
ar
X

iv
:0

90
3.

42
51

v1
 [

cs
.D

S]
 2

5
M

ar
 2

00
9

On the Use of Suffix Arrays for Memory-Efficient

Lempel-Ziv Data Compression

Artur J. Ferreira1,3, Arlindo L. Oliveira2,4, Mário A. T. Figueiredo3,4

1Instituto Superior de Engenharia de Lisboa, Lisboa, PORTUGAL
2Instituto de Engenharia de Sistemas e Computadores, Lisboa, PORTUGAL

3Instituto de Telecomunicações, Lisboa, PORTUGAL
4Instituto Superior Técnico, Lisboa, PORTUGAL

Contact email: arturj@cc.isel.ipl.pt

Abstract

Much research has been devoted to optimizing algorithms of the Lempel-Ziv (LZ) 77 family,
both in terms of speed and memory requirements. Binary search trees and suffix trees (ST)
are data structures that have been often used for this purpose, as they allow fast searches
at the expense of memory usage.

In recent years, there has been interest on suffix arrays (SA), due to their simplicity and
low memory requirements. One key issue is that an SA can solve the sub-string problem
almost as efficiently as an ST, using less memory. This paper proposes two new SA-based
algorithms for LZ encoding, which require no modifications on the decoder side. Experimen-
tal results on standard benchmarks show that our algorithms, though not faster, use 3 to 5
times less memory than the ST counterparts. Another important feature of our SA-based
algorithms is that the amount of memory is independent of the text to search, thus the mem-
ory that has to be allocated can be defined a priori. These features of low and predictable
memory requirements are of the utmost importance in several scenarios, such as embedded
systems, where memory is at a premium and speed is not critical. Finally, we point out that
the new algorithms are general, in the sense that they are adequate for applications other
than LZ compression, such as text retrieval and forward/backward sub-string search.

Keywords: LZ compression, suffix arrays, suffix trees, information retrieval, sub-string
search.

1 Introduction

It is well known that LZ coding is very asymmetric in terms of time and memory require-
ments, with encoding being much more demanding than decoding [1, 2, 3]. A significant
amount of research has been devoted to optimizing LZ encoding, namely by devising effi-
cient data structures, like suffix trees (ST) [4, 5], which have been deeply explored [6].

http://arXiv.org/abs/0903.4251v1

Recently, attention has been payed to suffix arrays (SA) [4, 7], due to their simplicity
and space efficiency; moreover, linear-time SA construction algorithms are known [8, 9]. SA
have been successfully used in search, indexing, plagiarism detection, information retrieval,
biological sequence analysis [10]. In data compression, SA have been used in encoding data
with anti-dictionaries [11] and optimized for large alphabets [12]. The space requirement
issue of ST has been addressed by replacing ST-based algorithms with methods based on
(enhanced) SA [13].

In [14], we have proposed a method in which an SA replaces an ST, to hold the dictio-
nary in the LZ77 and LZSS algorithms [1, 3]. We have shown that an SA-based encoder
requires less memory than an ST-based encoder, with a small penalty on the encoding time,
for roughly the same compression ratio. We also have shown that the amount of mem-
ory for the SA-based encoder is constant, independent of the contents of the sequence to
encode; this may not be true for an ST or tree-based encoder. In this paper, we further
explore the approach proposed in [14], presenting two new encoding algorithms for SA-based
LZ77/LZSS encoders. We focus only on the encoder data structures and algorithms, since
no modifications are required on the corresponding decoders.

The rest of the paper is organized as follows. Section 2 contains brief reviews of the LZ77
and LZSS algorithms, as well as of the main features of SA. In Section 3, we describe the
proposed algorithms, while Section 4 reports experimental results on standard benchmarks.
Finally, some concluding remarks are made in Section 5.

2 Background

2.1 The LZ77 and LZSS Algorithms

The well-known LZ77 and LZSS encoding algorithms use a sliding window over the sequence
of symbols, which has two sub-windows: the dictionary (holding the symbols already en-
coded) and the look-ahead-buffer (LAB, containing the symbols still to be encoded) [1, 2].
As a string of symbols in the LAB is encoded, the window slides to include it in the dictio-
nary (this string is said to slide in); consequently, symbols at the far end of the dictionary
are dropped (they slide out).

