’:“55*"3/ HOKKAIDO UNIVERSITY

..x../

Title An Efficient Algorithm for Almost Instantaneous VF Code Using Multiplexed Parse Tree
Author(s) Yoshida, Satoshi; Kida, Takuya
Citation 2010 Data Compression Conference (DCC), 219-228
https://doi.org/10.1109/DCC.2010.27
Issue Date 2010-03-24
Doc URL http://hdl.handle.net/2115/46943
© 2010 IEEE. Reprinted, with permission, from Yoshida, S., Kida, T., An Efficient Algorithm for Almost Instantaneous
VF Code Using Multiplexed Parse Tree, 2010 Data Compression Conference (DCC), Mar. 2010. This material is posted
here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of
Rights Hokkaido University products or services. Internal or personal use of this material is permitted. However, permission to
reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or
redistribution must be obtained from the IEEE by writing to pubs-permissions@ieee.org. By choosing to view this
document, you agree to all provisions of the copyright laws protecting it.
Type proceedings (author version)

File Information

DCC2010_219-228.pdf

®

Instructions for use

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP

https://eprints.lib.hokudai.ac.jp/dspace/about.en.jsp

An Efficient Algorithm for Almost Instantaneous
VF Code Using Multiplexed Parse Tree

Satoshi Yoshida' Takuya Kidaf

tGraduate School of Information Science and Technology, Hokkaido University.
Kita 14-jo, Nishi 9-chome, Kita-ku, 060-0814 Sapporo, Japan
{syoshid,kida}@ist.hokudai.ac.jp

Abstract

Almost Instantaneous VF code proposed by Yamamoto and Yokoo in 2001,
which is one of the variable-length-to-fixed-length codes, uses a set of parse trees
and achieves a good compression ratio. However, it needs much time and space
for both encoding and decoding than an ordinary VF code does. In this paper,
we proved that we can multiplex the set of parse trees into a compact single
tree and simulate the original encoding and decoding procedures. Our technique
reduces the total number of nodes into O(2¢k — k?), while it is originally O(2°k),
where £ and k are the codeword length and the alphabet size, respectively. The
experimental results showed that we could encode and decode over three times
faster for natural language texts by using this technique.

1 Introduction

From the viewpoint of speeding up compressed pattern matching, variable-length-to-
fized-length codes (VF codes for short) are reevaluated recently [KS09, Kid09]. A
VF code is a coding scheme that parses an input text into a consecutive sequence of
substrings by using a dictionary tree, which is called a parse tree, and then assigns a
fixed length codeword to each substring. Tunstall code [Tun67], which is a classical
and typical VF code, is proved to be an entropy code for a memory-less information
source (see also [Sav98)); its average of code length par symbol comes asymptotically
close to the entropy of the source when the code length goes to infinity. However, its
actual compression ratio is rather worse in comparison with Huffman code.

Several improvements on VF codes have been proposed so far. Almost Instan-
taneous VF code (AIVF code for short!) proposed by Yamamoto and Yokoo [YY01]
is one of the most attractive codes from the practical views. Its compression ratio
is almost comparable to that of Huffman code. In fact, even if the codeword length
is short, AIVF code achieves a better compression ratio than Tunstall code whose
codeword length is considerably long (see Section 4). However, its encoding and its
decoding speeds are slower. The reason is that we must construct & — 1 parse trees
when the alphabet size of the text is k£, which usually reaches to 70 ~ 140 for natural

L“Almost instantaneous (VF) code” means originally that we need one symbol read-ahead for
encoding. However, we use it as the unique name in this paper.

AADN\=A

Figure 1: Multiplexing the parse trees of AIVF code into a single tree

language texts. Of course, we also need much memory space to hold the trees. These
weaknesses prevent us from doing fast pattern matching on AIVF code. Therefore,
VF code with a more compact parse tree that can also achieve a good compression
ratio comparative to AIVF code is strongly desired.

