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Abstract

It is known that modeling an information source via a symbolic dynamical sys-
tem evolving over the unit interval, leads to a natural lossless compression scheme
attaining the entropy rate of the source, under general conditions. We extend this
notion to the lossy compression regime assuming a feedforward link is available,
by modeling a source via a two-dimensional symbolic dynamical system where
one component corresponds to the compressed signal, and the other essentially
corresponds to the feedforward signal. For memoryless sources and an arbitrary
bounded distortion measure, we show this approach leads to a family of simple
deterministic compression schemes that attain the rate-distortion function of the
source. The construction is dual to a recent optimal scheme for channel coding
with feedback.

I Introduction

Lossless compression of a discrete information source to its entropy rate H is a well
studied topic. A possibly lesser known approach to this problem is one based on sym-
bolic dynamical systems, where the information generating mechanism is modeled by
a randomly initialized iterative mapping of the unit interval to itself, and the emitted
source sequence is a quantized observation of that process. For well behaved mappings
the source sequence constitutes an expansion of the initial point, i.e., corresponds to a
unique such point. Furthermore, the prefixes of this expansion describe the initial point
with (exponentially) increasing resolution, and the unit interval can be uniformly parti-
tioned into ≈ 2nH subintervals so that with high probability, the subinterval containing
the initial point will have all its points admitting the same length-n expansion. This
leads to a conceptually simple and optimal compression scheme: A finite source sequence
is mapped to a representing subinterval by computing the corresponding reverse trajec-
tory of the dynamical system, and is reconstructed by following the trajectory of an
arbitrary point in that subinterval1. A comprehensive study of the symbolic dynamics
framework for information sources can be found in [1]. Some of the ideas can be traced
back to Rényi, see [2] and references therein.

1This has a flavor similar to arithmetic coding and (using variable-length coding) essentially coincides
with it in some cases, see Example 1.
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In this paper, we extend the concept above to the lossy source coding regime, under
the assumption that a noiseless feedforward link is available. This setting is described
as follows: An encoder observes a stochastic source sequence Y n over some product
alphabet Yn, and maps it to a rate R index set E = {1, 2, . . . , 2nR} using some encoding
function e : Yn 7→ E. The index is sent to the decoder. At time k, the decoder knows
the sequence Y k−1 via the feedforward link, and generates an approximation of Yk using
a decoding function fk : E × Yk−1 7→ X , where X is the reconstruction alphabet. The
quality of the approximation is measured w.r.t. a distortion measure d : X × Y 7→ R

+,
by evaluating the time-averaged expected distortion:

D = n−1

n∑

k=1

E d(fk(e(Y
n), Y k−1), Yk)

The rate-distortion function of the source is the infimum of all rates R for which there
exist encoding and decoding functions achieving a distortion at most D, for any n
large enough. It is denoted Rff(D) under the feedforward assumption, and R(D) where
feedforward is absent (i.e., when restricting fk(e, y

k−1) = fk(e)).
This model has been initially motivated and studied in the context of competitive

prediction [3], where it was shown that feedforward does not decrease the rate-distortion
function for a large family of sources (in particular, memoryless). An in-depth analysis
of the rate-distortion function with feedforward appears in [4]. A simple scheme in-
spired by a successive error compression feedback coding technique and achieving the
rate-distortion function for discrete memoryless sources, was suggested in [5]. Another
optimal protocol building on the Schalkwijk-Kailath scheme for channel coding with
feedback over the AWGN, was suggested for the white Gaussian source [6]. In this pa-
per, we suggest an alternative approach based in symbolic dynamics and motivated by a
recent optimal feedback transmission scheme, termed posterior matching [7][8][9]. The
suggested approach yields a conceptually simple compression protocol, which is shown
to achieve the rate-distortion function for discrete memoryless sources with a bounded
distortion measure.