At each step of the LZ77/LZSS encoding algorithm, the longest prefix of the LAB which
can be found anywhere in the dictionary is determined and its position stored. In the example
of Fig. 1, the string of the first four LAB symbols (“brow”) is found in position 17 of the
dictionary. For these two algorithms, encoding of a string consists in describing it by a token.
The LZ77 token is a triplet of fields (pos, len, symbol), with the following meanings:

• pos - location of the longest prefix of the LAB found in the current dictionary; this
field uses log

2
(|dict.|) bits, where |dict.| is the length of the dictionary;

• len - length of the matched string; this requires log
2
(|LAB|) bits;

• symbol - the first symbol in the LAB, that does not belong to the matched string (i.e.,
that breaks the match); for ASCII symbols, this uses 8 bits.

In the absence of a match, the LZ77 token is (0,0,symbol).

In LZSS, the token has the format (bit,code), with the structure of code depending on
value bit as follows:

{

bit = 0 ⇒ code = (symbol),
bit = 1 ⇒ code = (pos, len).

(1)

In the absence of a match, LZSS produces (0(symbol)). The idea is that, when a match exists,
there is no need to explicitly encode the next symbol. Besides this modification, Storer and
Szymanski [3] also proposed keeping the LAB in a circular queue and the dictionary in a
binary search tree, to optimize the search. LZSS is widely used in practice (e.g., in GZIP
and PKZIP) since it typically achieves higher compression ratios than LZ77.

Fig. 1 illustrates LZ77 and LZSS encoding. In LZ77, the string “brows” is encoded by
(17,4,s); the window then slides 5 positions forward, thus the string “after” slides out, while
the string “brows” slides in. In LZSS, “brow” is encoded as (1(17,4)) and “brow” slides
in. Each LZ77 token uses log2(|dict.|) + log2(|LAB|) + 8 bits; usually, |dict.| ≫ |LAB|. In
LZSS, the token uses either 9 bits, when it has the form (0,(symbol)), or 1 + log

2
(|dict.|) +

log2(|LAB|) bits, when it has the form (1,(position,length)).

Figure 1: a) LZ77 encoding of string “brows”, with token (17,4,‘s’) b) LZSS encoding of string “brow”,
with token (1(17,4)).

It is clear that the key component of the LZ77/LZSS encoding algorithms is the search
for the longest match between LAB prefixes and the dictionary. Recently, ST have been
used as efficient data structures to support this search [6].

2.1.1 Decoding

Assuming the decoder and encoder are initialized with equal dictionaries, the decoding of
each LZ77 token (pos,len,symbol) proceeds as follows: (1) len symbols are copied from the
dictionary to the output, starting at position pos of the dictionary; (2) the symbol symbol is
appended to the output; (3) the string just produced at the output is slid into the dictionary.

For LZSS, we have: if the bit field is 1, len symbols, starting at position pos of the
dictionary, are copied to the output; if it is 0, symbol is copied to the output; finally, the
string just produced at the output is slid into the dictionary.

Clearly, both LZ77/LZSS decoding are low complexity procedures. In this work, we
address only encoder data structures and algorithms, with no effect in the decoder.

2.2 Suffix Arrays

A suffix array (SA) is the lexicographically sorted array of the suffixes of a string [4, 7]. For
a string D of length m (with m suffixes), an SA P is a list of integers from 1 to m, according

to the lexicographic order of the suffixes of D. For instance, if we consider D = mississippi

(with m = 11), we get the suffixes in Fig. 2 part a); after sorting, we get the suffixes in
part b). Thus, the SA for D is P = {11, 8, 5, 2, 1, 10, 9, 7, 4, 6, 3}. Each of these integers is

Figure 2: Suffixes of D = mississippi: a) Set of suffixes b) Sorted suffixes and SA P .

the suffix number, therefore corresponding to its position in D. Finding a sub-string of D

can be done by searching vector P ; for instance, the set of sub-strings of D that start with
symbol ‘s’, can be found at positions 7, 4, 6, and 3. As a result of this, an SA can be used
to obtain every occurrence of a sub-string within a given string. For LZ77/LZSS encoding,
we can find the set of sub-strings of D, starting with a given symbol (the first in the LAB).

