) it can be seen
that

9 P P . .
2_ 2  9E . 1—J
=0 7=0
so using thaf£[ X |U] = pU vyields
o2 02
b=——v ); — 0+§P (71)
0x + 3 2izo 2j—o SINAF)cic X T O0plde

The central distortion at general resolution now followsibgerting 5 (71) into (25), which
leads to (40).

We will now derive the side distortion. First notice thata@we only receive either all odd
samples or all even samples, we should only sum over term89nwhere the lagi — j| is
even. However, all cross-termsg;, i # j, vanish since sine/2) =0 for v = +£2,+4, ..., so
only thep + 1 auto-terms¢?,: = 0, ..., p, contribute to the distortion. In addition, we make use
of the following property of the sinc function [43]

f: sinc(i—k) sinc(xkr_ C) - gsincG) . (72)

k=—o0

With this, it follows that the high-resolution side distort d"" is given by

p
d" = o2 Z cd =0LP,,. (73)

DRAFT December 15, 2008



DSTERGAARD AND ZAMIR: MULTIPLE-DESCRIPTION CODING BY DITHERED DELTA-SIGMA QUANTIZATION 31

At this point, we letU; denote the reconstruction before the multiptiesuch thatX; = alU;,i =
0,1. It should be clear thaEXU; = ¢%.1" Recall that the auto-correlation of the even lags of

U; vanish so that
p
EU? = 03 + o2, Z cd =o% +onP,, (74)
=0
Since,E[X|U;] = aU;, it follows that

o (75)
UX+UEZZ =0 z.

Inserting (75) into (23) leads to (41), which is the side @igbn at general resolution. This

completes the proof. [ |

PROOF OFLEMMA 5
A minimum-phase filterH (z) with power spectrunS(f) = |H (e/?™)|2, —1/2 < f < 1/2
satisfies

1/2
€f71/2 In S(f)df — |h0‘2

where h is the zero-tap of the filter. It is also known that the zenp-td a minimum-phase
filter is strictly larger than the zero-tap of a non-minimyuimase filter having the same power

spectrum [44]. Thus, for an arbitrary filtéf (z) with power spectrunt(f) and zero-tap:,
SN 5 12

with equality if and only ifH(z) is minimum phase. Furthermore, from the geometric-aritione

means inequality it can be shown that

/ Sfd/] S(f)df > el 2SNy (76)
|f1<1/4 1/4<|f|<1/2

> (77)

where we used the fact that in our case the filter is monichgse= 1 and where we have
equality in (76) and (77) if and only if the filtel (2) is minimum phase and the power spectrum
consists of two flat regions$(f) = 6! for |f| < 1/4 and S(f) = 4 for 1/4 < |f| < 1/2.

"The even samples are noisy versionsXofwhere the noise is independent &f. The odd samples are noisy and phase
shifted versions ofX. However, the phase shift is corrected by the all-pass filigfz) before the post multiplier. Thus,
EXU; =o0%,i=0,1.
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Let us now fix the energy rati@, /P, = -, wherel < v € R, P;, = flf\§1/4 S(f)df and
Pa, = J <12 SUAf + [1jacipers2 S(F)df - With this, it follows that

Jipacigicre SCHAS

=~—1. (78)
i S
Using (78) in the left-hand-side of (76) leads to the follogitwo inequalities
1 1 1
> — = 5!
PdC_Q — 25 (79)
and
1 1 1 1
Py > =\/y—1+= == -1
de Z 5V = 145 =1 2(5+5 ) (80)

where we have equality in both (79) and (80) (at the same tifnahd only if the filter is
minimum phase and the power spectrum is a two-step fundt@nit has constant power! =
1/4/7 — 1 through-out the lowpass band andhrough-out the highpass band.

At this point we leta = ﬁ and g = #%EP% from which it can be shown that the

distortions at general resolution are given by

2 2
ox0pFa,
de = 0% +o2P (81)
X Ef de
and
2 2
6, = Ix0uto. (82)

Inserting the lower bounds of (79) and (80) into (81) and ({@2)ds Ozarow’s symmetric rate-
distortion function (see (26) and (24)). Moreover, (81) 4B8d) are strictly increasing i,
and P,_, respectively. Thus, for a fixed ratig any other spectrum than the two-st&ff) given
above must necessarily lead to a greater distortion. To Eimphe proof, we remark that in
order to have such an ideal brick-wall power spectrum, tlteoof the filter must necessarily

be infinite. [ ]
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