II Preliminaries

Random variables (r.v’s) are denoted by upper-case letters, their realizations by cor-
responding lower-case letters. A r.v. X (either real or discrete) is associated with a
probability distribution PX(·) (over R, or over a discrete alphabet X ⊆ N) and we write
X ∼ PX . The cumulative distribution function (c.d.f.) of X is denoted by FX . We write
E(·) for expectation and P(·) for the probability of an event within the parentheses.
H(X) is the entropy of a discrete r.v. X , h(X) is the differential entropy of a continu-
ous r.v. X , and I(X ; Y ) is the mutual information between a pair of r.v. X, Y . We use
|∆| for the length of an interval ∆ ⊆ R, log for log2, ◦ for function composition, A for the
closure of the set A, 1A(·) for the indicator function over the set A, I for the open unit

interval (0, 1), and I2
def
= I ×I for the open unit square. An open partition of a set A (in

what follows, I or I2) is a family of disjoint open subsets {Ai} of A, such that ∪Ai = A.
A sequence xn over a finite alphabet is said to be (strongly) ε-typical w.r.t. PX , if the
(zero order) empirical distribution of symbols in xn is ε-close to the distribution PX in
the supremum norm. The set of all such length n sequences is denoted Tn,ε(PX).

We now turn to define a (two-dimensional) dynamical source, generalizing the defi-
nition in [1]. Note that in the sequel, we discuss in detail a significantly more restrictive



family of dynamical sources. We provide the rather abstract definition below both for
future reference, and as we believe it is more instructive.

A dynamical source S has the following components:

• A triplet of alphabets X ,Y ,Z ⊆ N.

• Two open partitions of I into open intervals {Π0
i }i∈X and {Π1

j}j∈Z , and the cor-

responding product partition Πij = Π0
i × Π1

j of I2. Without loss of generality we
assume that the intervals are arranged from left to right (or vice versa) according
to the natural alphabet order.

• Two functions σ0 : I 7→ X , σ1 : I 7→ Z that are equal to i, j over Π0
i ,Π

1
j respec-

tively.

• A function ξ : X × Z 7→ Y , and its corresponding extension to ζ : I2 7→ Y that is
constant and equal to ξ(i, j) when restricted to Πij .

• A mapping T : I2 7→ I2 of the form

T (θ, φ) = (T0(θ, ζ(θ, φ)), T1(θ, φ)) (1)

such that T restricted to each Πij is a continuous bijection, and {T (Πij)}(i,j)∈ξ−1(k)

is an open partition of I2 for each k ∈ Y .

Setting (θ1, φ1) ∈ I2 as an initial state, the source S is associated with the following
sequences, all of which are deterministic functions of the initial state:

• The state sequence (θ∞, φ∞) over I2, recursively defined by (θn, φn) = T (θn−1, φn−1).

• The source sequence y∞ over the alphabet Y , defined by yn = ζ(θn, φn)

• The component sequences x∞, z∞ over the alphabets X ,Z respectively, defined by

xn = σ0(θn) , zn = σ1(φn)

Furthermore, any finite source sequence yn corresponds to a fundamental set un(y
n) ⊆

I2, defined to be the set of all initial states (θ1, φ1) ∈ I2 that result in the source sequence
yn.

Following [1] again, a probabilistic dynamical source is a pair (S, P ) where S is a
dynamical source, and P is a probability measure equivalent to the Lebesgue measure
over I2 . Setting (Θ1,Φ1) ∼ P as the initial state, the source (S, P ) is naturally associ-
ated with the stochastic sequences Θ∞,Φ∞, Y ∞, X∞, Z∞, all of which are deterministic
functions of the initial state.