SA are an alternative to ST, as an SA implicitly holds the same information as an ST.
Typically, it requires 3 ∼ 5 times less memory and can be used to solve the sub-string
problem almost as efficiently as an ST [4]; moreover, its use is more appropriate when the
alphabet is large. An SA can be built using a sorting algorithm, such as “quicksort”; it is
possible to convert an ST into an SA in linear time [4]. An SA does not has the limitation
of an ST: no suffix of smaller length prefixes another suffix of greater length.

2.3 Longest Common Prefix

The lexicographic order of the suffixes implies that suffixes that start with the same symbol
are consecutive on SA P . This means that a binary search on P can be used to find all
these suffixes; this search takes O(n log(m)) time, with n being the length of the sub-string
to find, while m is the length of the dictionary. To avoid some redundant comparisons on
this binary search, the use of longest common prefix (LCP) of the suffixes, lowers the search
time to O(n + log(m)) [4]; the computation of LCP takes O(m) time.

The LCP of two suffixes i and j, named Lcp(i, j), is defined as the length of the longest
common prefix of the suffixes located at positions i and j of P . An alternative definition is
Lcp(i, j) is the length of the longest prefix common to suffix P (i) and P (j). For
the SA P , of Section 2.2 and Fig. 2, we get the LCP array L = {0, 1, 1, 4, 0, 0, 1, 0, 2, 1, 3},
as depicted in Fig. 3. For instance, suffix 2 has 4 symbols in common with suffix 5.

3 LZ77/LZSS Compression Using Suffix Arrays

This section presents three algorithms for LZ77/LZSS encoding. The first is a minor modi-
fication of the algorithm proposed in [14], while the other two are new proposals. We stress

Figure 3: SA for D = mississippi (part a)) and corresponding LCP values L (part b)).

that these are fast sub-string search algorithms, thus are not limited to LZ encoding.

3.1 Algorithm 1

SA-based LZ77/LZSS encoding can be carried out using Algorithm 1, in which an SA P is
built for each dictionary. To encode the sequence in the LAB, we search the SA P for the
(longest) sub-string that starts with the same symbol as the prefix of the LAB. After encoding
the contents of the LAB, these symbols are slid into the dictionary (and the corresponding
slide out is performed). Next, a new SA for the new dictionary is built, and the procedure is
repeated until the end of stream is reached. The encoder data structures are the dictionary
symbols (string) and the SA P , that is, an m-length string and an m-length integer array.

A1 - Algorithm 1 - Simple SA-Based LZSS Encoding

Inputs: In, input stream to encode; m and n length of dictionary and LAB.
Output: Out, output stream with LZSS description of In.

1. Read dictionary D and look-ahead-buffer LAB from In;
2. While there are symbols of In to encode:

a) Build SA for string D and name it P ;

b) To obtain the description (pos,len) for every sub-string LAB[i . . . n], 1 ≤ i ≤ n,
proceed as follows:

b1) Do a binary search on vector P until we find:

i) the first position left, in which the first symbol of the corresponding suffix
matches S[i], that is, D[P [left]] = S[i];

ii) the last position right, in which the first symbol of the corresponding
suffix matches S[i], that is, D[P [right]] = S[i];

If no suffix starts with S[i], output (0(S[i])) to Out, set i← i + 1 and goto 2b).

b2) From the set of suffixes between P [left] and P [right], choose the kth suffix,
left ≤ k ≤ right, with a given criteria (see below) giving a p-length match.

b3) Do pos ← k and len ← p and output token (1(pos, len)) into Out.

b4) Do i← i + len; if i = n stop; else goto 2b).

c) Slide in the full encoded LAB into D;

d) Read next LAB from In; goto 2).

In step 2.b2), it is possible to choose among several suffixes, according to a greedy/non-greedy
parsing criterion. If we seek a fast search, we can choose one of the immediate suffixes, given
by left or right. If we want better compression ratio, at the expense of a not so fast search,
we should choose the suffix with the longest match with sub-string LAB[i . . . n].

3.2 Algorithm 2

The second algorithm does not build a new SA every time the LAB is encoded. Instead,
we build a single SA for the initial dictionary and every time we reach the end of the LAB,
we just slide the LAB into the dictionary and update the indexes of the SA (built at the
beginning of the encoding process). This way, we have a sliding window suffix array. As
in Algorithm 1, the encoder data structures are composed solely by the dictionary symbols
(string) and the SA P (an m-length string and an m-length integer array).