In this paper, we propose an efficient algorithm for AIVF code, which integrates
the multiple parse trees into a compact single tree and simulates the encoding and the
decoding procedure of the original AIVF code. Our idea comes from the observation
that many nodes in multiple parse trees of an AIVF code are common and thus
they can be multiplexed (see Fig. 1). We named the integrated parse tree as Virtual
Multiple AIVF parse tree (VMA tree for short). We present that the size of a VMA
tree is O(2°% — k?) while that of the original is O(2°%). In other words, the total
number of nodes which must be constructed can be reduced by Q(k?). We also
present that our technique enables us to encode and decode over three times faster
for natural language texts in actual.

2 Preliminaries

2.1 Terminology and Notation

Let ¥ be a finite alphabet and ¥* be the set of all strings over . We denote the
length of string x € ¥* by |z|. We call the string whose length is 0 the empty string
and we denote it by €. Therefore, |¢| = 0. The concatenation of two strings z; and
Ty € ¥* is denoted by x1 - x2, and also write it simply as xx» if no confusion occurs.

We denote the occurrence probability of string x € ¥* in a text S by Prg(z). We
define Prg(e) = 1 for convenience. Although Prg(z) depends on S, we write it simply
as Pr(xz) when the target text is obvious from the context or when we deal it as the
statistical feature of a given information source.

We call a tree in which each node has at most k£ children, a k-ary tree. We call
a node which has children an internal node (or inner node), and call a node which
has no children a leaf node (or leaf). We also call the node which has no parent (i.e.
the top of a tree) the root node (or the root). Furthermore, in a k-ary tree, we call a
node which has exactly k children a complete internal node, and also call an internal
node which is not complete an incomplete internal node. We call a tree in which all
internal nodes are complete, a complete k-ary tree.

For a tree (or a forest) 7', We denote the set of all leaves in 7" by £(7T), and denote
the set of all incomplete internal nodes in 7" by Z(7). We also denote the union of

010 011

000

Figure 2: Parse tree for AIVF code Figure 3: Another parse tree

L(T) and Z(T) by N (T), and denote the size of set S by #S. Then, for example,
we can denote the number of leaves by #L(T). For a node n, we call the number of
children of n the degree of n, which is denoted by d(n).

2.2 Almost Instantanenous VF code

In this section, we give a brief survey of AIVF code [YY01]. AIVF code is based
on Tunstall code [Tun67]. In order to improve its compression ratio, Yamamoto and
Yokoo employed two techniques: one is to assign codewords onto the incomplete
internal nodes in the parse tree, and the other is to parse a text by using multiple
trees.

Let ¥ = {ay,...,a;}, and assume that all symbols in ¥ are sorted by their oc-
currence probabilities for convenience of discussion. That is, i < j implies Pr(a;) >
Pr(a;). We also assume that all codes discussed below are binary codes.

2.2.1 Improvement by assigning codewords to internal nodes

For a given text whose alphabet size is k, Tunstall code uses a complete k-ary tree as
a parse tree, which is called a Tunstall tree. Each edge in the tree is labeled with a
symbol in ¥. Each node corresponds to a string over ¥ which is spelled out from the
root to the node. Each codeword, which is a binary string of length ¢, is assigned to
each leaf in the Tunstall tree, namely, there is a one-to-one correspondence between
a codeword and a leaf. A given text is parsed into a consecutive sequence of blocks
by the tree, and each block is encoded with the corresponding binary codeword.

Note that unused codewords of length ¢ exist if #L£(T") # 2¢. This suggests that
we can make the average block length longer by assigning such unused codewords to
some strings. If we add a leaf to a complete k-ary tree, an incomplete internal node
is made. That is, this also suggests that we can make the average block length much
longer if we can remove low-frequency leaves and extend useful edges.

Figure 2 is an example of the parse tree for a AIVF code, where ¥ = {a, b, ¢} (i.e.
k = 3) and the codeword length ¢ is equal to 3. We will discuss later how to build the
optimal parse tree in the sense of maximizing the average block length. If we have
the parse tree, the encoding procedure is as follows: Reading a symbol one by one
from the text, we traverse the tree from the root; if we can not traverse any more, we
output the codeword assigned at the current node, and then return to the root and
continue traversing.

Now we consider to encode a given text S = aabaabaccab by using the parse tree
in Fig. 2. Then, S is split into blocks aa - ba - ab - ac - ca - b by the tree, and thus, the
output binary sequence becomes 001 - 100 - 010 - 011 - 111 - 101. Its length is 18 bits.