III Lossless Coding

Let (S, P ) be a probabilistic dynamical source with |Z| = 1, i.e., one dimensional, and
we can assume X = Y . In this case the fundamental sets are simply intervals in I
(in this section we disregard the redundant dimension). Under some further contrac-
tion conditions, an asymptotic equipartition property was shown to hold [1], namely
n−1 log |P (un(Y

n))|−1 tends in probability to the entropy rate H(Y ∞) of the source



sequence. This immediately leads to an optimal compression protocol: The unit inter-
val is uniformly partitioned into ≈ 2n(H+δ) representative intervals. The trajectory of
the dynamical source is reversed using Y n, namely recovering the fundamental interval
T−1
0 (·, Y1) ◦ · · · ◦ T−1

0 (·, Yn−1) ◦ T−1
0 (I, Yn). The index of a representative contained in

the fundamental interval is used to describe the source sequence2. To reconstruct Y n,
the dynamical source is initialized with any point inside the representative interval.

Example 1 (Memoryless Sources). To generate a memoryless source over the alphabet
Y , we set P = Uniform(I), ξ(i, j) = ξ(i) = i, and T0(θ, i) to be affine and map Π0

i to
I. This results in a source sequence that is i.i.d.-PY , where PY (i) = |Π0

i |. If T0(θ, i)
are all monotonically increasing, the fundamental intervals are precisely those generated
by the simple arithmetic coding protocol for the source, and coding them (the typical
ones) as described (or alternatively, using a variable-rate code to obtain zero error)
results in lossless compression with a rate approaching H(Y ). Note that in particular
for Y ∼ Uniform(Y), the source sequence is simply the |Y|-base expansion of the initial
state point.

Example 2 (The Continued Fraction Source). The continued fraction expansion of a
number in I can be generated by a dynamical source [1]. In this case we have Y = N,
the open partition is Π0

i = (1/(i+1), 1/i), ξ(i, j) = ξ(i) = i, and T0(θ, i) = θ−1− i = θ−1

(mod 1). Endowing the source with any probability measure P that is equivalent to the
Lebesgue measure over I, the state process converges to the invariant distribution that
admits the density finv(θ) =

log e
1+θ

· 1I(θ) [10].
Coding the fundamental intervals as described results in lossless compression with

a rate approaching the entropy rate of the continued fraction source, which is given by

H(Y ∞) = π2 log e
6

. It is interesting to note that in this case, a more efficient (yet equiv-
alent) coding mechanism for the fundamental intervals is readily available: Represent a
finite source sequence yn by the unique rational number pn

qn
it is the continued fraction

expansion of. It is well known that for almost all θ ∈ I (w.r.t. the Lebesgue mea-
sure), the denominator of the convergents of the continued fraction expansion satisfies

n−1 log qn → π2 log e
12

[10], and so (pn, qn) can be represented at a rate of twice this number,
which is precisely the entropy rate of the continued fraction source.

IV Lossy Coding with Feedforward

IV.1 Motivation

In the lossless setting, a finite source sequence was described by efficiently enumerat-
ing (typical) fundamental sets, obtained via a representation of an initial state up to
a suitable resolution. In the lossy setting, we wish to provide only partial information
regarding the fundamental set. To that end, a two-dimensional dynamical source model
was introduced, where the high-level idea is to provide the decoder with a representation
of the θ-component of the initial state only. At time k, the decoder knows the sequence
Y k−1 (via feedforward), and can therefore compute the θ-component Θk−1 that corre-
sponds to the initial state Θ1 it was given. This is made possible due to the restriction
(1) on the structure of T0, making its evolution dependent only on the θ-component and
the causal knowledge of the source sequence. Had it known the φ-component as well,

2If there is no such interval, an arbitrary index is used. This error event is of vanishing probability.



the decoder could have reconstructed Xk, Zk and hence Yk. Here, it can only reconstruct
Xk, which can serve as an estimate for Yk.

So, our first task is, for a fixed source sequence distribution, to design a probabilistic
dynamical source (S, P ) that is consistent with this distribution, and also makes Xn, Y n

dependent in a prescribed way so that this reconstruction has low distortion. However,
there is an even more difficult obstacle. The initial θ-component has to be described
with a finite rate, and (loosely speaking) this should be done while making sure that an
initial φ-component can be selected so that the statistical dependence above is roughly
maintained. For memoryless sources, both tasks can be accomplished.