A2 - Algorithm 2 - SA-Based LZSS Encoding

Inputs: In, input stream to encode; m and n length of dictionary and LAB.
Output: Out, output stream with LZSS description of In.

1. Read dictionary D and look-ahead-buffer LAB from In;

2. Build SA for string D and name it P ;

3. While there are symbols of In to encode:

a) To obtain the description (pos,len) for every sub-string LAB[i . . . n], 1 ≤ i ≤ n,
proceed as in Algorithm 1;

b) Slide in LAB into D;

c) Read next LAB from In;

d) Update P using the SA for LAB (see below);

The ideas of the update (step 3d) are: after each full LAB encoding and corresponding slide
in, the resulting dictionary is (very closely) related to the previous one; it is faster to build
an SA for the LAB instead of an SA for the dictionary. After we encode the, we can see
that the resulting dictionary is obtained by the following actions (step 3d)):

3d1) subtract |LAB| to each suffix number of the dictionary: P = P − |LAB|;

3d2) if the resulting suffix is non-positive, then remove it from the dictionary;

3d3) compute the SA for the encoded LAB PLAB (this sorts the suffixes in the LAB) and
update it to: PLAB = PLAB + |dictionary| − |LAB|;

3d4) perform a (sorted) insert of these |LAB| suffix numbers into the dictionary.

Fig. 4 illustrates this step for dictionary D = this is the dict and LAB = the, with lengths
16 and 4, respectively. The LAB is fully encoded and a token is output; then a 4 position
SA for the LAB is computed; the value 12 = 16− 4 is added to each value in this small SA
to get the new indexes of these new suffixes in SA P ; these new suffixes are inserted into P .
The contents of P was previously subtracted by 4 in order to update the indexes, according
to the actions of slide in and slide out.

Figure 4: The update step of Algorithm 2 for dictionary D = this is the dict and LAB = the.

3.3 Algorithm 3

The third algorithm uses the concept of LCP as discussed in Section 2.3. The main idea is to
compute the SA and LCP values for the entire sliding window (the concatenation
of dictionary and LAB). This way, we can perform a fast search of the longest sub-strings
over the dictionary, that match the longest prefix of the LAB. Fig. 5 depicts the idea of this
algorithm, using D = this is the dict and LAB = the.

Figure 5: Algorithm 3: use of SA and LCP for LZ77/LZSS encoding.

Notice that, in this case, we have suffixes resulting from the concatenation of the dictio-
nary and the LAB; care has to be taken to encode suffixes of the LAB with position values
corresponding to suffixes in the dictionary. This algorithm requires more memory than the
previous two, because it uses two integer arrays (SA and LCP) along with the dictionary.

A3 - Algorithm 3 - SA-LCP-Based LZSS Encoding

Inputs: In, input stream to encode; m and n length of dictionary and LAB.
Output: Out, output stream with LZSS description of In.

1. Read dictionary D and look-ahead-buffer LAB from In;
2. While there are symbols of In to encode:

a) Compute SA for D|LAB and name it P and the LCP of P , named L;
b) To obtain the description (pos,len) for every sub-string LAB[i . . . n], 1 ≤ i ≤ n,

proceed as follows:
b1) Find the position pos of the index i in P .
b2) Use P and L to obtain the two possible tokens T1 = (P (pos− 1), L(pos− 1))

and T2 = (P (pos + 1), L(pos + 1));
b3) Validate tokens (see if the suffix number is in the dictionary area);

· if both valid, choose and output, to Out, the one with the longest match
with length len; do i← i + len;

· else if only one token is valid (with length len), output it to Out; do
i← i + len;

· else (both invalid) output token (0(LAB[i])); do i← i + 1;

c) Slide in LAB into D;
d) Read next LAB from In; goto 2).

This algorithm combines the dictionary and the LAB in a single data structure. This way,
it is possible to search backward and forward on a given text, making this version suited for
the information retrieval scenario.