Next we will discuss about the construction of the optimal parse tree. Let T be
the parse tree for AIVF code. Let Cp be the set of all strings which are assigned
codewords in 7. Note that Cr is regarded as a dictionary which consists of strings
registered to 7. Let M be the number of codewords. Then, our aim is to construct
an optimal parse tree that maximizes the average block length) |z| - Pr(x) for
a memory-less information source.

Although we omit the detail, a greedy algorithm brings about the optimal solution
in this case. It is proved that exchanging a node in the parse tree constructed by the
algorithm below for another node does not increase the average block length[YYO01].
The strategy of the algorithm for constructing the optimal parse tree is to continue
to add the best node one by one that maximizes the average at each stage. Note
that, however, when the k — 1th child of an incomplete node is going to be added,
we can increase the average block length by adding also the kth child and assigning
a codeword onto it (i.e., by making the internal node complete). The reason is that

we do not assign a codeword to a complete internal node.

Therefore, the outline of the optimal parse tree construction algorithm is as fol-
lows. Recall that we assume Pr(a;) > Pr(a;) for i < j. We identify a node with its
corresponding block below.

zeCr

1. Create an initial tree 7" which consists of the root node and its £ children, and let m = k.
2. Find the node which has the maximum probability, namely, fi - argmax,,c y/(r+) Pr(n).

3. Let S; be the growth of the average block length after making n complete.

4. Let Sy = 0. Repeat the following k — d(7) — 1 times.

(a) Find the best position where the next node must be added, namely,
Tl ¢ argmax,,c x/(r-) Pr(n) Pr(ad(n)H).

(b) Add the growth of average block length after creating the d(f) + 1th child of 7 to Ss.

5. If S; > S2, make n complete. Otherwise, repeat following k — d(n) — 1 times. 7 <
argmax, e nr(r+) Pr(n) Pr(aa(n)+1), and add the d(f2) + 1th child of 7.

6. Add k£ —d(7n) — 1 to m. Repeat the above four steps until £k — d(i) —1 < M —m

7. Repeat following M —m times. 71 < argmax, ¢ xr(r+) Pr(n) Pr(aq(n)+1), and add the d() +1th
child of 7.

For the decompression, we need the same parse tree used in the encoding. All we
need for reconstructing it is only the information about the frequencies of symbols.
After we reconstruct the parse tree, we can decode by mapping each codeword to a
string registered in the tree. We omit its detail for lack of space.

2.2.2 Improvement by using multiple parse trees

In AIVF code, the blocks are not statistically independent even if the information
source is memory-less. Parsing with a parse tree discussed above causes contexts
between blocks. Yamamoto and Yokoo also present that we can make the average
block length longer by using a set of parse trees in order to catch the contexts.

For example, assume that block aa is currently parsed and 001 is output while
we encode with a parse tree shown in Fig. 2. In this case, the next symbol is b or c,
because we had to continue traversing if the next symbol was a, and thus, block aaa
should be parsed and 000 should be output. Therefore, when 001 is output, the node
corresponding the code 000,001,010,011 are unreachable. This suggests that we can
make the average block length longer by assigning such unreachable codewords to
other strings. For the running example, instead of using the tree in Fig. 2, we can
make the next block longer by using the tree in Fig. 3 in this case.

In the method proposed in [YYO01], £ — 1 parse trees T; (i = 0,...,k — 2) are
utilized. For each 7, the ith parse tree 7T; has the root and its children labeled by
Qit1,---,0k (1 =0,...,k —2). (Recall that Pr(a;) > Pr(a;) for i < j.) That is, we
encode and decode a given text switching the parse trees according to the context.

For each T;, we construct the optimal parse tree in almost the same way as we
mentioned above. Only the numbers of children under the roots are different each
other. Note that #N(1;) = M for each T;, where M is the number of codewords.

Therefore, the tree T; becomes sharper and taller for larger ¢. These multiple parse
trees are constructed as follows:

1. Repeat below for ¢ =0,1,...,k — 2.
2. Create initial trees T7* which consists of the root node and its k¥ — ¢ children.
3. Execute from second to seventh step of previous algorithm.
The encoding algorithm with multiple parse trees is as follows:
. Construct the multiple parse trees.