IV.2 Memoryless Sources

Let PY be a probability distribution over the alphabet Y . There are many different
probabilistic dynamical sources for which the source sequence is i.i.d.-PY . One simple
example was given in the previous section, where |Z| = 1 and T is affine on any Π0

i ,
and corresponds to a lossless compression with rate H(Y ). However, in two dimensions
there is an abundance of distinct probabilistic dynamical sources that admit an i.i.d.-PY

source sequence.
Consider any channel PX|Y from Y to X over the alphabets X × Y , let PXY =

PY ×PX|Y be the joint distribution and let PY |X be the corresponding test channel from
X to Y . The following Lemma is easily observed [11].

Lemma 1. There exists an alphabet Z of size |Z| ≤ |X |(|Y| − 1) + 1, a function
ξ : X ×Z 7→ Y, and a r.v. Z independent of X, such that (X, ξ(X,Z)) ∼ PXY .

Now, let us define the following dynamical source S. The construction is motivated
by the posterior matching scheme, a capacity achieving feedback transmission scheme
for memoryless channels with feedback [7][8][9].

• |Π0
i | = PX(i) for any i ∈ X .

• |Π1
j | = PZ(j) for any j ∈ Z.

• The function ξ is that of Lemma 1, ζ its natural extension.

• The mapping T = (T0, T1) is defined as follows:

– Let FX|Y be the conditional c.d.f. for PX|Y . For any fixed k ∈ Y , T0(θ, k) is a
continuous non-decreasing function from I onto I, is affine on each Π0

i , and

is equal to FX|Y (i|k) on the right edge of Π0
i .

– T1(θ, φ) = T1(φ) is one dimensional, affine on each Π1
j and maps it onto I.

Remark. Note that when PX|Y is noiseless (e.g., X = Y ) then S collapses to the one
dimensional lossless construction of Example 1.

Lemma 2. For any y ∈ Yn, the fundamental set un(y
n) of the dynamical source S is a

finite disjoint union of product rectangles. The projections of these rectangles onto the
θ-axis form a set of at most n(|X | − 1) + 1 distinct intervals.

Proof. The first assertion follows easily from the affinity of T . For n = 1, the number
of distinct intervals on the θ-axis is exactly |X |. For any fixed k ∈ Y , T0(a, k) is quasi-
affine over I as a function of a, with at most |X | − 1 corner points. Hence the number
of distinct intervals can increase by at most |X | − 1 at each step.



The following Lemma is adapted from [9].

Lemma 3. Let P ∼ Uniform(I2). The probabilistic dynamical source (S, P ) has the
following properties:

(a) The sequence Z∞ is i.i.d.-PZ, Zn is statistically independent of Xn.

(b) (Xn, Yn) ∼ PXY , Xn is statistically independent of Y n−1

(c) The source sequence Y ∞ is i.i.d.-PY , and Yn−Xn−Xn−1Y n−1Zn−1 form a Markov
chain.

(d) I(Θ1; Y
n) = nI(X ; Y )

Proof. Assertion (a) is immediate: Z∞ is a deterministic function of Φ1 and evolves
according to the memoryless dynamical law described in Example 1, hence is i.i.d-PZ .
Furthermore, Xn is a deterministic function of (Θ1, Z

n−1) which are mutually indepen-
dent of Zn. For the other assertions, see [9].

Define

ωk(·)
def
= T−1

0 (·, k) , ∆ε
n(y

n)
def
= ωy1 ◦ · · · ◦ ωyn−1

◦ ωyn((ε, 1− ε)) (2)

Namely, the interval ∆ε
n(y

n) is obtained by reversing the trajectory of the (edges of
the) interval (ε, 1 − ε). The following result, also adapted from [9], is central to our
derivations.

Theorem 1. Suppose that PXY is strictly positive over X × Y, and that for any fixed
θ ∈ I, T0(θ, j) is not a constant function of j. Then for any ε > 0,

(a) lim
n→∞

P(|∆ε
n(Y

n)| > 2−nR) = 0 for any R < I(X ; Y ).