4 Experimental Results

This section presents experimental results of our proof of concept C implementation, using
a public SA and LCP package1. The tests were carried out using standard files from the
well-known Calgary 2 and Canterbury3 corpora, on a PC with a 2GHz Intel Core2Duo
T7300 CPU and 2GB of RAM. Small and large files from both corpora were used. We
report the following results: encoding time and memory, and compression ratio measured
in bpb (bits/byte). For comparison purposes, we include the experimental results of an
LZSS encoder, based on a binary tree (BT) [15], with 3 integers per tree node; the total
number of nodes is |dict.| + |LAB| + 1. The ST-based encoder4 was written in C++ using
Ukkonen’s algorithm[4, 5], with an hash table to store each branch (which uses 4 integers)
and an array for the nodes (1 integer). The number of branches depends on the contents
of the dictionary. Larsson’s ST-encoder5 uses three integers and a symbol for each node,
placed in an hash table. For |dict.|=256 and |LAB|=8, Nelson’s and Larsson’s encoders

1www.cs.dartmouth.edu/∼doug/sarray
2links.uwaterloo.ca/calgary.corpus.html
3corpus.canterbury.ac.nz
4marknelson.us/1996/08/01/suffix-trees
5www.larsson.dogma.net/research.html

www.cs.dartmouth.edu/~doug/sarray
links.uwaterloo.ca/calgary.corpus.html
corpus.canterbury.ac.nz
marknelson.us/1996/08/01/suffix-trees
www.larsson.dogma.net/research.html

data structures occupy 3084 and 7440 bytes, respectively. The memory requirements of our
algorithms are: |dict.| + |LAB|+ |P|, for A1 and A2; |dict.| + |LAB| + |P|+ |L|, for A3. In
Table 1, we consider an encoding test with a small dictionary (|dict.|=256 and |LAB|=32),
using A1, A2, and A3. The amount of memory needed by the SA-based algorithms is 800
= 256 + 32 + 2*256 bytes for A1 and A2, while for A3 we have 1312 = 256 + 32 + 2*256
+ 2*256 bytes. For our algorithms, we underline and use bold font for the best encoding
time, and use bold font for the second best. There are small differences in the compression
ratio, due to the LAB update: the BT-encoder updates the dictionary each time a token
is produced; our implementation does this slide in/slide out action, only after a full LAB
encoding. The compression ratios could be easily improved by entropy-encoding the tokens.

Table 1: Encoding time (in seconds) and compression ratio (in bpb), for (|dict.|, |LAB|) = (256, 32). The
amount of memory is: 800 bytes for A1 and A2; 1312 bytes for A3; 3084 bytes for BT (7440 for ST).

File Size A1 A2 A3 BT
Time bpb Time bpb Time bpb Time bpb

paper5 11954 0.26 5.71 0.28 5.86 0.15 5.77 0.02 5.61
progl 71646 1.03 4.28 1.15 4.51 1.00 4.49 0.07 4.15
paper2 82199 1.20 5.82 1.36 5.94 1.11 5.86 0.08 5.89
alice29.txt 152089 2.25 5.73 2.5 5.82 2.02 5.78 0.16 5.78
lcet10.txt 426754 5.75 5.79 6.92 5.98 2.49 5.55 0.32 5.81
plrabn12.txt 481861 6.95 6.11 8.37 6.18 6.08 6.14 0.48 6.16

In Table 1, we see that A1 and A2 achieve similar encoding times, and A3 is always faster.
If we consider |dict.| = 1024 and |LAB| = 128, we get the results in Table 2, that when
compared to Table 1, show lower encoding times and higher compression ratio. From the set
of our algorithms, A3 is the fastest (the BT is 3 to 4 times faster), which gives an interesting
memory-encoding time trade-off; the update step A2 of is not yet optimized, but it already
approaches closely A1 encoding time.

Table 2: Encoding time (in seconds) and compression ratio (in bpb), for (|dict.|, |LAB|) = (1024, 128). The
amount of memory is: 3200 bytes for A1 and A2; 5248 bytes for A3; 12300 bytes for BT (29712 for ST).