. Let T+ Tj, n be the root of Tj.

1
2
3. Repeat below until the end of the input text.
4. Let ¢ be the next symbol of the input text.

5

. If there if no child of n in which we can traverse by symbol ¢, then output the codeword of
n, T < Ty(n), and let n be the root of T'. Otherwise, let n be the child of n labeled by c.

For example, Let an input text be S = aabaabaccab, and consider to encode S
with the parsing trees thus. Then, S is split into blocks, aa-baa-bac-ca-b. Therefore,
we obtain the output binary sequence of length 15 bits as 001 - 001 -011-111-101.

3 Virtual Multiple AIVF tree

In this section, we explain our idea and present an efficient algorithm for AIVF codes.
In AIVF parse trees, we can observe that many nodes in 7; are identical with those
in T;,1. More precisely, T;,; completely covers the nodes in T; except for the leftmost
subtree under the node corresponding with a;,,. First, we explain this relationship.
Let S](-Z) be the subtree of T; that consists of all the nodes under the node corre-
sponding with a;, which is a direct child of the root. Then, we have the following
theorem.

Theorem 1 Sfi;l) completely covers s for any integers i (0 < ¢ < k — 3) and

i+j
j2<i<k—i).

L
000 a 010 011

000

Figure 4: An example of VMA tree
This is an integrated tree obtained by multiplexing the tree in Fig. 2 and in
Fig. 3. The number written in each node indicates the value of Tn(n).

Proof. We prove the theorem by contradiction.

For an integer i (0 <1 < k — 2), let T be the tree of infinite depth in which the
root has children according with a;;1,...,a; and all the other internal nodes have
just k children.

Note that the root of the multiple parse tree T; has children according with a; (j =
i+1,...,k). That is, T; includes SJ(-Z) (j =1i+1,...,k). Also note that each T; is
an optimal in the sense of maximizing the average block length. That is, for any
i (0<i<k—3)andj (2 <j<k-—i), wecan not increase the average block length
any more by exchanging any node in Si(i)j for a node included in 77> but not in 7;.

Z-(_Z:;l) does not cover S

.) g
a node which is in Si(jr)j but not in Si(_f;l). Let n be one of such the nodes. Since

T; is a parse tree which maximizes the average block length, we can increase it by

Here, we assume that S completely. Then, there exists

exchanging a node in S but not in 1. for n. However, this contradicts that 75,4

i+7j i+J .
maximizes the average block length. Therefore, Si(_f;l)

completely covers Si(i)j. a

From the above theorem, we can observe that we can multiplex the set of trees
and integrate into a single tree in a simple way. We call the integrated tree as Virtual
Multiple AIVF tree (VMA tree for short). To simulate the encoding and the decoding
of the original AIVF codes by using VMA tree, we need to tell which parse tree we are
currently traversing while processing. Thus, we mark each node in VMA tree in order
to tell which trees the node belongs to. Note that a node can belong to several parse
trees. We can realize that by holding the least ¢ such that n belongs to 7;. Denoting
this mark by Tn(n), we have that Tn(n) = min;{i | 0 < i < k — 2,n belongs to 7;.}.
For example, integrating two parse trees shown in Fig. 2 and Fig. 3, we can obtain a
parse tree shown in Fig. 4.

To encode with VMA tree, we need to modify the previous encoding Algorithm.
The reason is that, even if there is a child in the VMA tree for the next traverse, the
encoding fails when there is not the child in 7;. Therefore, we compare Tn(n) and
the number i of currently traversing tree 7;. If i is less than Tn(n), then there is
not a proper node in 7;, and return to the root. The encoding algorithm is shown in
Algorithm 1. In Algorithm 1, we denote by w;(n) the codeword assigned to n in T;.

Algorithm 1 Encoding algorithm with VMA tree.
1: n < The root of T

2: 1+ 0

3: while Not end of the input text do

4: ¢+ The next symbol of the input text
5: if There exists a child of n labeled by ¢ then
6: n' < The child of n labeled by ¢

7 if Tn(n') <i then

8: n<<n'

9: else

10: Goto the line 13

11: end if

12: else

13: Output w;(n)

14: i« d(n)

15: n < The root of T

16: n < The child of n labeled by ¢

17: end if

18: end while

The algorithm of constructing VMA tree is shown in Algorithm 2. We denote
by S; the subtree which consists of all nodes under the node corresponding with a;.
We define #N (Sy) = M for convenience. We define the function cod(a;) = j, and
denote by first(n) the first symbol of the label sequence on the path from the root to
n. That is, if first(n) = a;, cod(first(n)) = j. We also denote by m the number of
nodes having codeword in Algorithm 2.