(b) lim
n→∞

P(Θ1 6∈ ∆ε
n(Y

n)) ≤ 2ε.

Loosely speaking, Theorem 1 implies that by observing the source sequence, the
initial Θ1 component of the state sequence can be found up to a resolution of 2−nI(X;Y ).
In a feedback communication setting, this initial value represents a message to be sent
over the channel PY |X , and this concentration result means that one can reliably transmit

roughly 2nI(X;Y ) such messages and decode them with high reliability, which corresponds
to a communication rate of at most I(X ; Y ) bits per channel use. In order to be able to
generate Xn (channel input) the encoder needs to know the Y n−1 on top of the message
Θ1, hence the feedback. In the dual lossy source coding with feedforward setting we
consider, Θ1 plays the role of a lossy description of the source sequence, and we will
need at least I(X ; Y ) bits per source symbol to represent it with high enough accuracy.
In order to be able to generate Xn (lossy reconstruction of Yn) the decoder needs to know
the Y n−1 on top of the (quantized representation of the) lossy description Θ1, hence the
feedforward.

Fix the block size n, and set R = I(X ; Y ) + δ for some δ > 0. Let {Jm}
⌊2nR⌋
m=1 be an

open partition of I into equi-sized intervals, and let am be the midpoint of Jm. Denote
the set of all midpoints by An.



Lemma 4. lim
n→∞

P

( ⋃

θ∈An∩∆ε
n(Y

n)
(θ,φ)∈un(Y n)

{(xn(θ, φ), zn(θ, φ))} ∩ Tn,δ(PXZ) = ∅
)
= 0.

Proof Outline. For lack of space we only describe the main elements of the proof, skip-
ping some details. Let V (yn) be the set of indices m such that am ∈ ∆ε

n(y
n), and Jm

intersects with two or more intervals that are projections of a product rectangle in un(y
n)

onto the θ-axis. By Lemma 2, |V (yn)| ≤ n|X |. Define

qn(y
n)

def
= PΘ1|Y n

( ⋃

m∈V (yn)

Jm | yn
)

and consider Theorem 1 with a rate I(X ; Y ) − ε1. Now, assume to the contrary that
P (qn(Y

n) > ε2) > ε3 for some fixed ε2 ∈ (2ε, 1 − 2ε), ε3 > 0, i.e., with probability at
least ε3 the distribution of Θ1 given Y n has a mass at least ε2 inside that polynomial
sized set of intervals. Then we have (some transitions assuming n large enough)

n−1I(Θ1; Y
n) = −n−1h(Θ1|Y

n)

≥ n−1ε3
[
ε2 log

(
ε2 · 2

nR · (n|X |)−1
)

+ (1− 2ε− ε2) log
(
(1− 2ε− ε2) · 2

n(I(X;Y )−ε1)
)]

+ n−1(1− ε3)(1− 2ε) log((1− 2ε) · 2n(I(X;Y )−ε1))

= (1− 2ε) · I(X ; Y ) + δε2ε3 − ε1(1− 2ε− ε2ε3) +O(logn/n) (3)

where we have used the concentration result of Theorem 1 for the inequality transition.
Since ε, ε1 can be taken arbitrarily small for n large enough, the right-hand-side of (3)
can be made larger than I(X ; Y ), contradicting Lemma 3. Note that this argument is
similar in essence to the converse to the channel coding Theorem [12].

We conclude that qn(Y
n) → 0 in probability, which loosely speaking means that

with high probability, PΘ1|Y n is mostly concentrated on ∆ε
n(y

n)\∪m∈V (yn)Jm for large n.
Using typicality arguments together with the properties in Lemma 3, this can be shown
to imply that with high probability we can find θ in that set together with some φ such
that (θ, φ) ∈ un(Y

n) and (xn(θ, φ), zn(θ, φ)) ∈ Tn,δ(PXZ). By definition, θ ∈ Jm where
Jm is a subset of some interval which is a projection of a product rectangle in un(Y

n).
This is turn implies that xn(am, φ) = xn(θ, φ) and zn(am, φ) = zn(θ, φ), concluding the
proof.