File Size A1 A2 A3 BT
Time bpb Time bpb Time bpb Time bpb

paper5 11954 0.14 5.51 0.11 5.73 0.06 5.68 0.02 5.18
progl 71646 0.56 3.91 0.65 4.38 0.42 4.26 0.10 3.95
paper2 82199 0.78 5.47 0.85 5.62 0.45 5.55 0.10 5.59
alice29.txt 152089 1.37 5.41 1.57 5.54 0.86 5.49 0.22 5.39
lcet10.txt 426754 3.46 5.45 4.56 5.66 2.46 5.55 0.37 5.38
plrabn12.txt 481861 4.53 6.05 5.3 6.18 2.82 6.10 0.53 6.09

5 Concluding Remarks

We have presented two new SA-based LZ encoding algorithms. These new algorithms im-
prove on earlier work in terms of time-efficient, with similar memory requirements. The

key advantage of the new encoding algorithms is that it is possible to a priori compute the
amount of memory needed to hold the data structures. This may not be the case when using
(binary/suffix) trees, because the number of nodes and branches depends on the contents of
the text, or when we allocate a memory block that is larger than needed (as it happens with
hash tables, to minimize collisions).

Moreover, although not faster than encoders based on binary/suffix trees, our algorithms
have considerably lower memory requirements. The low and predictable memory requirement
may be important, e.g., in the context of embedded systems, where memory is expensive,
and allows the adjustment of the time/memory trade-off. Algorithm 2 is a sliding window
SA, for which our proof of concept implementation can still be optimized, although the
results are quite promising. Algorithm 3 combines the dictionary and the LAB into a single
data structure, allowing backward and forward searches; with a large LAB, this algorithm
achieves small encoding times. Both algorithms are suited for text search and retrieval, with
low and fixed memory requirements, regardless of the contents of the text to search.

In future work, we plan to further optimize Algorithms 2 and 3 in terms of speed, aiming
at approaching binary and suffix trees, and explore combinations of Algorithms 2 and 3.

References

[1] D. Salomon. Data Compression - The complete reference. Springer-Verlag, 2007.

[2] J. Ziv and A. Lempel. A universal algorithm for sequential data compression. IEEE Trans. on Infor-

mation Theory, IT-23(3):337–343, 1977. l

[3] J. Storer and T. Szymanski. Data compression via textual substitution. Journal of ACM, 29(4):928–951,
1982.

[4] D. Gusfield. Algorithms on Strings, Trees and Sequences. Cambridge University Press, 1997.

[5] E. Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):249–260, 1995.

[6] N. Larsson. Structures of String Matching and Data Compression. PhD thesis, Department of Computer
Science, Lund University, Sweden, 1999.

[7] U. Manber and G. Myers. Suffix Arrays: a new method for on-line string searches. SIAM Journal on

Computing, 22(5):935–948, 1993.

[8] J. Karkainen, P. Sanders, and S.Burkhardt. Linear work suffix array construction. Journal of the ACM,
53(6):918–936, 2006.

[9] S. Zhang and G. Nong. Fast and space efficient linear suffix array construction. In Data Compression

Conf. – DCC2008, p. 553, 2008.

[10] K. Sadakane. Compressed text databases with efficient query algorithms based on the compressed suffix
array. In ISAAC’00, volume LNCS 1969, pp. 410–421, 2000.

[11] M. Fiala and J. Holub. DCA using suffix arrays. In Data Compression Conf. – DCC2008, p. 516, 2008.

[12] R. Sestak, J. Lánský, and M. Zemlicka. Suffix array for large alphabet. In Data Compression Conf. –

DCC2008, p. 543, 2008.

[13] M. Abouelhoda, S. Kurtz, and E. Ohlebusch. Replacing suffix trees with enhanced suffix arrays. Journal

of Discrete Algorithms, 2(1):53–86, 2004.

[14] A. Ferreira, A. Oliveira, and M. Figueiredo. Suffix Arrays: a competitive choice for fast Lempel-
Ziv compression. In International Conference on Signal Processing and Multimedia Applications -

SIGMAP’08, pp. 5–12, 2008.

[15] M. Nelson and Jean-Loup Gailly. The Data Compression Book. M & T Books, New York, 1995.

	Introduction
	Background
	The LZ77 and LZSS Algorithms
	Decoding

	Suffix Arrays
	Longest Common Prefix

	LZ77/LZSS Compression Using Suffix Arrays
	Algorithm 1
	Algorithm 2
	Algorithm 3

	Experimental Results
	Concluding Remarks