3.1 The number of nodes in VMA tree

Here we discuss about the number of nodes in VMA tree.

Let M be the number of codewords, i.e., M = 2¢ for the codeword of length /.
Recall that, for each T; (0 < i < k—3) in the original AIVF tree, Si(i)j (2<j<k—i)
is completely covered from Theorem 1. This implies that the VMA tree is identical
to the union of 5\, 55" ... S%7¥ ‘and T#-2. Then, for each i (0 <i < k—3), S,
includes at most M — (k —i —1) nodes because S](-i) for any ¢, j has at least one node.
Therefore, the total number of nodes in VMA tree is as follows:

k—3

1 1
Y (M —k+i+1)+M = Mk—§k2+§k—M+1
=0

= O(Mk — k).

Intuitively, the number of reduction is (k?) because the total number of nodes
in the original AIVF trees is O(Mk). Although we proved that, we omit the detail
derivation. We just show the result below. Let N and N, be the number of nodes in
a AIVF tree and that in the equivalent VMA tree, respectively. Then, we have:

k2 k k—2
C C
N — Ny > (5—5—1>+<i§:0jm,. —mv),

Algorithm 2 Constructing a VMA tree

1: T < The tree with root and k children of it;

2: Label the jth edge of T' by a;;

3: forl=0to k—2do

4 m o #N(S1); i+ argmax, e (1) Pr(n);

5 while k — d(n) — 1 <m do

6: S1 < The average block length assuming that we call Complete();
7.

8

Sy < The average block length assuming that we call FindOptPos() k& — d(7) — 1 times;
: if S; > S5 then
9: Call Complete();

10: else

11: Call FindOptPos k — d(7) — 1 times;

12: end if

13: i < argmax,,c vy Pr(n); m < m —k + d(n) + 1;

14: end while
15: Call FindOptPos m times ;

16: 1+ 0;

17: for all n € N(D) do
18: wi(n) < i; i< i+1;
19: end for

20: S < The subtree corresponding the node traversed from the root by a;41;
21: R <+ T except for S; Add S to Ty; T + R;

22: end for

23: Label the jth edge of each node by a; (j =1,...,k).

Procedure Complete()

24: 0« argmax,e) Pr(n);

25: Add k — d(n) children nj, j =d(n) +1,...,k to n;
26: Tn(n;) < cod(first(n;)) — 1;

Procedure FindOptPos()

270 i < argmax,,c yr(p) Pr(n) Pr(agm)41);
28: Add the d(7n) + 1th child n of 7;

29: Tn(n) < cod(first(n)) — 1;

where m{ and my are the number of complete internal nodes in 7; of the AIVF trees
and that in the VMA tree, respectively. Thus, the number of nodes reduced is Q(k?)

because the second parenthesis (Zf:_(? ms — m\c,> is equal to or greater than 0.

4 Experimental Results

We have implemented both AIVF code and our proposed method. We abbreviate
those programs as AIVF and VMA, respectively. All programs we used are written
in C++ and compiled by g++ of GNU, version 4.3. We ran our experiments on
an Intel Pentium 4(R) processor of 3.00GHz with 2GB of RAM running on Debian
GNU/Linux 5.0. We used bible.txt as a natural language text, which is the file of
“The King James version of the bible” selected from “the Canterbury corpus?.” Its
size is 4,047,392 bytes and the alphabet size is 63.