We are now ready to describe the compression protocol.

Encoder

(a) Given the sequence yn, compute ∆ε
n(y

n) using the recursion (2).

(b) Out of the ≈ 2nδ intervals Jm ⊆ ∆ε
n(y

n), find the one with the least index3 m, for
which there exists φ ∈ I such that (xn(am, φ), z

n(am, φ)) ∈ Tn,ε(PXZ). If no such
index exists, arbitrarily set m = 1.

(c) Send the index m to the decoder, which requires a rate of I(X ; Y )+δ bits per source
symbol.

3It seems that a random selection should work with high probability, making the process simpler.
However, this was not verified.



Decoder

(a) Initialization: Set θ1 = am, compute x1 = σ0(θ1).

(b) For any k, predict ŷk = xk.

(c) Receive the true yk via the feedforward link, compute θk+1 = T0(θk, yk) and xk+1 =
σ0(θk+1).

(d) Repeat steps (b)–(c) up to k = n.

The compression rate attained by the scheme is R = I(X ; Y ) + δ. If encoding step
(b) is successful then the pair (xn, zn) is jointly PXZ-typical, which implies that (xn, yn)
is jointly PXY -typical. By Lemma 4, when encoding an i.i.d-PY sequence Y n this occurs
with probability approaching 1 as n → ∞. Since the distortion measure is bounded, the
expected distortion achieved by the scheme is given by D = EPXY

d(X, Y ) + o(1).
The development above holds for any PY and PX|Y that satisfy the requirements of

Theorem 1. The strict positivity constraint for PXY has a negligible effect, since such
distributions can always be approximated arbitrarily via admissible distributions, and
the distortion measure is bounded. The second constraint is redundant as it can always
be averted by using a variant of the the probabilistic dynamical source, as in the channel
coding case [9][13]. Hence, we have proved the following result.

Theorem 2. For any discrete memoryless source and bounded distortion measure, the
protocol described above can perform arbitrarily close to the rate distortion function of
the source.

Example 3 (Bernoulli Source and Hamming Distortion). Let X = Y = {0, 1}, Y ∼
Bern(1

2
), d(·, ·) the Hamming distortion measure. The rate distortion function Rff(D) =

R(D) = 1 − hb(D) is achieved by X ∼ Bern(1
2
), Z ∼ Bern(D) independent of X , and

Y = X + Z (mod 2). The partitions and mappings are given by

Π0
0 = (0,

1

2
) Π0

1 = (
1

2
, 1)

Π1
0 = (0, 1−D) Π1

1 = (1−D, 1)

T0(θ, 0) = 2θ(1−D) · 1Π0

0
(θ) + (2Dθ + 1− 2D) · 1Π0

0
(θ)

T0(θ, 1) = 2θD · 1Π0

0
(θ) + (2(1−D)θ + 2D − 1) · 1Π0

0
(θ)

T1(φ, k) = T1(φ) =
φ

1−D
· 1Π1

0
(φ) +

φ− (1−D)

D
· 1Π1

1
(φ)

The mappings and the fundamental sets for n = 3 are depicted in Figures 1 and 2.

V Conclusions

A symbolic dynamical system approach to lossy source coding with feedforward was
introduced, yielding in particular a conceptually simple and optimal compression proto-
col for memoryless sources. In this latter case, the construction is dual to the posterior
matching feedback communication scheme for memoryless channels. Future work should
examine the suggested framework for sources with memory. A reasonable first goal could
be the case where the φ-component of the dynamical source evolves independently as in
the memoryless case, yet generates e.g. a Markovian Zn.



Figure 1: The mapping T = (T0, T1) for Bern(
1
2
) source, Hamming distortion D

Figure 2: Fundamental sets with n = 3 for Bern(1
2
) source, Hamming distortion D
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