2http://corpus.canterbury.ac.nz/descriptions/

80

i
o
N

T
Tunstall ---- AIVE --------
AIVF&VMA ——— VMA ———]
sr Huffman -------- 7
70 T g 10° | g
E\o/ Tl 7]
2 65f T . 3
- s
S 60 B 5 108
(7]
G BB e B
£ 2
8
50 |- b 10*
45 + g
40 I I I 103 I I I
8 10 12 14 16 8 10 12 14 16
codeword length (bits) codeword length (bits)

Figure 5: Compression ratio against code- Figure 6: Total number of nodes against

word length. codeword length.
10t b " AIVE s] 10°
. 10° 5 10°
(=) Q
ja} <2
o z
£ 2 = 2
£ 10 2 10
= (=]
S D
[7} 1%
13 1 < "
5 10 g 10
£ <]
o o
o [}
100 = 100 pr—=
10-1 1 1 1 10-1 1 1 1
8 10 12 14 16 8 10 12 14 16
codeword length (bits) codeword length (bits)

Figure 7: Compression time against code- Figure 8: Decompression time against
word length. codeword length.

At first, we show the compression ratio of AIVF codes for reference in Fig. 5.
We measured (compressed file size)/(original file size) as the compression ratio, and
added Tunstall code and Huffman code just for reference. As shown in Fig. 5, we
can see that AIVF(VMA) is almost competitive with Huffman code. Note that AIVF
and VMA output the same codes, that is, those have the same compression ratio.

Next, we compared the number of nodes and the encoding/decoding times against
the length of codewords. In this comparison, we only used bible.txt. The results are
shown in Figures 6, 7, and 8. We measured them by the CPU times calculated by the
time command of Linux. Note that the encoding times include the time computing the
compression model, and that the graphs are semilogarithmic. As shown in Fig. 7 and
Fig. 8, VMA is approximately over three times faster than AIVF when the codeword
length is greater than 10.

Last, we compared the number of nodes when we fixed [= 14 and used randomly
generated texts for various alphabet sizes. Figure 9 shows the result. We can see
that the number of nodes in VMA is drastically reduced as the alphabet size becomes
larger. Although we also compared for natural language corpora, we omit the results
because they were almost identical with the result shown in Fig. 9.

5000000 T T T

4500000 |- VMA —— |
4000000 |- =
3500000 |- .
3000000 | i
2500000 |- g

number of nodes

2000000 - g
1500000 |- |
1000000 |- .
500000 [~ .

,]
16 32 48 64 80 96 112128144160 176192208 224 240 256
alphabet size

Figure 9: Number of nodes against the alphabet size

5 Conclusions

We presented an efficient algorithm for AIVF codes, which integrates the multiple
parse trees of an AIVF code into one, named a VMA tree, and simulates the encoding
process and the decoding process on it. We also presented that we can reduce the total
number of nodes by Q(k?), that is, the number of nodes is a VMA tree is O(2‘k — k?).
This indicates that we can reduce the time and space to construct the parse tree by
Q(k?). The experimental results showed that our method runs much faster than the
original one in fact.

Although the methods in [KS09, Kid09] have better compression ratios rather than
AIVF codes, they need to construct suffix trees [CR02] for constructing a parse tree,
and thus, they take much time for doing it. Therefore, from the viewpoint of speeding
up compressed pattern matching, AIVF code with VMA tree is a strong candidate as
well, because we usually need to construct a parse tree for doing compressed pattern
matching on VF codes.

References

[CR0O2] M. Crochemore and W. Rytter. Jewels of Stringology. World Scientific, 2002.

[Kid09] T Kida. Suffix tree based VF-coding for compressed pattern matching. In Proc. of Data
Compression Conference 2009(DCC2009), page 449, Mar. 2009.

[KS09] Shmuel T. Klein and Dana Shapira. Improved variable-to-fixed length codes. In SPIRE
’08: Proceedings of the 15th International Symposium on String Processing and Information
Retrieval, pages 39-50, Berlin, Heidelberg, 2009. Springer-Verlag.

[Sav98] Serap A. Savari. Variable-to-fixed length codes for predictable sources. In Proc. of DCC98,
pages 481-490, 1998.

[Tun67] B.P. Tunstall. Synthesis of noiseless compression codes. PhD thesis, Georgia Inst. Technol.,
Atlanta, GA, 1967.

[YYO1] Hirosuke Yamamoto and Hidetoshi Yokoo. Average-sense optimality and competitive opti-
mality for almost instantaneous VF codes. IEEE Trans. on Information Theory, 47(6):2174—
2184, Sep. 2001.

